Total Synthesis of Pseudomonas aeruginosa 1244 Pilin Glycan via de novo Synthesis of

Pseudaminic Acid

Han Liu^{\dagger}, Yanfeng Zhang ${ }^{\dagger}$, Ruohan Wei^{\dagger}, Gloria Andolina and Xuechen Li^{*}

Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong; ${ }^{\dagger}$ equal contributions
xuechenl@hku.hk

Content

List of NMR spectra for new compounds S2-S4
General remarks S5
Part 1. Synthesis of L-allo-threonine derivatives. S6-S7
Part 2. Diastereoselective synthesis of thioesters via aldol-type addition of glycine thioesterisonitrile to the chiral aldehydes.S8-S15
Part 3. Elucidation of the stereochemistry of $\mathbf{1 5}$ via derivatization. S16-S18
Part 4. Analysis of distereoselectivity model for isonitrile addition. S19
Part 5. Elucidation of the stereochemistry of $\mathbf{1 6}$ via derivatization. S20-S28
Part 6. Chain elongation through Fukuyama reduction and Barbier allylation. S29-S34
Part 7. Synthesis of Pse glycosyl donors from chain elongation product. S35-S43
Part 8. Synthesis of xyloside building block, fucosamine building block, and disaccharide acceptor.
S44-S55
Part 9. Glycosylation research. S56-S68
Part 10. Total synthesis of pseudaminic acid 1. S69-S72
Part 11. Attempts for trisaccharide side chain manipulation. S73-S78
Part 12. Final steps toward the total synthesis of P. aeruginosa 1244 pilin glycan 3. S79-S87
References S87
Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NMR spectra of synthetic products and intermediates. S88-S193

List of NMR spectra for new compounds

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} 2$ S88
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 10 S89
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 1}$ S90
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 13 S91
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 5 a}$ S92
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 5 b}$ S93
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 12 S94
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} 4$ S95
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 14 S96
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 6 a}$ S97
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 6 b}$ S98
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound S6a S99
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound S6b S100
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 29 S101
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 30 S102
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 31 S103
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 33a S104
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 4 a}$ S105
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} 7$ S106
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 35 S107
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 33b S109
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 4 b}$ S110
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 19syn S111
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 19anti S112
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 20 S113
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 21syn S114
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 21anti S115
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 22syn S116
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 22anti S117
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 23 S118
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{2 4 \alpha}$ S119
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{2 4 \beta}$ S121
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 25 S124
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 26 S126
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 27 S128
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 28 S129
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} 15$ S131
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} 16$ S132
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 39 S133
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 7}$ S134
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} 18$ S135
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 9}$ S136
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} 20$ S137
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 40 S138
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 43 S139
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 45 S140
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{S} 21$ S142
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 46 S143
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 48 S145
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $49 \boldsymbol{\alpha}$ S148
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{4 9 \beta}$ S150
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{5 0 \alpha}$ S153
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{5 0 \beta}$ S155
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{5 1 \boldsymbol { \alpha }}$ S157
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{5 1 \beta}$ S159
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 52 S161
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{5 3} \boldsymbol{\alpha}$ S163
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{5 3 \beta}$ S166
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 54 S168
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 55 S171
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 56 S172
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of compound 1 S174
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 57 S175
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{5 8}$ S177
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 59 S179
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 63 S181
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{6 1} \boldsymbol{\alpha}$ S183
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound $\mathbf{6 1 \beta}$ S185
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 62 S188
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 64 S190
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \& 2 \mathrm{D}$ NMR of compound 3 S192

General Remarks

Commercially available reagents were used without further purification, unless otherwise stated. The anhydrous solvents were either prepared from AR grade solvents via standard methods (DCM, THF, MeCN, etc.), or purchased in anhydrous form (DMF, pyridine, etc.). The analytical TLC was performed on silica gel 60-F254 precoated on glass plate (E. Merck), with detection by fluorescence and/or or by staining with acidic ceric ammonium molybdate. The normal phase column chromatography was performed on silica gel (230-400 mesh, Merck), while the reverse phase chromatography was performed on C18 silica gel (Davisil 633NC18E, Grace Materials Technologies).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Advance DRX Bruker 400, 500 and 600 MHz spectrometers at $25^{\circ} \mathrm{C}$. The 2D NMR spectra were recorded on Advance DRX Bruker 500 and 600 MHz spectrometers at $25^{\circ} \mathrm{C}$. The high-resolution mass spectrometry was performed on a Waters Micromass Q-Tof Premier Mass Spectrometer. The IR spectra were recorded on Shimadzu IRAffinity-1 spectrometer. The specific rotations were measured with an Bellingham \& Stanley ADP440+ polarimeter with a path length of 5 cm .

Part 1. Synthesis of L-allo-threonine derivatives.

Scheme S1. Synthesis of L-allo-threonine derivatives from L-threonine.

Methyl (2S,3R)-2-acetamido-3-hydroxybutyrate (S2):

To a 1000 mL round bottom flask, $\mathrm{MeOH}(500 \mathrm{~mL})$ was added. After being cooled to $0{ }^{\circ} \mathrm{C}$, $\mathrm{SOCl}_{2}(50 \mathrm{~mL})$ was added dropwise to generate the HCl solution in MeOH . After 10 min , L-threonine ($50.0 \mathrm{~g}, 419 \mathrm{mmol}, 1.0$ equiv) was added in one portion. The mixture was refluxed for 2 h , then the solvent was removed under vacuum. The residue was co-evaporated with DCM for two times to thoroughly remove MeOH . The product $\mathbf{S} \mathbf{1}$ was obtained as a syrup and was directly used in the next step without further purification

To the 1000 mL flask containing syrup $\mathbf{S 1}$, anhydrous DCM (600 mL) was added, followed by $\mathrm{Et}_{3} \mathrm{~N}(117 \mathrm{~mL}, 839 \mathrm{mmol}, 2.0$ equiv). The mixture was sonicated to give a suspension. After being cooled to $0{ }^{\circ} \mathrm{C}$, acetyl chloride ($30.0 \mathrm{~mL}, 419 \mathrm{mmol}, 1.0$ equiv) was added dropwise during 30 min , then the mixture was further stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was filtered through celite to remove $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$, and the filtrate was concentrated. The residue was purified by silica gel flash chromatography using ethyl acetate as eluent. The product $\mathbf{S} 2$ was obtained as white solid (58.2 g , 79% over 2 steps).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 4.31-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.56\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.0,23.0,52.6,57.6,67.8,171.3,171.7$

Methyl (2S,3S)-2-benzyloxycarbonylamino-3-hydroxybutyrate (10):

To a 500 mL round bottom flask, $\mathbf{S} 2(46.0 \mathrm{~g}, 263 \mathrm{mmol}, 1.0$ equiv) was added, followed by $\mathrm{SOCl}_{2}(130 \mathrm{~mL})$. The mixture was stirred at r.t. for 12 h , then the excess amount of SOCl_{2} was removed under vacuum. The residue was co-evaporated with hexane for three times to remove the SOCl_{2} thoroughly, and the crude oxazoline HCl salt intermediate was obtained as a syrup. To this residue, $10 \% \mathrm{HCl}(\mathrm{aq}, 120 \mathrm{~mL})$ was added, and the mixture was refluxed for 7 h to hydrolyze the oxazoline. The HCl solution was removed under vacuum to give the crude HCl salt of L-allo-threonine as a residue. To this residue, water $(120 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(83.6 \mathrm{~g}, 789 \mathrm{mmol}, 3.0$ equiv) was added, followed by $\mathrm{CbzCl}(45.1 \mathrm{~mL}, 316 \mathrm{mmol}, 1.2$ equiv). After being stirred at r.t. for 12 h , the mixture was diluted with water $(300 \mathrm{~mL})$, and was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$ to remove excess amount of CbzCl . Then the water phase was acidified with conc. $\mathrm{HCl}(\mathrm{aq})$, and was extrated with ethyl acetate $(4 \times 200 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and was concentrated under vacuum to give crude acid product $\mathbf{S 3}$ as a syrup, which was directly used in the next step without further purification.

