Assessing Different E3 Ligases for Small Molecule Induced Protein Ubiquitination and Degradation

Authors.
Philipp Ottis; Momar Toure; Philipp M. Cromm; Eunhwa Ko; Jeffrey L. Gustafson; Craig M. Crews

Supporting Information

Supplementary Figures

A)

B)

C)

D)

E)

Figure S1. Flow-cytometry screening of E3 ligase constructs. Loss of fluorescence indicates degradation of the reporter substrate EGFP-FKBP. Each bar depicts the geometric mean fluorescence of ≥ 10.000 gated cells.

Figure S2. Flow-cytometry screening of PROTAC-recruited, endogenous E3 ligases. Loss of fluorescence indicates degradation of the reporter substrate EGFP-FKBP. Each bar depicts the geometric mean fluorescence of ≥ 10.000 gated cells.

Figure S3. Immunoblots of cells expressing either β TRCP-HT7 or HT7-parkin, treated with dasatinib haloPROTACs 11 and 12, respectively.

SUPPORTING INFORMATION

Experimental Section: Biology

Molecular Cloning

HaloTag 7 (HT7) was amplified via PCR from a pHTN-vector template (Promega) and terminal double HA-tags, as well as a (-Gly-Gly-Ser-Gly-) 3_{3}-linker were incorporated into the product. Both, N-terminal and C-terminal constructs of HT7 were each cloned into a pcDNA5/FRT/TO vector (Invitrogen) to create the plasmid-backbone for the insertion of the various E3 ligase constructs. E3 ubiquitin ligase constructs of CHIP, MARCH5, NEDD4L, parkin, and SIAH1 were cloned via PCR-amplification from human foreskin cDNA. The β TrCP template was a gift from Raymond Deshaies (California Institute of Technology). The use of EGFP-FKBP(F36V) expression vector and creation of stable cell lines thereof has been previously described. ${ }^{1}$

HA-tagged ubiquitin in a pRK5 expression vector (Addgene plasmid \#17608), as well as the K48R mutant (Addgene plasmid \#17604) and the lysine-dead K0 mutant (Addgene plasmid \#17603) were gifts from Ted Dawson. ${ }^{2}$ Ubiquitin mutants K6R, K11R, K27R, and K27/29R were gifts from Josef Kittler. ${ }^{3} \mathrm{~K} 33 \mathrm{R}$ and K 63 R mutants were created by site-directed mutagenesis on the pRK5-HA-ubiquitin.

Cell lines

Flp-In TREx 293 cells (Invitrogen) ${ }^{4}$ were cultured in DMEM, supplemented with 10% FBS, $100 \mathrm{U} / \mathrm{mL}$ penicillin, and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. Cells stably and constitutively expressing EGFP-FKBP (F36V) ${ }^{1}$ were transfected with the respective HaloTag-E3 ligase construct in pcDNA5/FRT/TO vector (Invitrogen) together with a pOG44 FlpRecombinase Expression vector (Invitrogen) in a 1:10 ratio, using Lipofectamine 2000 (Invitrogen) transfection reagent. Following transfection, Flp-In TREx 293 cells with pcDNA5/FRT/TO stably integrated into the recombination site were selected using $300 \mu \mathrm{~g} / \mathrm{mL}$ hygromycin. Induction of HaloTag-E3 expression was achieved by supplementing the media with $1 \mu \mathrm{~g} / \mathrm{mL}$ doxycycline and was tested by immunoblotting for the HA-tagged construct.

Flow Cytometry

Flow cytometry experiments were carried out as described before. ${ }^{5,6}$ Briefly, Flp-In TREx 293 cells stably expressing EGFP-FKBP and inducibly expressing one of the E3-HT7 fusion proteins, were subjected to treatment with PROTACs or haloPROTACs for 24 h . Cells were detached with trypsin solution and resuspended in DMEM. EGFP-conferred fluorescence was analyzed using a FACSCalibur flow cytometer (BD Biosciences). Results were quantified for mean geometric fluorescence using FlowJo software (FlowJo, LLC). All fluorescence signals were normalized to a vehicle (DMSO) only control, which was set to 1.0. Resulting data were plotted using Prism software (GraphPad Software, Inc).

Ubiquitin Assay

For the purification of ubiquitinated EGFP-FKBP a protocol by Choo et al. ${ }^{7}$ was modified. Cells were seeded and grown to confluency in the presence of $1 \mu \mathrm{~g} / \mathrm{mL}$ doxycycline and were treated with PROTAC or mock control for 2 h (if not indicated otherwise). Subsequently, the cells were washed with chilled PBS and were lysed by the addition of ubiquitin lysis buffer (50 mM Tris, pH 8.0; $150 \mathrm{mM} \mathrm{NaCl} ; 2 \%$ SDS; 2 mM sodium orthovanidate; $50 \mathrm{mM} \mathrm{NaF;} 1 \mathrm{mM}$ iodoacetamide; 10 mM N-methylmaleimide; $50 \mu \mathrm{M}$ PR-619 (Abcam); 5 mM dithiothreitol (DTT); 1 x cOmplete EDTA-free protease inhibitor cocktail (Sigma-Aldrich)). The lysate was transferred into a microcentrifuge tube and immediately boiled at $95^{\circ} \mathrm{C}$ for 10 minutes to ensure inactivation of any deubiqutinases. Following a rapid cool-down on ice, the lysates were subjected to one second of sonication by a Branson Sonifyer 450, equipped with a microtip and set to constant output at 50% strength. Samples then were diluted $1: 10$ with dilution buffer (50 mM Tris, pH 8.0 ; $150 \mathrm{mM} \mathrm{NaCl} ; 2 \mathrm{mM}$ EDTA; 1\% Triton-X 100) and were rotated at $4^{\circ} \mathrm{C}$ for 60 minutes. Subsequently, samples were centrifuged at $20,000 \mathrm{xg}$ for 30 minutes, the supernatant was transferred into a fresh vial and protein concentrations were determined using a BCA-assay. Volumes of the diluted lysate supernatants were adjusted to yield equal amounts of protein $(300-1,500 \mu \mathrm{~g})$ for each set of samples. $2 \mu \mathrm{~g}$ of mouse anti-GFP antibody (Santa Cruz; sc9996) were added and samples were rotated at $4^{\circ} \mathrm{C}$ over night. Next day, $10 \mu \mathrm{~L}$ of dry bed volume of Protein G Sepharose Fast Flow (Sigma-Aldrich) beads were added and the samples were incubated rotating for $2,5 \mathrm{~h}$ at $4^{\circ} \mathrm{C}$. Following the incubation, beads were pelleted by centrifugation ($1,000 \mathrm{xg}$ for 5 min), washed once with 50 mM Tris, $\mathrm{pH} 8.0 ; 1 \mathrm{M} \mathrm{NaCl} ; 1 \mathrm{mM}$ EDTA; 1\% Nonidet P-40; and, subsequently, twice with 50 mM Tris, pH 8.0; 150 mM NaCl .

Finally, beads were pelleted ($1,000 \times \mathrm{g}$ for 5 min), all wash buffer was carefully removed and beads were resuspended in $20 \mu \mathrm{~L}$ of $1 \times$ Laemmli sample buffer and boiled at $95^{\circ} \mathrm{C}$ for 10 minutes. After centrifugation ($5,000 \times \mathrm{g}$ for 5 min), the supernatant, containing the eluted protein in loading buffer was directly subjected to SDS-PAGE and subsequent immunoblotting.

