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S.1. Empirical Influence

A well-known measure of robustness of an estimator is given by its influence function (see
Hampel et al. 1986). The influence function measures resistance of an estimator against
infinitesimal proportions of outliers and helps study the local robustness and asymptotic
efficiency of an estimator. The finite-sample version of the influence function, called the
empirical influence function (Tukey, 1977), is a useful measure of sensitivity quantifying
the effect of a single outlier on the estimator computed on a given sample. Although
influence functions have been widely studied for many parametric models, much less
attention has been paid to nonparametric estimators. To measure the influence of a
contaminating point on the estimators, we follow the approach of Manchester (1996),
who proposed a graphical method to display the sensitivity of a scatter plot smoother
that is related to the finite–sample influence function introduced by Tukey (1977).

Given a data set {(Xt

i , Yi)
t}1≤i≤n satisfying the additive model Y = µ0 +∑d

j=1 g0,j(Xj) + σ0 ε, let ĝn,j(τ) be the estimator of the j−th component based on this

data set evaluated at the point τ ∈ R. Assume that z0 = (xt

0 , y0)
t represents a con-

taminating point and let ĝ
(z0)
n,j (τ) be the estimator based on the augmented data set

{(Xt

1 , Y1)
t, . . . (Xt

n, Yn)
t, z0} evaluated at the point τ . For a fixed value of τ , we define

the empirical influence function of ĝn,j(τ) at z0 as the surface

EIFj,τ (z0) = (n+ 1)
[
ĝ
(z0)
n,j (τ)− ĝn,j(τ)

]
, (S.1)

as z0 varies in R
d × R. To explore the sensitivity of the backfitting estimators to the

presence of outliers using the empirical influence function (S.1), we generated a data
set of size n = 500 following an additive model with location µ0 = 0, additive com-
ponents g0,1(x1) = 24 (x1 − 0.5)2 − 2 and g0,2(x2) = 2π sin(πx2) − 4 and covariates
Xi = (Xi,1,Xi,2)

t ∼ U([0, 1]× [0, 1]). The data and the regression function are shown in
Figure S.1.
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Figure S.1. Data used for the influence function study, and the corresponding regression function g0.

We used an Epanechnikov kernel with bandwidths h1 = h2 = 0.10, local constant
smoothers (q = 0) and the same tuning constants as in our simulation study. We com-
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Classical Huber Function Tukey Function
τ = 0.2

x1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

−20

−15

−10

−5

0

5

10

15
20

−150

−100

−50

0

50

100

x1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

−20

−15

−10

−5

0

5

10

15
20

−8

−6

−4

−2

0

2

4

6

8

x1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

−20

−15

−10

−5

0

5

10

15
20

−10

−8

−6

−4

−2

0

2

4

6

8

10

τ = 0.4
x1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

−20

−15

−10

−5

0

5

10

15
20

−150

−100

−50

0

50

100

x1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

−20

−15

−10

−5

0

5

10

15
20

−4

−2

0

2

4

6

8

x1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

−20

−15

−10

−5

0

5

10

15
20

−6

−4

−2

0

2

4

6

8

Figure S.2. Empirical influence for the classical and robust estimators, EIF1,τ (x, y) when τ = 0.2 and 0.4 and
x = (x1, 0.5).

puted EIFj,τ (z0) for τ = 0.20, 0.40, 0.60 and 0.80 and a grid of points z0 = ((x1, 0.5)
t, y)t,

where x1 ranges over 30 equidistant points in the interval [0.15, 0.85] and y takes 50
equally spaced points in [−20, 20].

The results for each estimator and for τ = 0.2 and 0.4 are displayed in Figure S.2,
while the results for τ = 0.6 and 0.8 are given in Figure S.3.

These plots illustrate the expected lack of robustness of the classical backfitting esti-
mator, for which the empirical influence function takes very large values. Note the EIF
attain the largest absolute value when x1 is close to τ , and estimators based on Tukey’s
bisquare loss function have a slightly larger |EIF | than those based on Huber’s loss. The
redescending structure of the score function can also be observed in the plot, showing
that very large values of the responses have less effect on the estimator based on the
Tukey loss function than in that based on the Huber loss, as noted also in the simulation
study. It is important to note that, when the nonparametric regression model does not
take into account an additive structure and when using a kernel with compact support
to compute a kernel regression estimator only outliers near the value at which the re-
gression function estimator is evaluated may impact the regression estimator. However,
the situation is different for the backfitting method, which involves the estimation of the
location parameter and an iterative algorithm involving all the residuals.

Since the absolute value of EIF1,τ (x, y) attains its maximum value near τ , Figure
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Classical Huber Function Tukey Function
τ = 0.6
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Figure S.3. Empirical influence for the classical and robust estimators, EIF1,τ (x, y) when τ = 0.6 and 0.8 and
x = (x1, 0.5)
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Figure S.4. Empirical influence EIF1,x1
((x1, 0.5), y) for the classical and robust estimators.

S.4 shows the surfaces EIF1,x1
((x1, 0.5), y), which represent the worst possible bias of

these estimators in this setting. The plots of |EIF1,x1
((x1, 0.5), y)| are given in Figure

S.5. As expected, the bias of the classical estimators follows the size of the contami-
nated responses. On the other hand, the empirical functions of the robust estimators
are bounded, and the most influential points correspond to x1 near 0.2 and 0.8, which
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Figure S.5. Absolute value of the empirical influence, |EIF1,x1
((x1, 0.5), y)| for the classical and robust estimators.

reflects the expected boundary effect. Due to the redescending nature of the Tukey score
function, the absolute value of the empirical function for larger values of y (|y| > 5, say)
remains very low, near its minimum absolute value of 0.019.
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S.2. Real data example

In this section, we complement the results obtained in Section 5, where we considered the
airquality data set available in R. Figures S.6 gives the plots for the partial residuals
obtained using the classical and robust estimators with all the data. On the other hand,
Figure S.7 provides similar plots when using the classical estimators on the data set
without the 5 detected atypical observations.
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Figure S.6. Partial residuals, R̂j for 1 ≤ j ≤ 3, and estimated curves for the classical (in red dashed lines) and
robust (in blue solid lines) backfitting estimators with data-driven bandwidths hls and hr, respectively.
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Figure S.7. Partial residuals and estimated curves for the classical backfitting estimator, ĝ
(−5)
j

, (in red dashed

lines) with data-driven bandwidth h
(−5)
ls

.
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