The crude $\mathbf{S 3}$ was dissolved in DMF (150 mL), then $\mathrm{KHCO}_{3}(52.6 \mathrm{~g}, 526 \mathrm{mmol}, 2.0$ equiv) and MeI ($24.5 \mathrm{~mL}, 394 \mathrm{mmol}, 1.5$ equiv) were added sequentially. After being stirred at r.t. for 12 h, the mixture was diluted with ethyl acetate $(700 \mathrm{~mL})$ and thoroughly washed with water $(5 \times 200$ $\mathrm{mL})$ and brine $(200 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum, and purified by silica gel flash chromatography using n-hexane : ethyl acetate $1: 1$ v / v as eluent. The product 10 was obtained as white solid ($54.4 \mathrm{~g}, 77 \%$ over 4 steps). ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.08(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $4.10-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.42\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30-7.34 (m, 5H).
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.0,52.6,59.5,67.4,68.8,128.2,128.3,128.6,136.1,156.6$, 170.9.

Part 2. Diastereoselective synthesis of thioesters via aldol-type addition of glycine thioester isonitrile to the chiral aldehydes.

Methyl (2S,3S)-2-benzyloxycarbonylamino-3-(tert-butyldiphenylsiloxy)butyrate (11):

To a stirred solution of $\mathbf{1 0}(11.1 \mathrm{~g}, 41.5 \mathrm{mmol}, 1.0$ equiv) in anhydrous DMF (50 mL), imidazole ($6.23 \mathrm{~g}, 91.4 \mathrm{mmol}$) and $\mathrm{TBDPSCl}(11.9 \mathrm{~mL}, 45.7 \mathrm{mmol}, 1.1$ equiv) were added sequentially. The mixture was stirred at r.t. for 36 h , then was diluted by ethyl acetate $(400 \mathrm{~mL})$. The organic phase was thoroughly washed with water $(5 \times 200 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum, and purified by silica gel flash chromatography using n-hexane : ethyl acetate $20: 1$ to $10: 1 v / v$ as eluent. The product 11 was obtained as colorless oil (19.9 g, 95\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.03(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.11-4.17(\mathrm{~m}$, $1 \mathrm{H}), 4.34\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.04(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.43(\mathrm{~m}, 11 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=19.3,20.3,26.9,52.3,60.2,66.9,71.0,127.7,127.9,128.0$, $128.2,128.6,129.9,130.0,133.2,133.8,135.91,135.93,136.5,155.7,170.5$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{SiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 528.2177, found: 528.2193.

S-Ethyl (2R,3S,4S,5S)/(2S,3R,4S,5S)- 3-benzyloxycarbonylamino-4-(tert-butyldiphenylsiloxy)

-2-formylamino-3-hydroxybutanethioate (15a/15b):

The ester $\mathbf{1 1}(4.70 \mathrm{~g}, 9.3 \mathrm{mmol}, 1.0$ equiv) was dissolved in anhydrous DCM (100 mL), then the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution, DIBAL-H (1.0 M solution in hexane, 28.0 mL , $28.0 \mathrm{mmol}, 3.0$ equiv) was added dropwise within 20 min . After addition, the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 2 h , and was quenched by $\mathrm{MeOH}(5 \mathrm{~mL})$ at the same temperature. The mixture was washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})(2 \times 50 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, and brine $(100 \mathrm{~mL})$. The
organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum, and purified by silica gel flash chromatography using n-hexane : ethyl acetate $5: 1 v / v$ as eluent. The product $\mathbf{1 3}$ was obtained as colorless oil ($3.85 \mathrm{~g}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.02(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.19-4.25(\mathrm{~m}, 2 \mathrm{H}), 5.04$ (s, 2H), $5.57(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.44(\mathrm{~m}, 11 \mathrm{H}), 7.61(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 9.85(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=19.3,20.9,27.0,65.7,67.0,71.1,127.8,127.9,128.1,128.2$, $128.6,130.0,130.1,132.8,133.4,135.86,135.90,136.4,156.0,198.4$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 498.2071, found: 498.2051.
The aldehyde 13 ($3.85 \mathrm{~g}, 8.1 \mathrm{mmol}, 1.0$ equiv) was dissolved in anhydrous toluene (30 mL), then isonitrile $\mathbf{8}^{3}\left(1.25 \mathrm{~g}, 9.7 \mathrm{mmol}, 1.2\right.$ equiv) was added, followed by $\mathrm{Cu}_{2} \mathrm{O}(116 \mathrm{mg}, 0.81 \mathrm{mmol}$, 0.10 equiv). The mixture was then stirred at $40^{\circ} \mathrm{C}$ for 2 h . After full conversion of $\mathbf{1 3}$, the mixture was filtered to remove $\mathrm{Cu}_{2} \mathrm{O}$, and the filtrate was concentrated under vacuum. The residue was dissolved in THF (40 mL) and water (20 mL), and the mixture was refluxed overnight. The THF was removed under vacuum, and the water phase was extracted with ethyl acetate (200 mL). The organic phase was washed with brine $(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The ${ }^{1} \mathrm{H}$ NMR of the crude product indicated a $1: 10$ mixture of $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ was formed. The mixture of diastereomers $\mathbf{1 5 a} / \mathbf{1 5 b}$ was purified by silica gel chromatography using n-hexane : ethyl acetate $3: 1$ to $2: 1 v / v$ as eluent and was obtained as white solid ($3.61 \mathrm{~g}, 72 \%$). The pure major diastereomer 15b was obtained as white solid via recrystallization from n-hexane/ethyl acetate. The minor diastereomer 15a was collected from the mother solution and further purified by preparative TLC. Both $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ were mixture of rotamers caused by cis/trans tautomerization of formamide group.

For diastereomer 15a:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks of major rotamer): $\delta=0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$ ($\mathrm{s}, 9 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.81-2.86(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.98(\mathrm{~m}, 1 \mathrm{H})$, 4.49-4.51 (m, 1H), 4.55-4.57(m, 1H), $5.02(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61$ (br, 1H), $7.18(\mathrm{br}, 1 \mathrm{H}), 7.30-7.48(\mathrm{~m}, 11 \mathrm{H}), 7.68-7.71(\mathrm{~m}, 4 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{3} \mathrm{CN}$, selected peaks of major rotamer): $\delta=14.8,19.7,19.8,24.0,27.4$, $60.1,61.4,67.1,69.4,70.5,128.60,128.64,128.7,128.8,129.4,130.8,130.9,136.7,136.8,157.6$, 162.4, 200.5.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SSiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 645.2425, found: 645.2420.
For diastereomer 15b:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks of major rotamer): $\delta=0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ ($\mathrm{s}, 9 \mathrm{H}$), $1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.80-2.86(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.47$ $(\mathrm{q}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.01(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.47(\mathrm{~m}, 11), 7.67-7.71(\mathrm{~m}$, $4 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks of major rotamer): $\delta=14.8,19.6,19.7,24.0,27.3$, $60.0,61.3,67.1,69.4,70.4,128.59,128.63,128.7,128.8,129.4,130.8,130.9,134.4,135.1,136.7$, 136.8, 157.6, 162.4, 200.5.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$ SSiNa $^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 645.2425 , found: 645.2416.