For proteomic analyses, the final elution step - following the last wash - was replaced by the addition of one bed-volume of 0.1 M glycine (pH 2.0) to the beads. After incubation for 1 minute, beads were pelleted ($1,000 \times \mathrm{g}$ for 5 min) and the supernatant was transferred into a fresh microcentrifuge tube and $5 \%(\mathrm{v} / \mathrm{v})$ of 1.5 M Tris (pH 9.2) was added to neutralize the eluate. This extraction was repeated three times and eluates were pooled.

Immunoblotting

If not indicated otherwise, cells were seeded and grown to 80% confluency in the presence of $1 \mu \mathrm{~g} / \mathrm{mL}$ doxycycline and were treated with PROTAC or control for 24 h . Subsequently, the cells were washed with chilled PBS and were lysed by the addition of lysis buffer (20 mM Tris, pH 7.5; $150 \mathrm{mM} \mathrm{NaCl} ; 1 \%$ Triton-X 100; 1 x cOmplete EDTA-free protease inhibitor cocktail (Sigma-Aldrich)), followed by centrifugation at $16,000 \times \mathrm{g}$ for 10 minutes. Protein concentration of supernatants were determined via BCA-assay before addition of Laemmli sample buffer and boiling at $95^{\circ} \mathrm{C}$ for 10 minutes. Equal amounts of protein were subjected to SDS-PAGE and subsequent electrophoretic transfer onto nitrocellulose membrane. Rabbit antibodies were purchased from Cell Signaling: HA-Tag (3724), ubiquitin (3933), EphA2 (6997), SRC (2123). Mouse antibodies were purchased from Santa Cruz: ABL (sc-23), YES (sc-48396). The tubulin antibody was coupled to Alexafluor488 and purchased from Millipore (16-232).

Proteomics

Briefly, IP elution in 100 mM glycine buffer (pH 7.5), containing approximately $10 \mu \mathrm{~g}$ of protein, as determined by NanoDrop (Peqlab), was dried down via SpeedVac, then reconstituted in $10 \mu \mathrm{~L} 8 \mathrm{M}$ urea containing 0.4 M ammonium bicarbonate. To this, $1 \mu \mathrm{~L} 45 \mathrm{mM}$ DTT was added to reduce the disulfide bonds at $37^{\circ} \mathrm{C}$ for 30 min and then $1 \mu \mathrm{~L}$ of 100 mM iodoacetamide (IAN) was added to alkylate the free sulfhydryl at room temperature for 30 minutes. Then $27 \mu \mathrm{~L}$ of water and 1 uL of a $0.5 \mu \mathrm{~g} / \mu \mathrm{L}$ trypsin (Promega Inc.) solution was added and incubated at $37^{\circ} \mathrm{C}$ overnight for the enzyme digestion to take place. The digest solution was then desalted with a

Microspin (The Nest Group Inc.) and eluted peptides were dried and stored at $-80^{\circ} \mathrm{C}$ until further analyzed. Dried peptides were reconstituted in Buffer A (100\% water, 0.1\% formic acid, and injected onto an Orbitrap Fusion (Thermo Fisher Scientific) LC MS/MS system equipped with a Waters nanoAcquity UPLC system, and uses a Waters Symmetry® C18 $180 \mu \mathrm{~m} \times 20 \mathrm{~mm}$ trap column and a $1.7 \mu \mathrm{~m}, 75 \mu \mathrm{~m} \times 250 \mathrm{~mm}$ nanoAcquity ${ }^{\text {TM }}$ UPLC ${ }^{\text {TM }}$ column $\left(37^{\circ} \mathrm{C}\right)$ for peptide separation. Trapping was done at $5 \mu \mathrm{l} / \mathrm{min}$, 99% Buffer A for 3 minutes. Peptide separation was performed with a linear gradient over 140 minutes at a flow rate of $300 \mathrm{~nL} / \mathrm{min}$.

Precursor mass scans (300 to $1500 \mathrm{~m} / \mathrm{z}$ range, target value 3E6, maximum ion injection times 45 ms) were acquired and followed by Higher energy Collisional Dissociation (HCD) based fragmentation (normalised collision energy 28). A resolution of 70,000 at $\mathrm{m} / \mathrm{z} 200$ was used for this MS1 scans, and up to 20 dynamically chosen, most abundant, precursor ions were fragmented (isolation window $1.7 \mathrm{~m} / \mathrm{z}$). The tandem MS/MS scans were acquired at a resolution of 17,500 at m/z 200 (target value 1E5, maximum ion injection times 100 ms).

Collected MS data were analyzed utilizing Mascot Distiller for peak picking, Mascot Search Engine for protein database search to identify proteins and their ubiquitinated site of modification on Lysine residue (via the added mass of a -GlyGly moiety).

Experimental Section: Chemistry

General comments

Unless otherwise indicated, common reagents or materials were obtained from commercial sources and used without further purification. Tetrahydrofuran (THF), Dimethylformamide (DMF) and Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were dried by a PureSolv ${ }^{\text {TM }}$ solvent drying system. Flash column chromatography was performed using silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck silica gel plates with QF-254 indicator and visualized by UV or $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an Agilent $\mathrm{DD}_{2} 500$ (500 $\mathrm{MHz}{ }^{1} \mathrm{H} ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$) or Agilent $\mathrm{DD}_{2} 600\left(600 \mathrm{MHz}{ }^{1} \mathrm{H} ; 150 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ or Agilent $\mathrm{DD}_{2} 400$ (400 $\mathrm{MHz}{ }^{1} \mathrm{H} ; 101 \mathrm{MHz}{ }^{13} \mathrm{C}$) spectrometer at room temperature. Chemical shifts were reported in ppm relative to the residual $\mathrm{CDCl}_{3}\left(\delta 7.26 \mathrm{ppm}{ }^{1} \mathrm{H} ; \delta 77.00 \mathrm{ppm}{ }^{13} \mathrm{C}\right.$), $\mathrm{CD}_{3} \mathrm{OD}\left(\delta 4.87 \mathrm{ppm}{ }^{1} \mathrm{H} ; \delta 49.00\right.$ $\mathrm{ppm}{ }^{13} \mathrm{C}$), or $d^{6}-\mathrm{DMSO}\left(\delta 2.50 \mathrm{ppm}{ }^{1} \mathrm{H} ; \delta 39.52 \mathrm{ppm}{ }^{13} \mathrm{C}\right.$). NMR chemical shifts were expressed in ppm relative to internal solvent peaks, and coupling constants were measured in Hz . (bs = broad signal). Only peaks of the major rotamer are reported. Mass spectra were obtained using electrospray ionization (ESI) on a time of flight (TOF) mass spectrometer. Analytical HPLC analyses were carried out on $250 \times 4.6 \mathrm{~mm}$ C-18 column using gradient conditions ($10-100 \%$ B, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}$). Preparative HPLC was carried out on $250 \times 21.2 \mathrm{~mm}$ C-18 column using gradient conditions ($10-100 \% B$, flow rate $=10.0 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}$). The eluents used were: solvent $A\left(\mathrm{H}_{2} \mathrm{O}\right.$ with 0.1% TFA) and solvent $B\left(\mathrm{CH}_{3} \mathrm{CN}\right.$ with 0.1% TFA).