Benzyl (4S,5S)-4-methoxycarbonyl-2,2,5-trimethyl-1,3-oxazolidine-3-carboxylate (12):

To a stirred solution of $10(10.3 \mathrm{~g}, 38.5 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (100 mL), 2,2-dimethoxypropane ($23.7 \mathrm{~mL}, 193 \mathrm{mmol}, 5.0$ equiv) was added. The mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.48 \mathrm{~mL}, 3.85 \mathrm{mmol}, 0.10$ equiv) was added dropwise. The mixture was gradually warmed to r.t. and stirred overnight. The reaction was quenched by $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$, then the mixture was washed with NaHCO_{3} (sat. aq, $2 \times 50 \mathrm{~mL}$) and brine (50 mL). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum, and purified by silica gel flash chromatography using n-hexane : ethyl acetate $15: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product $\mathbf{1 2}$ was obtained as colorless oil ($11.3 \mathrm{~g}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2: 1$ mixture of two rotamers): $\delta=1.25(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$, major), $1.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $1.50(\mathrm{~s}, 1 \mathrm{H}$, minor), $1.56(\mathrm{~s}, 2 \mathrm{H}$, major), $1.70(\mathrm{~s}, 1 \mathrm{H}$, minor $), 1.77$ ($\mathrm{s}, 2 \mathrm{H}$, major), $3.64(\mathrm{~s}, 2 \mathrm{H}$, major), $3.76(\mathrm{~s}, 1 \mathrm{H}$, minor), $4.38-4.45(\mathrm{~m}, 2 \mathrm{H}$, major \& minor), 5.03 (d, $J=12.4 \mathrm{~Hz}, 0.67 \mathrm{H}$, major), $5.14(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.33 \mathrm{H}$, minor $), 5.16(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.67 \mathrm{H}$, major), 5.20 ($\mathrm{d}, J=12.4 \mathrm{~Hz}, 0.33 \mathrm{H}$, minor), $7.30-7.37$ ($\mathrm{m}, 5 \mathrm{H}$, major \& minor).

[^0](major), 25.4 (minor), 25.5 (major), 26.7 (minor), 52.0 (major), 52.1 (minor), 63.2 (major), 63.8 (minor), 66.8 (major), 67.7 (minor), 71.6 (minor), 72.0 (major), 127.7 (major), 128.07 (major), 128.13 (minor), 128.3 (minor), 128.5 (major), 128.7 (minor), 136.2 (minor), 136.5 (major), 151.7 (major), 153.0 (minor), 170.2 (minor), 170.3 (major).

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 330.1312$, found: 330.1296.

Benzyl (4S,5S)-4-hydorxymethyl-2,2,5-trimethyl-1,3-oxazolidine-3-carboxylate (S4):

To a 250 mL round bottom flask, $\mathrm{CaCl}_{2}(10.6 \mathrm{~g}, 95.9 \mathrm{mmol}, 1.5$ equiv) was added, followed by $\mathrm{EtOH}(120 \mathrm{~mL})$. The mixture was sonicated to give a clear solution. To this solution, NaBH_{4} $(7.26 \mathrm{~g}, 192 \mathrm{mmol}, 3.0$ equiv) was added, followed by the solution of $\mathbf{1 2}(19.6 \mathrm{~g}, 63.9 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (60 mL). The mixture was stirred at r.t. for 24 h . The excess amount of hydride species was quenched by $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, then the mixture was diluted with ethyl acetate (400 mL) and water $(200 \mathrm{~mL})$. The organic phase was separated, and the water phase was extracted with ethyl acetate $(2 \times 150 \mathrm{~mL})$. The combined organic phase was washed with brine $(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $2: 1 v / v$ as eluent. The product $\mathbf{S 4}$ was obtained as colorless oil ($17.3 \mathrm{~g}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1.3: 1$ mixture of two rotamers): $\delta=1.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1.68 \mathrm{H}$, major), $1.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1.32 \mathrm{H}$, minor), $1.50(\mathrm{~s}, 1.68 \mathrm{H}$, major), $1.55(\mathrm{~s}, 1.68 \mathrm{H}$, major), 1.57 (s , 1.32 H , minor), $1.62(\mathrm{~s}, 1.32 \mathrm{H}$, minor), 2.22 ($\mathrm{br}, 0.44 \mathrm{H}$, minor), 3.38 ($\mathrm{br}, 0.56 \mathrm{H}$, major), $3.62-3.70$ ($\mathrm{m}, 1 \mathrm{H}$, major \& minor), $3.80-3.88(\mathrm{~m}, 1.44 \mathrm{H}$, major \& minor), $4.02(\mathrm{q}, J=5.6 \mathrm{~Hz}, 0.56 \mathrm{H}$, major), 4.25-4.31 (m, 1 H , major \& minor), $5.12(\mathrm{~s}, 0.88 \mathrm{H}$, minor $), 5.16(\mathrm{~s}, 1.12 \mathrm{H}$, major), $7.32-7.38(\mathrm{~m}$, 5 H , major \& minor).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1.3: 1$ mixture of two rotamers): $\delta=14.4$ (major $\&$ minor), 23.4 (minor), 24.7 (major), 26.6 (minor), 27.8 (major), 60.7 (major \& minor), 61.97 (minor), 62.03 (major), 66.8 (minor), 67.7 (major), 71.6 (major), 72.2 (minor), 93.1 (major), 93.3 (minor), 128.0 (major), 128.1 (major), 128.2 (minor), 128.3 (minor), 128.6 (major \& minor), 136.0 (major), 136.5
(minor), 152.3 (minor), 154.6 (major).
HR-ESI-MS (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 302.1363$, found: 302.1347.

Benzyl (4S,5S)-4-[(1S,2R)/(1R,2S)-3-ethylthio-2-formylamino-1-hydroxy-3-oxopropyl]-2,2,5-

 trimethyl-1,3-oxazolidine-3-carboxylate (16a/16b):

To a stirred solution of $\mathbf{S} 4(5.34 \mathrm{~g}, 19.1 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (110 mL), BAIB ($8.01 \mathrm{~g}, 24.9 \mathrm{mmol}, 1.3$ equiv) was added at $0^{\circ} \mathrm{C}$, followed by TEMPO ($597 \mathrm{mg}, 3.8 \mathrm{mmol}$, 0.20 equiv). The mixture was gradually warmed to r.t. and was stirred overnight at the same temperature. After full conversion of $\mathbf{S 4}$, the mixture was diluted with $\mathrm{DCM}(100 \mathrm{~mL})$ and thoroughly washed with NaHCO_{3} (sat. aq, $2 \times 100 \mathrm{~mL}$). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $10: 1$ to $6: 1 \mathrm{v} / v$ as eluent. The product $\mathbf{1 4}$ was obtained as colorless oil (4.65 g, 88\%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2: 1$ mixture of two rotamers): $\delta=1.31-1.33$ ($\mathrm{m}, 3 \mathrm{H}$, major $\&$ minor), $1.53(\mathrm{~s}, 1 \mathrm{H}$, minor), $1.60(\mathrm{~s}, 2 \mathrm{H}$, major), $1.67(\mathrm{~s}, 1 \mathrm{H}$, minor), $1.75(\mathrm{~s}, 2 \mathrm{H}$, major), 4.18-4.20 (m, 0.66H, major), 4.29-4.31 (m, 0.34H, minor), 4.40-4.45 (m, 1 H , major \& minor), $5.06(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 0.66 \mathrm{H}$, major), $5.10(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 0.66 \mathrm{H}$, major $), 5.16(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, 0.34 H , minor), $5.20(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 0.34 \mathrm{H}$, minor), $7.25-7.36(\mathrm{~m}, 5 \mathrm{H}$, major \& minor), $9.55(\mathrm{~s}$, 0.66 H , major), 9.61 ($\mathrm{s}, 0.34 \mathrm{H}$, minor).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, $2: 1$ mixture of two rotamers): $\delta=15.1$ (major), 15.2 (minor), 23.8 (major), 25.0 (minor), 26.5 (major), 27.5 (minor), 67.0 (major), 67.6 (major), 67.8 (minor), 68.2 (minor), 72.1 (minor), 72.6 (major), 94.2 (minor), 94.9 (major), 127.8 (major), 128.2 (major), 128.4 (minor), 128.6 (major), 128.7 (minor), 135.9 (minor), 136.1 (major), 152.0 (major), 153.2 (minor), 199.8 (minor), 200.0 (major).

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 300.1206$, found: 300.1200.
To the solution of freshly prepared $14(4.65 \mathrm{~g}, 16.8 \mathrm{mmol}, 1.0$ equiv) in DCE (68 mL), isonitrile $8(2.60 \mathrm{~g}, 20.1 \mathrm{mmol}, 1.2$ equiv) was added, followed by the solution of LiOTf (3.14 g ,
$20.1 \mathrm{mmol}, 1.2$ equiv) in anhydrous DMF (16.8 mL). The final concentration of $\mathbf{1 4}$ was controlled at 0.20 M . To this mixture, DIPEA ($0.59 \mathrm{~mL}, 3.4 \mathrm{mmol}, 0.20$ equiv) was added to initiate the reaction. The mixture was stirred at r.t. for 2 h , then was diluted with $\mathrm{DCM}(200 \mathrm{~mL})$ and thoroughly washed with water and brine. The organic phase was concentrated under vacuum, and the residue was dissolved in THF (60 mL) and water $(30 \mathrm{~mL})$. The mixture was refluxed overnight, then the THF was removed under vacuum. The water phase was extracted with ethyl acetate (200 mL), then the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The ${ }^{1} \mathrm{H}$ NMR of the crude product indicated a $5.1: 1$ mixture of $\mathbf{1 6 a}$ and $\mathbf{1 6 b}$ was formed. The residue was purified by silica gel column chromatography. The minor diastereomer 16b was eluted by n-hexane : ethyl acetate $3: 1 v / v$ and obtained as colorless syrup $(0.79 \mathrm{~g}, 11 \%)$, while the major diastereomer 16a was eluted by n-hexane : ethyl acetate $2: 1 v / v$ and obtained as white solid ($4.01 \mathrm{~g}, 56 \%$).

For diastereomer 16a:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, mixture of rotamers): $\delta=1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.34(\mathrm{~m}$, $3 \mathrm{H}), 1.44-1.56(\mathrm{~m}, 6 \mathrm{H}), 2.84(\mathrm{q}, ~ J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76-3.79(\mathrm{~m}, 0.44 \mathrm{H}), 3.85-3.87(\mathrm{~m}, 0.56 \mathrm{H})$, $4.01(\mathrm{br}, 0.56 \mathrm{H}), 4.22-4.42(\mathrm{~m}, 3 \mathrm{H}), 4.66(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.44 \mathrm{H}), 4.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.44 \mathrm{H})$, $5.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.56 \mathrm{H}), 5.16(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.56 \mathrm{H}), 5.26(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.44 \mathrm{H}), 7.16-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.91(\mathrm{~s}, 0.56 \mathrm{H}), 8.03(\mathrm{~s}, 0.44 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, mixture of rotamers): $\delta=14.7,15.0,15.1,23.7,24.0,24.6,27.6$, $60.0,60.4,61.2,63.3,63.4,67.4,68.4,70.1,70.2,71.4,73.0,74.1,94.0,128.2,128.6,129.2$, $129.3,129.4,129.5,137.3,137.9,153.4,155.8,162.8,202.4,202.6$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 447.1560, found: 447.1562.
For diastereomer 16b:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, mixture of rotamers): $\delta=1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.32(\mathrm{~m}$, $3 H), 1.49-1.54(\mathrm{~m}, 6 \mathrm{H}), 3.52-3.56(\mathrm{~m}, 0.59 \mathrm{H}), 3.77-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.93(\mathrm{~m}, 0.41 \mathrm{H})$, 4.16-4.29 (m, 2H), $4.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.59 \mathrm{H}), 4.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.41 \mathrm{H}), 4.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $0.59 \mathrm{H}), 5.06(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.59 \mathrm{H}), 5.10-5.19(\mathrm{~m}, 0.82 \mathrm{H}), 6.70(\mathrm{br}, 0.59 \mathrm{H}), 7.76-7.83(\mathrm{~m}$, $5.41 \mathrm{H}), 7.78(\mathrm{~s}, 0.59 \mathrm{H}), 8.28(\mathrm{~s}, 0.41 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{CN}$, mixture of rotamers): $\delta=14.5,14.7,14.9,23.8,24.0,25.1,26.9$, $27.7,60.0,61.1,67.4,68.1,68.5,70.8,72.6,73.1,93.8,128.8,129.0,129.2,129.5,137.6,138.1$,
153.7, 156.1, 162.6, 162.9, 200.3.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 447.1560, found: 447.1559.

Benzyl (4S,5S)-4-[(1S,2R)/(1R,2S)-2-ethoxycarbonyl-2-formylamino-1-hydroxyethyl]-2,2,5-

 trimethyl-1,3-oxazolidine-3-carboxylate (S6a/S6b):

To the solution of freshly prepared $14(68 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv) in DCE (1.6 mL), glycine O-ester derived isonitrile $\mathbf{S 5}(33 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.2$ equiv) was added, followed by the solution of LiOTf ($46 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.2$ equiv) in anhydrous DMF (0.4 mL). The final concentration of 14 was controlled at 0.12 M . To this mixture, DIPEA $(8.5 \mu \mathrm{~L}, 0.48 \mathrm{mmol}, 0.20$ equiv) was added to initiate the reaction. The mixture was stirred at r.t. for 48 h to achieve full conversion of the aldehyde, then was diluted with ethyl acetate $(20 \mathrm{~mL})$ and thoroughly washed with water and brine. The organic phase was concentrated under vacuum, and the residue was dissolved in THF (4 mL) and water $(2 \mathrm{~mL})$. The mixture was refluxed overnight, then the THF was removed under vacuum. The water phase was extracted with ethyl acetate $(20 \mathrm{~mL})$, then the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The ${ }^{1} \mathrm{H}$ NMR of the crude product indicated a $1: 1.3$ mixture of $\mathbf{S 6 a}$ and $\mathbf{S 6 b}$ was formed. The residue was purified by silica gel column chromatography. The major diastereomer S6a was eluted by n-hexane : ethyl acetate $1.5: 1 \mathrm{v} / \mathrm{v}$ and obtained as colorless oil ($47 \mathrm{mg}, 48 \%$), while the minor diastereomer $\mathbf{S 6 b}$ was eluted by n-hexane : ethyl acetate $1: 1 \mathrm{v} / \mathrm{v}$ and obtained as white solid ($36 \mathrm{mg}, 37 \%$).

For the same reaction, when the LiOTf in the above condition was changed to LiBF_{4}, almost no conversion ($<5 \%$) was observed. When $\mathrm{Cu}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$ was used as catalyst in toluene at 40 ${ }^{\circ} \mathrm{C}, 90 \%$ yield (S6a : S6b $=1: 1.4$) was obtained. These results demonstrate the much lower reactivity of the O-ester isonitrile $\mathbf{S 5}$ than S-ester isonitrile $\mathbf{8}$. It is due to the stronger capability of the thioester group for the stabilization of neibouring anion in the nucleophile than the corresponding ester group.