Supplementary Scheme 1. Synthesis of Ariad-ligand chloroalkanes.
Compound 13 was prepared according a previously reported procedure. ${ }^{8}$
The corresponding acid derivatives were synthesized according to a procedure previously described by Lai A. et. al. ${ }^{9}$

Synthesis of tert-butyl (2-(3-(3-(3,4-dimethoxyphenyl)propanoyl)phenoxy)ethyl)carbamate (14)

14
Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{6}$
Exact Mass: 429.2151
Molecular Weight: 429.5130
To a solution of 13 ($330 \mathrm{mg}, 1.2 \mathrm{mmol}$) and $1-\mathrm{N}$-Boc-2-bromoethylamine ($312 \mathrm{mg}, 1.4 \mathrm{mmol}$) in DMF (2.3 mL) were added $\mathrm{NaI}(8.7 \mathrm{mg}, 0.058 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(481 \mathrm{mg}, 3.5 \mathrm{mmol})$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($378 \mathrm{mg}, 1.2 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The mixture was heated to $60^{\circ} \mathrm{C}$ and then stirred for 14 h . After the reaction, the mixture was cooled to room temperature, poured into water and then extracted with ethyl acetate (x 3). The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by column chromatography to afford 14 as brown oil (500 mg , quant).

MS (APCI) m/z: $430.5[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (R)-tert-butyl (2-(3-(3-(3,4-dimethoxyphenyl)-1hydroxypropyl)phenoxy)ethyl)carbamate (15)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{6}$ Exact Mass: 431.2308 Molecular Weight: 431.5290

To a solution of $14(500 \mathrm{mg}, 1.2 \mathrm{mmol})$ in dry THF (1.2 mL) was added a solution of (+)-DIP-CI $(566 \mathrm{mg}, 1.8 \mathrm{mmol})$ in dry THF $(1.3 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 24 h , and then concentrated under reduced pressure. The resulting mixture was diluted with diethyl ether (0.4 mL), and diethanolamine (1.0 mL) was added to the solution at $25^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 6 h and then filtered through celite, and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and then the crude residue was purified by column chromatography to afford 15 as a colorless oil ($417 \mathrm{mg}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H})$, $6.81-6.77$ (m, 2H), 6.72 (d, J = $10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.71 (s, 1H), 5.01 (brs, 1H), 4.65 (dd, J = 8.5, 5.2 $\mathrm{Hz}, 1 \mathrm{H}$), 4.01 (t, J = $5.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.52-3.51 (m, 2H), 3.85 (s, 3H), 3.86 (s, 3H), 2.70-2.60 (m, 2H), 2.10-1.94 (m, 3H), 1.45 (s, 9H). ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 158.4,155.7,148.5,146.9$, 146.6, 134.3, 129.2, 120.0, 118.4, 113.0, 111.8, 111.6, 111.1, 79.2, 73.1, 66.7, 60.2, 55.6, 55.5, 40.5, 39.8, 31.4, 28.1(3). MS (APCI) m/z: $432.5[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (S)-1-((9H-fluoren-9-yl)methyl)-2-((R)-1-(3-(2-((tert-butoxycarbonyl)amino)ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl) piperidine-1,2dicarboxylate (16)

Chemical Formula: $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{9}$
Exact Mass: 764.3673
Molecular Weight: 764.9160
To a solution of $14(380 \mathrm{mg}, 0.88 \mathrm{mmol})$ and Fmoc-L-pipecolic acid ($340 \mathrm{mg}, 0.97 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ were added DMAP ($12 \mathrm{mg}, 0.097 \mathrm{mmol}$) and DCC ($200 \mathrm{mg}, 0.97 \mathrm{mmol}$) at room temperature. The mixture was stirred for 12 h , and then concentrated under reduced pressure. The mixture was dissolved in diethyl ether, and filtered through celite. The filtrate was concentrated and then purified by column chromatography to afford 16 as a white foam (591 mg , 88 \%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.70(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.77 ($\mathrm{s}, 1 \mathrm{H}$), $6.70(\mathrm{dd}, \mathrm{J}=31.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.61(\mathrm{~m}, 1 \mathrm{H}), 5.68-$ $5.67(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.00$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{brs}, 1 \mathrm{H}), 3.36(\mathrm{brs}, 1 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.41(\mathrm{~m}, 2 \mathrm{H})$, 2.34-2.28 (m, 1H), 2.26-2.17 (m, 1H), 2.06-1.98 (m, 1H), 1.75-1.54 (m, 4H), $1.45(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.0 .158 .7,156.4,156.0,148.9,147.4,144.1,143.9,141.8$, 141.6, 141.3, 133.5, 129.8(2), 127.7(2), 127.1(3), 125.1(2), 120.1, 119.3, 113.8, 113.1, 111.7, 111.3, 79.5, 76.3, 67.8, 67.1, 55.9, 55.8, 47.2, 41.9, 40.1, 38.1, 31.2, 28.4(3), 26.9, 24.8, 20.9. MS (APCI) m/z: $765.7[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (S)-(R)-1-(3-(2-((tert-butoxycarbonyl)amino)ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl-piperidine-2-carboxylate (17)

To a solution of $16(300 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ was added piperidine (0.4 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 14 h . After the reaction, the resulting mixture was concentrated under reduced pressure. The crude residue was purified by column chromatography to afford 17 as a colorless oil ($217 \mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.25-7.22(\mathrm{~m}, 1), 6.93(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.82-6.76$ (m, 3H), 6.68-6.62 (m, 2H), 5.76 (t, J = 2.3 Hz, 1H), $5.00($ brs, 1 H$), 4.01-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.55$ $(\mathrm{m}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.7,158.4,155.63,148.6,147.1,141.9,133.4,129.3,119.9,118.9,113.3$, 112.7, 111.5, 111.1, 79.3, 16.7, 66.9, 63.2, 55.7, 55.6, 48.4, 39.8, 37.8, 31.2, 28.1(3), 25.2, 22.2, 14.9. MS (APCI) m/z: $543.7[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (S)-(R)-1-(3-(2-((tert-butoxycarbonyl)amino)ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl-1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (18)

To a solution of 17 ($150 \mathrm{mg}, 0.28 \mathrm{mmol}$) and (S)-2-)3,4,5-trimethoxyphenyl)butyric acid ($141 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL}$) was added PyBrop ($258 \mathrm{mg}, 0.55 \mathrm{mmol}$) and DIPEA
$(0.24 \mathrm{~mL}, 1.4 \mathrm{mmol})$ at room temperature. The mixture was stirred for 18 h . After the reaction was complete, the resulting mixture was diluted with ethyl acetate, washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, brine, and then dried over MgSO_{4}. The crude residue was purified by column chromatography to afford 18 as a colorless oil ($118 \mathrm{mg}, 55 \%$).

MS (APCI) m/z: $779.6[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (S)-(R)-1-(3-(2-aminoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl-1-((S)-2-
(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate.HCI (19)

To a solution of $18(107 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added 4 N HCl (dioxane, $0.45 \mathrm{~mL}, 1.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 2.5 h . After the reaction, the mixture was concentrated under reduce pressure. Compound 19 was used in the next step without further purification. (HCl salt, 107 mg , quant).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.09(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}$, 1 H), 6.57 (s, 1H), 6.53 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.34(\mathrm{~s}, 2 \mathrm{H}), 5.54(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=4.6$ $\mathrm{Hz}, 1 \mathrm{H})$, 4.69-4.57 (m, 1H), 3.93-3.90 (m, 2H), 3.92-3.90 (m, 11H), 3.78 (s, 6H), 3,63 (t, J = 1.7 $\mathrm{Hz}, 1 \mathrm{H})$, 3.03-3.00 (m, 2H), 2.84-2.73 (m, 1H), 2.61-2.39 (m, 2H), 2.32-2.22 (m, 1H), 2.14-1.99 $(\mathrm{m}, 2 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 6 \mathrm{H}), 0 / 83(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.6,170.6,158.9,153.2(2), 148.9,147.3,141.9,136.7,135.4,133.5,129.5$, 1201., 118.6, 113.8, 112.7, 111.7, 111.3, 105.0(2), 76.9, 70.1, 60.7, 56.3, 56.0(4), 51.2, 43.4, 41.5, 38.1, 30.1, 26.8, 25.4, 22.7, 18.4, 14.1. MS (APCI) m/z: $678.7[\mathrm{M}+\mathrm{H}]^{+}$

Synthesis of (S)-(R)-1-(3-(2-aminoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (FKBP-ligand 1)

A solution of $18(30 \mathrm{mg}, 0.04 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and TFA $(0.5 \mathrm{~mL})$ was stirred at room temperature for 2 h . The reaction mixture was concentrated under reduce pressure and the crude purified by Prep TLC (DCM/MeOH/ammonia: 60/10/1, v/v/v) to give $21.4 \mathrm{mg}, 79 \%$ of FKBP-ligand 1 as a yellow oil.
LC/MS $[M+H]^{+}$for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{9}$ calculated: 679.4; found: $679.2[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of $(S)-(R)$-1-(3-(2-(6-(2-((6-chlorohexyl)oxy)ethoxy)hexanamido)ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (PROTAC 2)

To a solution of 6-[2-(6-chlorohexoxy)ethoxy]hexanoic acid ($5.53 \mathrm{mg}, 0.02 \mathrm{mmol}$) in DMF (1 mL) was added HATU ($11.9 \mathrm{mg}, 0.031 \mathrm{mmol}$) and the resulting solution stirred for 10 min . at room temperature after which $19(10.62 \mathrm{mg}, 0.02 \mathrm{mmol})$ and DIEA ($0.013 \mathrm{~mL}, 0.078 \mathrm{mmol}$) were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate (2x). The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by prep TLC (DCM/MeOH 90:10) to yield 6.7 mg (44.8%) of PROTAC 2 as colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.15(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.71-6.59(\mathrm{~m}$, $4 \mathrm{H}), 6.40(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.27-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.01(\mathrm{~h}, \mathrm{~J}=6.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 8 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.61(\mathrm{~m}, 14 \mathrm{H})$,
$3.52(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 6 \mathrm{H}), 3.43(\mathrm{q}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.50$ (dddd, $J=48.1,14.7,9.7,6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.33-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.12-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.56(\mathrm{~m}, 10 \mathrm{H}), 1.47-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.79$ (m, 3H). LC/MS [M+ H] ${ }^{+}$for $\mathrm{C}_{52} \mathrm{H}_{76} \mathrm{ClN}_{2} \mathrm{O}_{12}$ calculated: 956.6; found: $956.3[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of (S)-(R)-1-(3-((22-chloro-4-oxo-10,13,16-trioxa-3-azadocosyl)oxy)phenyl)-3-(3,4dimethoxyphenyl)propyl 1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (PROTAC 3)

To a solution of 6-[2-[2-(6-chlorohexoxy)ethoxy]ethoxy]hexanoic acid ($6.36 \mathrm{mg}, 0.02 \mathrm{mmol}$) in DMF (1 mL) was added HATU ($11.9 \mathrm{mg}, 0.031 \mathrm{mmol}$) and the resulting solution stirred for 10 min . at room temperature after which $19(10.62 \mathrm{mg}, 0.02 \mathrm{mmol})$ and DIEA $(0.013 \mathrm{~mL}$, 0.078 mmol) were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate (2 x). The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by prep TLC (DCM/MeOH 90:10) to yield ($9.2 \mathrm{mg}, 52 \%$) of PROTAC 3 as colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.15(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.71-6.59(\mathrm{~m}$, $4 \mathrm{H}), 6.40(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{dt}, J=40.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dt}, J=11.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 9 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.74-3.60$ ($\mathrm{m}, 17 \mathrm{H}$), 3.55 (ddd, $J=14.5,7.7,5.0 \mathrm{~Hz}, 6 \mathrm{H}$), 3.43 ($\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}$), 2.51 (m, 2H), $2.35-$ $2.17(\mathrm{~m}, 4 \mathrm{H}), 2.15-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.52(\mathrm{~m}, 13 \mathrm{H}), 1.49-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{~m}, 3 \mathrm{H})$. LC/MS $[M+H]^{+}$for $\mathrm{C}_{54} \mathrm{H}_{80} \mathrm{ClN}_{2} \mathrm{O}_{13}$ calculated: 1000.6; found: $1000.4[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of $(S)-(R)$-1-(3-((25-chloro-4-oxo-10,13,16,19-tetraoxa-3-azapentacosyl)oxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2carboxylate (PROTAC 4)

To a solution of 6-[2-[2-[2-(6-chlorohexoxy)ethoxy]ethoxy]ethoxy]hexanoic acid (7.2 mg, 0.02 mmol) in DMF (1 mL) was added HATU ($11.9 \mathrm{mg}, 0.031 \mathrm{mmol}$) and the resulting solution stirred for 10 min . at room temperature after which $19(10.62 \mathrm{mg}, 0.02 \mathrm{mmol})$ and DIEA $(0.013 \mathrm{~mL}, 0.078 \mathrm{mmol})$ were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate $(2 \mathrm{x})$. The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by prep TLC (DCM/MeOH 90:10) to yield 8.9 mg (54.5\%) of PROTAC 4 as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.70-6.60(\mathrm{~m}$, $4 \mathrm{H}), 6.44-6.38(\mathrm{~m}, 2 \mathrm{H}), 6.28-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 8 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 24 \mathrm{H}), 3.58-3.49(\mathrm{~m}, 6 \mathrm{H}), 3.43(\mathrm{q}, \mathrm{J}=$ $6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.61-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.13-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.52(\mathrm{~m}$, $12 \mathrm{H}), 1.36(\mathrm{~m}, 8 \mathrm{H}), 0.94-0.76(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{56} \mathrm{H}_{84} \mathrm{ClN}_{2} \mathrm{O}_{14}$ calculated: 1043.7; found: $1043.5[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of $(S)-(R)$-1-(3-((28-chloro-4-oxo-10,13,16,19,22-pentaoxa-3-azaoctacosyl)oxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-(3,4,5-
trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (PROTAC 5)

To a solution of 6-[2-[2-[2-[2-(6-chlorohexoxy)ethoxy]ethoxy]ethoxy]ethoxy]hexanoic acid $(8.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ in DMF (1 mL) was added HATU ($11.9 \mathrm{mg}, 0.031 \mathrm{mmol}$) and the resulting solution stirred for 10 min . at room temperature after which 19 ($10.62 \mathrm{mg}, 0.02 \mathrm{mmol}$) and DIEA $(0.013 \mathrm{~mL}, 0.078 \mathrm{mmol})$ were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate (2 x). The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by prep TLC (DCM/MeOH 90:10) to yield 8.4 mg (49.4\%) of PROTAC 5 as colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.70-6.59(\mathrm{~m}$, $4 \mathrm{H}), 6.43-6.36(\mathrm{~m}, 2 \mathrm{H}), 6.26-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 8 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.59(\mathrm{~m}, 30 \mathrm{H}), 3.56$ (dd, $\mathrm{J}=$ 8.1, $5.0 \mathrm{~Hz}, 4 \mathrm{H}$), 3.43 (dt, $J=9.3,6.7 \mathrm{~Hz}, 4 \mathrm{H}$), $2.59-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.10-$ $1.91(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.48-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.93-0.80(\mathrm{~m}, 3 \mathrm{H})$.
LC/MS $[M+H]^{+}$for $\mathrm{C}_{58} \mathrm{H}_{88} \mathrm{CIN}_{2} \mathrm{O}_{15}$ calculated: 1088.7; found: $1089.2[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of (S)-(R)-1-(3-((27-chloro-4-oxo-6,9,12,15,18,21-hexaoxa-3-azaheptacosyl)oxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-(3,4,5-
trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (PROTAC 6)