For diastereomer S6a:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, mixture of rotamers): $\delta=1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.38(\mathrm{~m}$,
$3 \mathrm{H}), 1.50-1.55(\mathrm{~m}, 6 \mathrm{H}), 3.41(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.78-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.97(\mathrm{~m}, 0.45 \mathrm{H})$, $4.10-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.23-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.55 \mathrm{H}), 4.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.45 \mathrm{H})$, $4.97(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.08-5.16(\mathrm{~m}, 1.45 \mathrm{H}), 6.59(\mathrm{br}, 0.55 \mathrm{H}), 7.19(\mathrm{br}, 0.45 \mathrm{H}), 7.34-7.42$ (m, 5H), 7.79 (s, 0.55 H$), 8.24(\mathrm{~s}, 0.45 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, mixture of rotamers): $\delta=14.4,14.9,23.9,25.1,27.0,27.8,54.5$, $60.0,61.0,62.4,67.4,68.2,69.0,71.5,72.6,73.2,93.6,93.7,128.9,129.1,129.2,129.5,137.6$, 138.1, 153.7, 156.4, 162.4, 162.7, 170.8.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 431.1789, found: 431.1777.
For diastereomer S6b:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, mixture of rotamers): $\delta=1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.37(\mathrm{~m}$, $3 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.55(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{br}, 0.45 \mathrm{H}), 3.84-3.88(\mathrm{~m}, 0.45 \mathrm{H}), 4.03(\mathrm{br}$, $0.55 \mathrm{H}), 4.12-4.24(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 0.45 \mathrm{H}), 4.87(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $0.55 \mathrm{H}), 5.09(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.19(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.26(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 0.45 \mathrm{H})$, 6.88-6.92 (m, 1H), 7.35-7.41 (m, 5H), $7.89(\mathrm{~s}, 0.45 \mathrm{H}), 7.96(\mathrm{~s}, 0.55 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, mixture of rotamers): $\delta=14.4,15.1,15.3,23.8,24.7,27.4,53.4$, $53.9,61.4,62.3,63.8,67.4,68.5,69.8,71.0,73.0,74.1,94.1,128.4,128.7,129.3,129.4,129.5$, 137.4, 138.0, 153.6, 156.2, 162.6, 172.0.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 431.1789, found: 431.1776.

Part 3. Elucidation of the stereochemistry of $15 b$ via derivatization.

Scheme S2. Elucidation of the stereochemistry of $15 b$ via derivatization.
4-Benzyloxycarbonylamino-1,3-di- O-acetyl-2-formylamino-2,4,6-trideoxy- β-L-glucopyranose
(29):

To a 50 mL round bottom flask, thioester $\mathbf{1 5 b}(623 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd} / \mathrm{C}(10 \%$ Pd on activated carbon, $100 \mathrm{mg}, 0.10$ equiv base on Pd) were added. After argon protection of the flask, anhydrous $\mathrm{DCM}(10 \mathrm{~mL})$ was added, and the mixture was stirred mildly. $\mathrm{Et}_{3} \mathrm{SiH}(0.60 \mathrm{~mL}$, $3.80 \mathrm{mmol}, 3.8$ eq.) was added dropwise during 20 min , then the mixture was mildly stirred at r.t. for 2 h . When full conversion of $15 \mathbf{b}$ was achieved as indicate by TLC, the mixture was filtered through celite, and the filtrate was concentrated under vacuum to give the crude aldehyde, which was used directly in the next reaction without storage.

To the flask containing crude aldehyde, THF (18 mL) was added, followed by TBAF (1.0 M solution in THF, $2.0 \mathrm{~mL}, 2.00 \mathrm{mmol}, 2.0$ equiv). The mixture was stirred at r.t. for 12 h . When full deprotection of TBDPS group was achieved as indicated by TLC, the solution was concentrated under vacuum, and the residue was re-dissolved in pyridine $(4.0 \mathrm{~mL})$. To this mixture, $\mathrm{Ac}_{2} \mathrm{O}(2.0$ mL) was added. After being stirred at r.t. for 2 h , the mixture was concentrated under vacuum, and the residue was diluted with ethyl acetate $(30 \mathrm{~mL})$. The solution was sequentially washed with 1 $\mathrm{M} \mathrm{HCl}(\mathrm{aq})$, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $1: 2$ as eluent. The product 29 was obtained as colorless syrup ($170 \mathrm{mg}, 42 \%$ over 3 steps). In NMR, $\mathbf{2 9}$ was the mixture of rotamers caused by
cis/trans isomerization of formamide group.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, selected peaks of major rotamer): $\delta=1.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6)$, $1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.65(\mathrm{q}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.79-3.87(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-5), 4.50\left(\mathrm{td}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.80(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.03-5.17(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{H}-3 \& 2 \times \mathrm{PhCH}_{2}\right), 5.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.15(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 7.33-7.37(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH}$), 8.12 ($\mathrm{s}, \mathrm{NHCHO}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, selected peaks of major rotamer): $\delta=17.9,20.8,21.1,50.1,56.8$, $67.2,69.4,69.8,70.4,90.8,128.2,128.4,128.7,136.4,156.0,161.0,169.1,172.3$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 431.1419, found: 431.1406.

2-Acetamido-1,3-di- O-acetyl-4-benzyloxycarbonylamino-2,4,6-trideoxy- β-L-glucopyranose

 (30):

To a 50 mL round bottom flask, a solution of $\mathrm{HCl}(\mathrm{aq})$ in $\mathrm{MeOH}(3 \%, 6 \mathrm{~mL}$, prepared from conc. HCl 0.5 mL and MeOH 5.5 mL) was added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, then $29(170$ $\mathrm{mg}, 0.42 \mathrm{mmol}, 1.0$ equiv) was added. The mixtrue was stirred at $0{ }^{\circ} \mathrm{C}$ to r.t. for 8 h . The solvent was removed under vacuum without heating, and the residue was co-evaporated with MeCN for two times to remove water and HCl thoroughly. The crude intermediate with formyl group removed was obtained as colorless foam. This foam was dissolved in pyridine (2.0 mL), then $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and DMAP ($5 \mathrm{mg}, 0.042 \mathrm{mmol}, 0.10$ equiv) were added. The mixture was stirred at r.t. for 1 h , then was concentrated under vacuum. The residue was co-evaporated with toluene for three times to thoroughly remove pyridine and $\mathrm{Ac}_{2} \mathrm{O}$, then was purified by silica gel flash chromatography using DCM : MeOH 30:1 as eluent. The product 30 was obtained as white solid (108 mg, 62\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, selected peaks of α anomer): $\delta=1.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 1.90$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), $1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.64(\mathrm{q}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, 3.83-3.87 (m, 1H, H-5), $4.40\left(\mathrm{ddd}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, J_{3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.00-5.16(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}-3, \mathrm{NH} \& 2 \times \mathrm{PhCH}_{2}\right), 5.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.13(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$,
7.31-7.35 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, selected peaks of α anomer): $\delta=17.9,20.8,21.1,23.1,51.7,56.8$, 67.1, 69.3, 70.6, 91.1, 128.2, 128.4, 128.7, 136.4, 156.0, 169.4, 170.4, 172.3.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 445.1581 , found: 445.1561 .