To a solution of acid ($10 \mathrm{mg}, 0.024 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.16 \mathrm{~mL})$ were added $\mathrm{EDCI}(5.1 \mathrm{mg}$, $0.065 \mathrm{mmol})$, HOBt ($3.4 \mathrm{mg}, 0.053 \mathrm{mmol}$), $19(18 \mathrm{mg}, 0.027 \mathrm{mmol})$ and DIPEA (0.005 mL , 0.031 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 22 h . After the reaction, the mixture was poured with 10% citric acid, and then extracted with ethyl acetate ($x 3$). The combined organic layer was washed with sat. NaHCO_{3}, brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by column chromatography to afford PROTAC 6 ($5 \mathrm{mg}, 19 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.11(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}$, 1H), $6.62(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 5.52(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H})$, 4.04-4.01 (m, 2H), $3.99(\mathrm{~s}, 2 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 9 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 22 \mathrm{H}), 3.56-3.53$ ($\mathrm{m}, 3 \mathrm{H}$), $3.51(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.38(\mathrm{~m}, 2 \mathrm{H})$, 2.35-2.28 (m, 1H), 2.15-2.03 (m, 2H), 1.96-1.87 (m, 1H), 1.76-1.72 (m, 2H), 1.69-1.66 (m, 2H), 1.61-1.59 (m, 4H), 1.58-1.55 (m, 4H), 1.44-1.39 (m, 2H), 1.37 (m, 2H), $0.88(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

LC/MS [M+ H] for $\mathrm{C}_{56} \mathrm{H}_{84} \mathrm{CIN}_{2} \mathrm{O}_{16}$ calculated: 1075.5; found: $1076.1[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of (S)-(R)-1-(3-(2-(6-((5-((6-chlorohexyl)oxy)pentyl)oxy)hexanamido)ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (PROTAC 7)

To a solution of 6-[5-(6-chlorohexoxy)pentoxy]hexanoic acid ($3.35 \mathrm{mg}, 0.01 \mathrm{mmol}$) in DMF (1 mL) was added HATU ($6.3 \mathrm{mg}, 0.02 \mathrm{mmol}$) and the resulting solution stirred for 10 min . at room temperature after which $19(5.62 \mathrm{mg}, 0.01 \mathrm{mmol})$ and DIEA ($0.01 \mathrm{~mL}, 0.04 \mathrm{mmol}$) were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate (2x). The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by prep TLC (DCM/MeOH 90:10) to yield 5.3 mg (50\%) of PROTAC 7 as Colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.16(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.72-6.61(\mathrm{~m}$, 4H), $6.44-6.39(\mathrm{~m}, 2 \mathrm{H}), 6.27-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (d, J = 5.5 Hz , 1 H), $4.07-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 9 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.56(\mathrm{~m}, 8 \mathrm{H}), 3.53$ (td, J = 6.7, $2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.47-3.35(\mathrm{~m}, 6 \mathrm{H}), 2.51$ (dddd, $J=47.7,14.3,9.4,6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34-2.18$ $(\mathrm{m}, 4 \mathrm{H}), 2.14-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.53(\mathrm{~m}, 14 \mathrm{H}), 1.46-1.25(\mathrm{~m}, 10 \mathrm{H}), 0.95-0.81(\mathrm{~m}, 3 \mathrm{H})$. LC/MS [[M+ H] for $\mathrm{C}_{55} \mathrm{H}_{82} \mathrm{CIN}_{2} \mathrm{O}_{12}$ calculated: 998.6; found: $998.2[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of $(S)-(R)-1-(3-(2-(2-((10-((6-c h l o r o h e x y l) o x y) d e c y l) o x y) a c e t a m i d o)$ ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (PROTAC 8)

To a solution of 2-((10-((6-chlorohexyl)oxy)decyl)oxy)acetic acid ($7.3 \mathrm{mg}, 0.02 \mathrm{mmol}$) in DMF $(1 \mathrm{~mL})$ was added HATU ($16.1 \mathrm{mg}, 0.04 \mathrm{mmol}$) and the resulting solution stirred for 10 min . at room temperature after which 19 ($10.6 \mathrm{mg}, 0.02 \mathrm{mmol}$) and DIEA ($0.013 \mathrm{~mL}, 0.078 \mathrm{mmol}$) were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate (2x). The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by prep TLC (DCM/MeOH 90:10) to yield 10.6 mg (52.6%) of PROTAC 8 as colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.13(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.71(\mathrm{~m}$, $3 \mathrm{H}), 6.65-6.57(\mathrm{~m}, 3 \mathrm{H}), 6.40-6.36(\mathrm{~m}, 2 \mathrm{H}), 5.59(\mathrm{dd}, J=8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 11 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}$, $6 \mathrm{H}), 3.59-3.41(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{td}, \mathrm{J}=6.6,4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.58-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.91(\mathrm{~m}$, $3 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.21(\mathrm{~m}, 23 \mathrm{H}), 0.92-0.78(\mathrm{~m}, 3 \mathrm{H})$.
LC/MS $\left[\mathrm{M}+\mathrm{H}^{+}\right.$for $\mathrm{C}_{56} \mathrm{H}_{83} \mathrm{ClN}_{2} \mathrm{O}_{12}$ calculated: 1011.7; found: $1011.3[\mathrm{M}+\mathrm{H}]^{+}$.

20

Supplementary Scheme 2. Synthesis of pomalidomide coupled Ariad ligand PROTAC 9.

Synthesis of tert-butyl 2-(2-(2-(benzyloxy)ethoxy)ethoxy)acetate (21)

To a solution of KOtBu ($0.86 \mathrm{~g}, 8.0 \mathrm{mmol}$) in THF (40 mL) at $0{ }^{\circ} \mathrm{C}$ was added $20(1.47 \mathrm{~mL}$, $7.7 \mathrm{mmol})$. The clear resulting solution was heated at $40^{\circ} \mathrm{C}$ for 30 min . Then the mixture was cooled down to $0{ }^{\circ} \mathrm{C}$ and tert-butyl 2-bromoacetate ($1.1 \mathrm{~mL}, 7.7 \mathrm{mmol}$) was added in one portion. The resulting solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then 8 h at room temperature. After dilution with ethyl acetate (250 mL) and water (250 mL), the aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic fractions were washed with brine and dried over MgSO_{4}. After concentration, the crude material was subjected to column chromatography on silica gel (hexane/ethyl acetate $5: 1$) to give 1.4 g (59\%) of 21 as colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76-3.58(\mathrm{~m}, 9 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 9 \mathrm{H})$.