2,4-Diacetamido-1,3-di- O-acetyl-2,4,6-trideoxy- $\boldsymbol{\beta}$-L-glucopyranose (31):

To a 25 mL round bottom flask, $30(94 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv) was added, followed by $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\left(20 \% \mathrm{Pd}(\mathrm{OH})_{2}\right.$ on activate carbon, 20 mg$)$ and $\mathrm{MeOH}(5 \mathrm{~mL})$. The mixture was stirred under 1 atm H_{2} atmosphere for 2 h , then was filtered through celite to remove the catalyst. The filtrate was concentrated under vacuum, and the residue was dissolved in pyridine (2.0 mL). $\mathrm{Ac}_{2} \mathrm{O}$ (1.0 mL) and DMAP ($3 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.10$ equiv) were added, then the mixture was stirred at r.t. for 1 h . The mixture was concentrated under vacuum, then the residue was co-evaporated with toluene for three times to thoroughly remove pyridine and $\mathrm{Ac}_{2} \mathrm{O}$. The residue was purified by silica gel flash chromatography using DCM : MeOH 7:1 as eluent. The product $\mathbf{3 1}$ was obtained as white solid ($55 \mathrm{mg}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3} \mathrm{CO}\right), 2.00(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} \mathrm{H}_{3} \mathrm{CO}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} \mathrm{H}_{3} \mathrm{CO}\right), 3.82-3.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.99(\mathrm{q}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.30\left(\mathrm{ddd}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, J_{3}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.10(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$ $\mathrm{H}-3), 5.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.14(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=17.9,20.9,21.1,23.1,23.2,51.6,55.0,69.2,70.4,91.0,169.5$, 171.0, 171.1, 172.4 .

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 353.1314 , found: 353.1303.
This compound $\mathbf{3 1}$ shows exactly the same ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR to the 2,4-diacetamido-1,3-di- O-acetyl-2,4,6-trideoxy- α-d-glucopyranose, which was reported by Ito et al. ${ }^{4}$

Part 4. Analysis of distereoselectivity model for isonitrile addition.

Felkin-Anh model and Cram model are two diastereoselectivity models widely used in literatures. As shown in the figure, for bulky TBDPS group protected aldehyde 13, Felkin-Anh model (stereoelectronic effect dominates) predict the formation of the desired product, while the Cram model (steric effect dominates) predict the undesired one. To inverse this diastereoselectivity, the size of the protecting group on the hydroxyl group should be minimized. Thus, we chose the acetonide protected Garner-type aldehyde 14. To further weaken the effect of steric repulsion, lithium cation is involved to chelate the oxygen atoms from aldehyde group and protected hydroxyl group.

Figure S1. Analysis of the diastereoselectivity model of the aldol-type addition.

Part 5. Elucidation of the stereochemistry of 16 via derivatization.

Scheme S3. Elucidation of the stereochemistry of 16a via derivatization.

Benzyl

(4S,5S)-4-[(1R,2S)-4-benzyloxycarbonyl-2-formylamino-1-triethylsiloxy-3-buten-1-yl]-2,2,5-t rimethyl-1,3-oxazolidine-3-carboxylate (33a)

To a 50 mL round bottom flask, thioester $\mathbf{1 6 a}(424 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd} / \mathrm{C}(10 \%$ Pd on activated carbon, $100 \mathrm{mg}, 0.10$ equiv base on Pd) were added. After argon protection of the flask, anhydrous THF (5 mL) was added, and the mixture was stirred mildly. $\mathrm{Et}_{3} \mathrm{SiH}(0.60 \mathrm{~mL}$, $3.80 \mathrm{mmol}, 3.8$ eq.) was added dropwise during 20 min , then the mixture was mildly stirred at r.t. for 2 h . When full conversion of $\mathbf{1 6 a}$ was achieved as indicate by TLC, the mixture was filtered through celite, and the filtrate was concentrated under vacuum. The residue was dilute with DCM $(10 \mathrm{~mL})$, and was sitrred with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq}, 0.10 \mathrm{~mL})$ for 40 min . The organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude aldehyde was obtained in crude form and directly used in the next step.

To the solution of crude aldehyde in DCM $(10 \mathrm{~mL})$, ylide $32(615 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.5$ equiv) was added in one portion. The mixture was stirred at r.t. for 45 min , then the solvent was removed
under vacuum. The residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $3: 1$ as eluent. The product 33a was obtained as colorless syrup ($511 \mathrm{mg}, 84 \%$ over 2 steps).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, selected peaks of major rotamer $): \delta=0.55-0.60(\mathrm{~m}, 6 \mathrm{H}), 0.90(t, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 3.96\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.12(\mathrm{br}, 1 \mathrm{H}), 4.29-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{br}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{br}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 10 \mathrm{H}), 7.78-7.93(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks of major rotamer): $\delta=5.9,7.3,16.2,23.3,26.9,53.0$, $64.1,66.9,67.3,73.2,74.0,94.1,122.6,129.07,129.10,129.2,129.49,129.52,137.4,138.0$, 147.6, 154.1, 161.5, 166.4.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$633.2966, found: 633.2952.

Benzyl

trans-(4S,5R,6S,7S)-4-acetamido-6-benzyloxycarbonylamino-5,7-dihydroxy-2-octenoate
(34a):

To a 25 mL round bottom flask, TFA $(4.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, then $\mathbf{3 3 a}$ ($178 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.0$ equiv) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then was concentrated under vacuum without heating. The residue was co-evaporated with n-hexane for two times to remove TFA thoroughly.

To the flask containg the residue, a cold solution of $\mathrm{HCl}(\mathrm{aq})$ in $\mathrm{MeOH}(3 \%, 6 \mathrm{~mL}$, prepared from conc. HCl 0.5 mL and MeOH 5.5 mL) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to r.t. for 8 h, then the solvent was removed under vacuum without heating, and the residue was co-evaporated with MeCN for two times to remove water and HCl thoroughly. The crude intermediate with formyl group removed was obtained as colorless foam.

To the solution the of crude intermediate in $\mathrm{MeCN}(4 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(0.11 \mathrm{~mL}, 1.16 \mathrm{mmol}, 4.0$ equiv) was added, followed by $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})(2 \mathrm{~mL})$. The mixture was stirred at r.t. for 2 h ,
then was concentrated under vacuum. The residue was purified by silica gel flash chromatography using DCM : MeOH 30: 1 as eluent. The product 34a was obtained as white solid ($82 \mathrm{mg}, 59 \%$ over 3 steps).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.57$ $(\mathrm{d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.71-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 5.59(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93\left(\mathrm{dd}, J_{1}=\right.$ $\left.15.7 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.29-7.38(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=20.0,23.1,52.8,57.7,66.9,67.0,70.2,74.7,122.0,128.6$, $128.8,129.10,129.12,129.4,129.5,137.5,138.3,149.3,157.3,166.7,171.1$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 493.1940, found: 493.1920.

2-Acetamido-1,3-di-O-acetyl-4-benzyloxycarbonylamino-2,4,6-trideoxy-L-altropyranose

 (S7):

The solution of $\mathbf{3 4 a}$ ($101 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. The O_{3} (generated from O_{2} and carried by the flow of O_{2}) was bubbled though this solution for 30 min . The colour of the solution turn purple, which indicated the saturation of O_{3} in DCM. The excess amount of O_{3} was blown off by the flow of O_{2} and the purple colour disappeared. To this solution, $\mathrm{Me}_{2} \mathrm{~S}(0.50 \mathrm{~mL}$, excess) was added to reduce the peroxide intermediate. After 1 h reduction at r.t., the solution was concentrated, and the residue was purified by silica gel flash chromatography using $\mathrm{DCM}: \mathrm{MeOH} 20: 1$ as eluent. The intermediate was directly used in the next step.