Synthesis of 2-(2-(2-(benzyloxy)ethoxy)ethoxy)- N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)acetamide (22)

$1.4 \mathrm{~g}(4.5 \mathrm{mmol})$ of 21 were dissolved in a mixture of TFA (1 mL) and DCM (3 mL). The resulting solution was stirred at room temperature for 2 h . The volatiles were evaporated and the residue dissolved in SOCl_{2} and heated at $60^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated and the crude product dissolved in dry THF (50 mL). To this solution was added pomalidomide (1.2 g , 4.5 mmol). The resulting mixture was refluxed for 16 h . After cooling to room temperature, it was filtered through celite to give 1.9 g of $\mathbf{2 2}$ which was carried to the next step without further purification.

Synthesis of N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)-2-(2-(2hydroxyethoxy)ethoxy)acetamide (23)

23
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{8}$ Exact Mass: 419.1329
Molecular Weight: 419.3900
To a solution of $22(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ in methanol 5 mL was added ammonium formate $(6.19 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 10.44 \mathrm{mg}, 0.01 \mathrm{mmol})$. The resulting mixture was heated to reflux for 2 h . The reaction was filtered over celite and the filtrate evaporated under reduced pressure and purified via column chromatography (hexane/ethyl acetate $5: 1$) to give 26 mg (60.7\%) of 23 as a yellow solid.
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{DMSO}) \delta=11.12(\mathrm{~s}, 1 \mathrm{H}), 10.34(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=12.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.19 (s, 2H), 3.74 (dd, $J=5.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.64 (dd, $J=9.7,5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44 (dq, $J=13.8,4.8$ $\mathrm{Hz}, 4 \mathrm{H}$), 2.87 (ddd, $J=18.3,13.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H})$. LC/MS [M+ H] for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{8}$ calculated: 419.4; found: $419.6[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of 2-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-2-
oxoethoxy)ethoxy)acetic acid (24)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{9}$
Exact Mass: 433.1121
Molecular Weight: 433.3730
To a solution of $23(0.02 \mathrm{~mL}, 0.05 \mathrm{mmol})$ in acetone (5 mL) was added jone`s reagent mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}(0.13 \mathrm{~mL}, 2.35 \mathrm{mmol})$ and $\mathrm{CrO}_{3}(4.77 \mathrm{mg}, 0.05 \mathrm{mmol})$ in water $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 16 h . After the reaction was complete, the mixture was quenched with isopropanol (to reduce the toxic Chromium (VI)). The resulting solution was extracted with ethyl
acetate (x3). The combined organic phase was dried over MgSO_{4}. After completely removing the solvent, the crude product was used to the next step without further purification.

Synthesis of (2S)-(1R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-(2-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-2-oxoethoxy)ethoxy)acetamido)ethoxy)phenyl)propyl 1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (PROTAC 9)

To a solution of 24 ($15 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added HATU ($26.32 \mathrm{mg}, 0.07 \mathrm{mmol}$) and the resulting solution stirred for 10 minutes at room temperature after which 19 (23.5 mg , 0.03 mmol) and DIEA ($0.03 \mathrm{~mL}, 0.17 \mathrm{mmol}$) were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate (2 x). The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by Prep TLC (DCM/MeOH/ammonia: 60/10/1) to yield 11.9 mg (46.0\%) of PROTAC 9.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.49(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.55 (dd, J = 7.4, 1.6 Hz, 1H), $7.22-7.06$ (m, 2H), $6.84-6.61$ (m, 5H), $6.51-6.44$ (m, 1H), $6.43-6.36$ (m, 2H), $5.81-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.42(\mathrm{~m}, 1 \mathrm{H}), 4.94$ (ddd, $J=12.0,7.4,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20-3.97(\mathrm{~m}, 6 \mathrm{H}), 3.90-3.75(\mathrm{~m}, 18 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 5 \mathrm{H}), 2.62-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.27-$ $1.91(\mathrm{~m}, 5 \mathrm{H}), 1.75-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.79(\mathrm{~m}, 3 \mathrm{H}) . \operatorname{LC} / \mathrm{MS}[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{57} \mathrm{H}_{68} \mathrm{~N}_{5} \mathrm{O}_{17}$ calculated: 1094.2; found: $1094.5[\mathrm{M}+\mathrm{H}]^{+}$.

Supplementary Scheme 3. Synthesis of VHL coupled Ariad ligand PROTAC 10.

Synthesis of tert-butyl ((S)-13-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidine-1-carbonyl)-14,14-dimethyl-11-oxo-3,6,9-trioxa-12-

azapentadecyl)carbamate (26)

To a solution of (2R,4S)-1-((R)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol5 -yl)benzyl)pyrrolidine-2-carboxamide (25) ($86 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added HATU (101 mg , 0.26 mmol) and the resulting solution stirred for 10 minutes at room temperature after which 2,2-dimethyl-4-oxo-3,8,11,14-tetraoxa-5-azahexadecan-16-oic acid ($86 \mathrm{mg}, 0.26 \mathrm{mmol}$) and DIEA $(0.16 \mathrm{~mL}, 0.92 \mathrm{mmol})$ were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate $(2 \mathrm{x})$. The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by Prep TLC (DCM/MeOH/ammonia: 60/10/1) to yield 93.5 mg (65.0\%) of 26.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.6(\mathrm{~s}, 1 \mathrm{H}), 7.3(\mathrm{~m}, 4 \mathrm{H}), 4.5(\mathrm{~m}, 3 \mathrm{H}), 4.3(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 2 \mathrm{H})$, $3.6(\mathrm{~m}, 8 \mathrm{H}), 3.5(\mathrm{~m}, 2 \mathrm{H}), 3.2(\mathrm{~m}, 2 \mathrm{H}), 2.6(\mathrm{~m}, 1 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H}), 2.3(\mathrm{~m}, 1 \mathrm{H}), 2.2(\mathrm{~m}, 3 \mathrm{H}), 1.4(\mathrm{~s}$, $9 \mathrm{H}), 1.0(\mathrm{~m}, 9 \mathrm{H})$.

Synthesis of (2R,4S)-1-((R)-15-amino-2-(tert-butyl)-5-oxo-4,7,10,13-tetraoxa-3-azapentadecanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (27)

Compound 26 ($93.5 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in a $1: 1(\mathrm{v} / \mathrm{v})$ mixture of Dichloromethane and TFA (10 mL) and stirred for 16 h at room temperature. The solvent was removed under reduced pressure and compound 27 was used without further purification.

Synthesis of 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (28)

Synthesis of compound $\mathbf{2 8}$ has been previously described. ${ }^{1}$

Synthesis of (R)-3-(3,4-dimethoxyphenyl)-1-(3-(((S)-16-((2S,4R)-4-hydroxy-2-((4-(4-
methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidine-1-carbonyl)-17,17-dimethyl-4,14-dioxo-6,9,12-
trioxa-3,15-diazaoctadecyl)oxy)phenyl)propyl (S)-1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (PROTAC 10)