The intermediate was dissolved in anhydrous $\mathrm{DCM}(10 \mathrm{~mL})$ and the solution was cooled to 0 ${ }^{\circ} \mathrm{C}$. To this solution, $\mathrm{Ac}_{2} \mathrm{O}(0.12 \mathrm{~mL}, 1.25 \mathrm{mmol}, 6.0$ equiv), N-methylmorpholine ($0.14 \mathrm{~mL}, 1.25$ mmol, 6.0 equiv), and DMAP ($2.5 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.10$ equiv) were added sequentially. The mixture was stirred at $0^{\circ} \mathrm{C}$ to r.t. for 2 h , then was diluted with $\mathrm{DCM}(50 \mathrm{~mL})$. The solution was washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and
concentrated under vacuum. The residue was purified by silica gel flash chromatography using DCM : MeOH $40: 1$ as eluent. The product $\mathbf{S 7}$ was obtained as colorless syrup $(86 \mathrm{mg}, 93 \%$ over 2 steps).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, selected peaks of major anomer): $\delta=1.32(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6$), $2.078\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.87-3.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4 \& \mathrm{H}-5)$, 4.39 (ddd, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, J_{3}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.07(\mathrm{~d}, J$ $\left.=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.12\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.21\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-3), 5.86 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.98$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $7.33-7.39$ (m, $5 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, selected peaks of major anomer): $\delta=18.4,21.1,23.5,49.3,50.9$, 67.7, 70.7, 72.7, $90.2,128.4,128.6,128.8,136.0,156.0,169.0,169.4,170.2$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 445.1581, found: 445.1557.

2,4-Diacetamido-1,3-di-O-acetyl-2,4,6-trideoxy-L-altropyranose (35):

To a 25 mL round bottom flask, $\mathbf{S} 7(86 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) was added, followed by $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\left(20 \% \mathrm{Pd}(\mathrm{OH})_{2}\right.$ on activate carbon, 20 mg$)$ and $\mathrm{MeOH}(5 \mathrm{~mL})$. The mixture was stirred under $1 \mathrm{~atm} \mathrm{H}_{2}$ atmosphere for 2 h , then was filtered through celite to remove the catalyst. The filtrate was concentrated under vacuum, and the residue was dissolved in pyridine (2.0 mL). $\mathrm{Ac}_{2} \mathrm{O}$ $(1.0 \mathrm{~mL})$ and DMAP ($2.5 \mathrm{mg}, 0.020 \mathrm{mmol}, 0.10$ equiv) were added, then the mixture was stirred at r.t. for 1 h . The mixture was concentrated under vacuum, then the residue was co-evaporated with toluene for three times to thoroughly remove pyridine and $\mathrm{Ac}_{2} \mathrm{O}$. The residue was purified by silica gel flash chromatography using DCM : MeOH $20: 1$ as eluent. The product $\mathbf{3 5}$ was obtained as colorless syrup ($46 \mathrm{mg}, 69 \%$ over 2 steps).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 0.9$ mixture of α and β anomers): $\delta=1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2.7 \mathrm{H}$, $\mathrm{H}-6, \beta$), 1.29 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6, \alpha), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}, \alpha\right), 2.01\left(\mathrm{~s}, 2.7 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}, \beta\right), 2.03$ (s, 2.7H, CH3 CO, β), 2.06 (s, 3H, $\mathrm{CH}_{3} \mathrm{CO}, \alpha$), 2.097 (s, 2.7H, $\mathrm{CH}_{3} \mathrm{CO}, \beta$), 2.102 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$, $\alpha), 2.14\left(\mathrm{~s}, 2.7 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}, \beta\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}, \alpha\right), 3.90-3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5, \alpha), 4.05-4.08(\mathrm{~m}$, $0.9 \mathrm{H}, \mathrm{H}-5, \beta), 4.26\left(\mathrm{td}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4, \alpha\right), 4.30\left(\mathrm{td}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}\right.$,
$0.9 \mathrm{H}, \mathrm{H}-4, \beta), 4.40-4.45$ (m, 1.9H, H-2, $\alpha \& \beta$), 4.94 (t, $J=3.4 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{H}-3, \beta), 5.17\left(\mathrm{dd}, J_{1}=\right.$ $\left.4.8 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3, \alpha\right), 5.75(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{NH}, \beta), 5.79(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$, $\alpha), 5.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{H}-1, \beta), 6.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1, \alpha), 6.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$, $\alpha), 6.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{NH}, \beta)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 0.9$ mixture of α and β anomers): $\delta=17.6(\alpha), 18.4(\beta), 20.9(\alpha)$, $20.96(\beta), 20.99(\alpha \& \beta), 23.1(b), 23.2(\alpha), 23.30(\alpha), 23.34(\beta), 48.05(\beta), 48.12(\alpha), 48.7(\alpha)$, $48.9(\beta), 66.5(\beta), 69.8(\alpha), 70.3(\beta), 72.6(\alpha), 90.3(\alpha), 91.4(\beta), 168.8(\beta), 169.0(\alpha), 169.59(\alpha$ or $\beta), 169.60(\alpha$ or $\beta), 169.7(\beta), 169.9(\beta), 170.0(\alpha), 170.2(\alpha)$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 353.1314$, found: 353.1303.

2,4-Diacetamido -2,4,6-trideoxy-L-altropyranose (S8):

To a stirred solution of $\mathbf{3 5}(21 \mathrm{mg}, 0.063 \mathrm{mmol})$ in $\mathrm{MeOH}(4.0 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.8 \mathrm{mg}, 0.013$ mmol, 0.20 equiv) was added. The solution was stirred at r.t. for 1 h , and the $\mathrm{K}_{2} \mathrm{CO}_{3}$ dissolved gradually. The pH of the system was around 9. After full conversion of the material, the reaction was quenched with DOWEX-50(H) resin. After filtration, the solvent was removed under vacuum, and the crude product was obtained as colorless solid. After further purification by BioGel column using $\mathrm{H}_{2} \mathrm{O}$ as eluent, $\mathbf{S 8}$ was obtained as white powder ($15 \mathrm{mg}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 0.3: 1$ mixture of α and β anomers): $\delta=1.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2.3 \mathrm{H}$, $\mathrm{H}-6 \beta$), $1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{H}-6 \alpha), 2.03\left(\mathrm{~s}, 2.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \beta\right), 2.04\left(\mathrm{~s}, 0.7 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \alpha\right), 2.05$ ($\left.\mathrm{s}, 0.7 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \alpha\right), 2.09\left(\mathrm{~s}, 2.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \beta\right), 3.82\left(\mathrm{dd}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 0.77 \mathrm{H}, \mathrm{H}-4 \beta\right)$, 3.91-3.97 (m, 2H, H-3 $, ~ \mathrm{H}-3 \beta, \mathrm{H}-4 \alpha \& \mathrm{H}-5 \beta), 4.51\left(\mathrm{dd}, J_{1}=4.4 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 0.23 \mathrm{H}, \mathrm{H}-2 \alpha\right)$, $4.10\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 0.77 \mathrm{H}, \mathrm{H}-2 \beta\right), 4.24\left(\mathrm{dt}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 0.23 \mathrm{H}, \mathrm{H}-5 \alpha\right)$, $5.05(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.23 \mathrm{H}, \mathrm{H}-1 \alpha), 5.28(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.77 \mathrm{H}, \mathrm{H}-1 \beta)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 0.3: 1$ mixture of α and β anomers): $\delta=16.7(\alpha), 17.2(\beta), 20.9(\alpha)$, $21.89(\alpha), 21.92(\beta), 21.95(\beta), 50.7(\beta), 51.0(\alpha), 52.3(\alpha), 53.5(\beta), 64.3(\alpha), 67.2(\alpha), 68.1(\beta)$, $69.4(\beta), 90.6(\beta), 92.2(\alpha), 174.06(\beta), 174.11(\alpha), 174.8(\alpha$ and $\beta)$.