To a solution of 27 ($9.5 \mathrm{mg}, 0.014 \mathrm{mmol}$) was added HATU ($5.8 \mathrm{mg}, 0.015 \mathrm{mmol}$) and the resulting solution stirred for 10 minutes at room temperature after which 28 ($14 \mathrm{mg}, 0.019 \mathrm{mmol}$) and DIEA ($0.006 \mathrm{~mL}, 0.03 \mathrm{mmol}$) were added respectively. The resulting mixture was stirred at room temperature for 16 h . The product was extracted with ethyl acetate $(2 \mathrm{x})$. The combined organic layer was washed with brine, dried over MgSO_{4}, and then concentrated under reduced pressure. The crude residue was purified by Prep TLC (DCM/MeOH/ammonia: 60/10/1) to yield 2.5 mg (14.0\%) of PROTAC 10.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.1(\mathrm{~s}, 1 \mathrm{H}), 7.4(\mathrm{~m}, 1 \mathrm{H}), 7.3(\mathrm{~m}, 3 \mathrm{H}), 6.8(\mathrm{~m}, 1 \mathrm{H}), 6.7(\mathrm{~m}, 2 \mathrm{H})$, $6.6(\mathrm{~m}, 2 \mathrm{H}), 6.3(\mathrm{~m}, 2 \mathrm{H}), 5.5(\mathrm{~m}, 1 \mathrm{H}), 5.3(\mathrm{~m}, 1 \mathrm{H}), 4.7(\mathrm{~m}, 1 \mathrm{H}), 4.5(\mathrm{~m}, 2 \mathrm{H}), 4.4(\mathrm{~m}, 2 \mathrm{H}), 4.3(\mathrm{~m}$, $1 \mathrm{H}), 4.0(\mathrm{~m}, 12 \mathrm{H}), 3.8(\mathrm{~m}, 13 \mathrm{H}), 3.5(\mathrm{~m}, 14 \mathrm{H}), 2.8(\mathrm{~m}, 1 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H}), 2.2(\mathrm{~m}, 3 \mathrm{H}), 1.9(\mathrm{~m}, 2 \mathrm{H})$, $1.8(\mathrm{~m}, 1 \mathrm{H}), 1.5(\mathrm{~m}, 3 \mathrm{H}), 1.3(\mathrm{~m}, 1 \mathrm{H}), 1.2(\mathrm{~m}, 3 \mathrm{H}), 0.9(\mathrm{~m}, 6 \mathrm{H}), 0.8(\mathrm{~m}, 4 \mathrm{H}) . \operatorname{LC} / \mathrm{MS}[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{68} \mathrm{H}_{91} \mathrm{~N}_{6} \mathrm{O}_{17} \mathrm{~S}^{+}$calculated: 1295.6156; found: $1295.6656[\mathrm{M}+\mathrm{H}]^{+}$.

29

30

31

DMF, TEA, $50{ }^{\text {T}} \mathrm{C}, 16 \mathrm{~h}$

Supplementary Scheme 4. Synthesis of dasatinib chloroalkanes.

Synthesis of tert-butyl 4-(6-((5-((2-chloro-6-methylphenyl)carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazine-1-carboxylate (30)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{CIN}_{7} \mathrm{O}_{3} \mathrm{~S}$
Exact Mass: 543.1819
Molecular Weight: 544.0710
To a solution of 4 N -(2-chloro-6-methyl-phenyl)-2-[(6-chloro-2-methyl-pyrimidin-4-yl)amino]thiazole-5-carboxamide (29) ($500 \mathrm{mg}, 1.27 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and DIEA (562 $\mu \mathrm{L}$, $3.17 \mathrm{mmol}, 2.5 \mathrm{eq}$.) in DMF (3 mL) was added tert-butyl piperazine-1-carboxylate (283.43 mg , $1.52 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and the resulting mixture stirred for 16 h at $110^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature and the product precipitated by the addition of water (10 mL). The crude product was filtered off and dried until constant weight to yield $800 \mathrm{mg}(115 \%)$ and was used without further purification.
LC/MS $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{CIN}_{7} \mathrm{O}_{3} \mathrm{~S}^{+}$calculated: 544.1892; found $=544.2046[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-(2-chloro-6-methylphenyl)-2-((2-methyl-6-(piperazin-1-yl)pyrimidin-4-
yl)amino)thiazole-5-carboxamide (31)

31
Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{CIN}_{7} \mathrm{OS}$
Exact Mass: 443.1295
Molecular Weight: 443.9540
Compound 30 ($690 \mathrm{mg}, 1,27 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in a $1: 1(\mathrm{v} / \mathrm{v})$ mixture of Dichloromethane and TFA (10 mL) and stirred for 16 h at room temperature. The solvent was removed under reduced pressure and the crude taken up in DCM. After addition of sat. NaHCO_{3} the pure product precipitated and filtered off. 436 mg (78%) of compound 31 were obtained as a brown solid.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 6.06 ($\mathrm{s}, 1 \mathrm{H}$), 3.45 (t, J = $4.9 \mathrm{~Hz}, 4 \mathrm{H}$), 2.74 (d, J = $5.1 \mathrm{~Hz}, 4 \mathrm{H}$), 2.40 (s, 3H), 2.24 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta=165.1,162.5,162.5,159.9,156.9,140.9,138.8,133.6,132.4$, 129.0, 128.1, 127.0, 125.6, 82.5, 45.2, 44.7, 25.6, 18.3. LC/MS $[M+H]^{+}$for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{CIN}_{7} \mathrm{OS}^{+}$ calculated: 444.1368 ; found $=444.1402[M+H]^{+}$.

To a solution of the pentaehtylene glycol ($4.3 \mathrm{~mL}, 20.28 \mathrm{mmol}, 5.0$ eq.) in a mixture of DMF and THF ($1: 1, \mathrm{v} / \mathrm{v} ; 40 \mathrm{~mL}$) was added portion wise $\mathrm{NaH}(488 \mathrm{mg}, 12.17 \mathrm{mmol}, 3.0 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$. After 40 min . 1-chloro-6-iodo-hexane ($0,62 \mathrm{~mL}, 4.06 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added, the reaction mixture was allowed to warm to room temperature and stirred for additional 16 h at room temperature. The reaction was quenched with water, diluted with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$, and extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The combined organic layers were washed with brine (40 mL), dried over MgSO_{4} and the solvent removed under reduced pressure. The crude product ($1156 \mathrm{mg}, 80 \%$) was used without further purification.

Synthesis of 21-chloro-1-iodo-3,6,9,12,15-pentaoxahenicosane (33)

To a suspension of triphenylphosphine ($265 \mathrm{mg}, 1.01 \mathrm{mmol}, 1.2$ eq.), imidazole (68.7 mg , $1.01 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and iodine ($320 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in dry tetrahydrofuran (10 mL) crude compound 32 ($300 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ eq.) was added dropwise at room temperature. After stirring at room temperature for 2 h (TLC control) the reaction mixture was filtered to remove the white precipitate. Afterwards, the solvent was removed under reduced pressure and the crude mixture purified by flash chromatography ($20-100 \%$ ethyl acetate in hexanes) to yield 295 mg (76%) of pure product 33 .
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.75(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 14 \mathrm{H}), 3.57(\mathrm{dd}, \mathrm{J}=5.8$, $3.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.52(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{p}, \mathrm{J}$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{p}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.30(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $72.1,71.4,70.8,70.8,70.7,70.4,70.3,45.2,32.7,29.6,26.8,25.6,3.1$.

Synthesis of 24-chloro-3,6,9,12,15,18-hexaoxatetracosan-1-ol (34)

To a solution of the hexaehtylene glycol ($5.1 \mathrm{~mL}, 20.28 \mathrm{mmol}, 5.0$ eq.) in a mixture of DMF and THF (1:1, v/v; 40 mL) was added portion wise $\mathrm{NaH}(488 \mathrm{mg}, 12.17 \mathrm{mmol}, 3.0 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$. After 40 min . 1-chloro-6-iodo-hexane ($0,62 \mathrm{~mL}, 4.06 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added, the reaction mixture was allowed to warm to room temperature and stirred for additional 16 h at room temperature. The reaction was quenched with water, diluted with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$, and extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The combined organic layers were washed with brine (40 mL), dried over MgSO_{4} and the solvent removed under reduced pressure. The crude product was purified by flash chromatography ($20-100 \%$ ethyl acetate in hexanes) to yield $381 \mathrm{mg}(24 \%)$ of pure product 34.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.72(\mathrm{dd}, \mathrm{J}=5.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.55$ ($\mathrm{m}, 2 \mathrm{H}$), $3.53(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{td}, \mathrm{J}=6.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{p}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.50-1.32(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=72.6,71.4,71.3,70.8,70.7$, 70.7, 70.5, 70.3, 70.2, 61.9, 45.2, 32.7, 29.6, 26.9, 25.6.

Synthesis of 24-chloro-1-iodo-3,6,9,12,15,18-hexaoxatetracosane (35)

To a suspension of triphenylphosphine ($78.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2 \mathrm{eq}$.), imidazole (20.4 mg , $0.3 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and iodine ($95 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in dry tetrahydrofuran (5 mL) compound 34 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ eq.) was added dropwise at room temperature. After stirring at room temperature for 2 h (TLC control) the reaction mixture was filtered to remove the white precipitate. Afterwards, the solvent was removed under reduced pressure and the crude mixture purified by flash chromatography ($20-100 \%$ ethyl acetate in hexanes) to yield 66.5 mg (52\%) of pure product 35.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.76(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 18 \mathrm{H}), 3.61-3.56$ (m, 2H), 3.53 (t, J = $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.46 (td, J = 6.7, $1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.26 (t, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82 $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.33(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta=72.1$, $71.4,70.8,70.7,70.7,70.4,70.3,45.2,32.7,29.6,26.9,25.6,3.1$.

Synthesis of 2-((6-(4-(21-chloro-3,6,9,12,15-pentaoxahenicosyl)piperazin-1-yl)-2-methylpyrimidin-4-yl)amino)- N -(2-chloro-6-methylphenyl)thiazole-5-carboxamide (PROTAC 11)

To a solution of compound 27 ($30 \mathrm{mg}, 0,068 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $29(47,31 \mathrm{mg}, 0.0748 \mathrm{mmol}$, 1.1 eq.) in DMF (2 mL) was added TEA (0.8 mL) and the resulting solution stirred for 16 h at $65^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature and ethyl acetate (40 mL) was added. The organic phase was washed with water and sat. $\mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / \mathrm{v} ; 3 \times 40 \mathrm{~mL})$ and brine (40 mL) and dried over MgSO_{4}. The solvent was removed under reduced pressure and
the crude product purified by preparative TLC (DCM/MeOH/NH4 $\mathrm{OH}, 94.83 / 4.7 / 0.47$) to yield 6.2 mg (12\%) of pure product PROTAC 11.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.35(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, \mathrm{J}=7.5,2.0 \mathrm{~Hz}$, 1H), $7.22-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{~m}, 20 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, 2H), 3.45 (t, J = 6.7 Hz, 2H), 2.68 (s, 4H), 2.51 (s, 3H), 2.35 (s, 3H), 1.75 (p, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 4 \mathrm{H})$. LC/MS $\left[\mathrm{M}+\mathrm{H}^{+}\right.$for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}^{+}=782.3228$; found calculated: $782.3667[\mathrm{M}+\mathrm{H}]^{+} ; 391.6781[\mathrm{M}+2 \mathrm{H}]^{2+}$.

Synthesis of 2-((6-(4-(24-chloro-3,6,9,12,15,18-hexaoxatetracosyl)piperazin-1-yl)-2-methylpyrimidin-4-yl)amino)- N-(2-chloro-6-methylphenyl)thiazole-5-carboxamide (PROTAC 12)

PROTAC 12
Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{7} \mathrm{~S}$
Exact Mass: 825.3417
Molecular Weight: 826.8760
To a solution of compound 27 ($44.3 \mathrm{mg}, 0,1 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $31(42.5 \mathrm{mg}, 0.083 \mathrm{mmol}$, 1.0 eq.) in DMF (2 mL) was added TEA (0.8 mL) and the resulting solution stirred for 16 h at $65^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature and ethyl acetate (40 mL) was added. The organic phase was washed with water and sat. $\mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / \mathrm{v} ; 3 \mathrm{x} 40 \mathrm{~mL})$ and brine (40 mL) and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product purified by preparative TLC (DCM/MeOH/NH4OH, 94.83/4.7/0.47) to yield 7.2 mg (11\%) of pure PROTAC 12.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.41(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.60(\mathrm{~m}, 22 \mathrm{H}), 3.57(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}$, 2 H), 3.51 (t, J = 6.7 Hz, 2H), 3.43 (t, J = 6.6 Hz, 2H), $2.81-2.61$ (m, 4H), 2.51 (s, 3H), 2.35 (s, $3 H), 1.75(p, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 4 \mathrm{H}) . \operatorname{LC} / \mathrm{MS}[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{7} \mathrm{~S}^{+}$calculated: 826.3490 ; found $=826.3782[\mathrm{M}+\mathrm{H}]^{+} ; 413.6860[\mathrm{M}+2 \mathrm{H}]^{2+}$.

References

(1) Schneekloth, J. S., Jr., Fonseca, F. N., Koldobskiy, M., Mandal, A., Deshaies, R., Sakamoto, K., and Crews, C. M. (2004) Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 126, 3748-3754.
(2) Lim, K. L., Chew, K. C., Tan, J. M., Wang, C., Chung, K. K., Zhang, Y., Tanaka, Y., Smith, W., Engelender, S., Ross, C. A., Dawson, V. L., and Dawson, T. M. (2005) Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 25, 2002-2009.
(3) Birsa, N., Norkett, R., Wauer, T., Mevissen, T. E. T., Wu, H.-C., Foltynie, T., Bhatia, K., Hirst, W. D., Komander, D., Plun-Favreau, H., and Kittler, J. T. (2014) Lysine 27 Ubiquitination of the Mitochondrial Transport Protein Miro Is Dependent on Serine 65 of the Parkin Ubiquitin Ligase. Journal of Biological Chemistry 289, 14569-14582.
(4) Gorman, S. O., Fox, D. T., and Wahl, G. M. (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351.
(5) Buckley, D. L., Raina, K., Darricarrere, N., Hines, J., Gustafson, J. L., Smith, I. E., Miah, A. H., Harling, J. D., and Crews, C. M. (2015) HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chem Biol 10, 18311837.
(6) Tae, H. S., Sundberg, T. B., Neklesa, T. K., Noblin, D. J., Gustafson, J. L., Roth, A. G., Raina, K., and Crews, C. M. (2012) Identification of hydrophobic tags for the degradation of stabilized proteins. Chembiochem 13, 538-541.
(7) Choo, Y. S., and Zhang, Z. (2009) Detection of protein ubiquitination. Journal of visualized experiments : JoVE.
(8) Keenan, T., Yaeger, D. R., Courage, N. L., Rollins, C. T., Pavone, M. E., Rivera, V. M., Yang, W., Guo, T., Amara, J. F., Clackson, T., Gilman, M., and Holt, D. A. (1998) Synthesis and activity of bivalent FKBP12 ligands for the regulated dimerization of proteins. Bioorg Med Chem 6, 1309-1335.
(9) Lai, A. C., Toure, M., Hellerschmied, D., Salami, J., Jaime-Figueroa, S., Ko, E., Hines, J., and Crews, C. M. (2016) Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. Angewandte Chemie (International ed. in English) 55, 807-810.