This compound $\mathbf{S 8}$ shows exactly the same ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR to the

2,4-diacetamido-2,4,6-trideoxy- α / β-D-altropyranose, which was reported by Ito et al. ${ }^{5}$

Scheme S4. Elucidation of the stereochemistry of 16 b via derivatization.

Benzyl

(4S,5S)-4-[(1S,2R)-4-benzyloxycarbonyl-2-formylamino-1-triethylsiloxy-3-buten-1-yl]-2,2,5-t

rimethyl-1,3-oxazolidine-3-carboxylate (33b)

To a 50 mL round bottom flask, thioester $\mathbf{1 6 b}(212 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd} / \mathrm{C}(10 \%$ Pd on activated carbon, $50 \mathrm{mg}, 0.10$ equiv base on Pd) were added. After argon protection of the flask, anhydrous THF (2.5 mL) was added, and the mixture was stirred mildly. $\mathrm{Et}_{3} \mathrm{SiH}(0.30 \mathrm{~mL}$, $1.90 \mathrm{mmol}, 3.8 \mathrm{eq}$.) was added dropwise during 20 min , then the mixture was mildly stirred at r.t. for 2 h . When full conversion of $\mathbf{1 6 b}$ was achieved as indicate by TLC, the mixture was filtered through celite, and the filtrate was concentrated under vacuum. The residue was dilute with DCM $(5 \mathrm{~mL})$, and was sitrred with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq}, 0.050 \mathrm{~mL})$ for 40 min . The organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude aldehyde was obtained in crude form and directly used in the next step.

To the solution of crude aldehyde in DCM (5 mL), ylide $32(308 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) was added in one portion. The mixture was stirred at r.t. for 45 min , then the solvent was removed under vacuum. The residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate 3:1 as eluent. The product 33b was obtained as colorless syrup ($82 \mathrm{mg}, 27 \%$ over 2 steps).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1.5: 1$ mixture of rotamers): $\delta=0.56-0.64$ ($\mathrm{m}, 2.4 \mathrm{H}$, minor), $0.65-0.74(\mathrm{~m}, 3.6 \mathrm{H}$, major), $0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3.6 \mathrm{H}$, minor), $0.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 5.4 \mathrm{H}$, major), $1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1.2 \mathrm{H}$, minor), $1.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1.8 \mathrm{H}$, major), 1.45 (s, 1.8 H , major), 1.56 (s , 1.8 H, major), 1.58 ($\mathrm{s}, 1.2 \mathrm{H}$, minor), $1.66\left(\mathrm{~s}, 1.2 \mathrm{H}\right.$, minor), $3.72\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 0.4 \mathrm{H}\right.$, minor), 3.93-3.96(m, 1H, major \& minor), 4.07 (dd, $J_{1}=5.0 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), 4.18-4.21 (m, 0.6H, major), 4.23-4.26 (m, 0.4H, minor), 4.36 (br, 0.4H, minor), 4.74 (d, $J=12.2$ $\mathrm{Hz}, 0.6 \mathrm{H}$, major), 4.93 ($\mathrm{d}, J=11.3 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), 4.98 (br, 0.6 H , major), 5.01 ($\mathrm{d}, J=11.3 \mathrm{~Hz}$, 0.4 H , minor), $5.05(\mathrm{~s}, 1.2 \mathrm{H}$, major), $5.07(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), $5.18(\mathrm{~s}, 0.8 \mathrm{H}$, minor), 5.70 (d, $J=7.2 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $5.86\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 0.4 \mathrm{H}\right.$, minor), $5.96\left(\mathrm{dd}, J_{1}=16.0\right.$ $\mathrm{Hz}, J_{2}=2.4 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), $6.82\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, 0.4 \mathrm{H}\right.$, minor $), 7.24-7.46(\mathrm{~m}$, 11.2 H , major \& minor), 8.33 (s, 1 H , major \& minor).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, selected peaks of major rotamer): $\delta=5.5,6.9,14.2,25.3,26.9,50.8$, $59.6,66.2,68.0,72.0,72.1,94.1,122.6,128.1,128.3,128.4,128.6,129.0,129.4,135.6,135.9$, 144.8, 154.9, 161.0, 165.6.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$633.2966, found: 633.2962.

Benzyl

trans-(4R,5S,6S,7S)-4-acetamido-6-benzyloxycarbonylamino-5,7-dihydroxy-2-octenoate
(34b):

To a 25 mL round bottom flask, TFA $(4.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, then $\mathbf{3 3 b}$ ($82 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then was concentrated under vacuum without heating. The residue was co-evaporated with n-hexane for two times to remove TFA thoroughly.

To the flask containg the residue, a cold solution of $\mathrm{HCl}(\mathrm{aq})$ in $\mathrm{MeOH}(3 \%, 6 \mathrm{~mL}$, prepared from conc. HCl 0.5 mL and MeOH 5.5 mL) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to r.t. for 8 h , then the solvent was removed under vacuum without heating, and the residue was co-evaporated with MeCN for two times to remove water and HCl thoroughly. The crude intermediate with
formyl group removed was obtained as colorless foam.
To the solution the of crude intermediate in $\mathrm{MeCN}(2 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(0.49 \mathrm{~mL}, 0.52 \mathrm{mmol}, 4.0$ equiv) was added, followed by $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})(1 \mathrm{~mL})$. The mixture was stirred at r.t. for 2 h , then was concentrated under vacuum. The residue was purified by silica gel flash chromatography using DCM : MeOH 30: 1 as eluent. The product 34b was obtained as white solid ($40 \mathrm{mg}, 63 \%$ over 3 steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=1.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.47(\mathrm{~m}, 1 \mathrm{H})$, $3.70-3.76(\mathrm{~m}, 1 \mathrm{H}), 4.05\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.56-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}\right.$, $\left.J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30-7.38(\mathrm{~m}$, $10 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=20.6$ 23.2, 54.3, 58.2, 66.9, 67.1, 68.4, 70.7, 121.8, 128.5, $128.8,129.1,129.4,129.5,147.1,157.5,166.7,170.8$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 493.1940, found: 493.1922.

2-Acetamido-1,3-di-O-acetyl-4-benzyloxycarbonylamino-2,4,6-trideoxy-L-glucopyranose

(30):

The solution of 34b ($40 \mathrm{mg}, 0.085 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. The O_{3} (generated from O_{2} and carried by the flow of O_{2}) was bubbled though this solution for 15 min . The colour of the solution turn purple, which indicated the saturation of O_{3} in DCM . The excess amount of O_{3} was blown off by the flow of O_{2} and the purple colour disappeared. To this solution, $\mathrm{Me}_{2} \mathrm{~S}(0.20 \mathrm{~mL}$, excess) was added to reduce the peroxide intermediate. After 1 h reduction at r.t., the solution was concentrated, and the residue was purified by silica gel flash chromatography using $\mathrm{DCM}: \mathrm{MeOH} 20: 1$ as eluent. The intermediate was directly used in the next step.

The residue was dissolved in pyridine $(2.0 \mathrm{~mL}) . \mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and DMAP $(1.0 \mathrm{mg}, 0.008$ mmol, 0.10 equiv) were added, then the mixture was stirred at r.t. for 1 h . The mixture was
concentrated under vacuum, then the residue was co-evaporated with toluene for three times to thoroughly remove pyridine and $\mathrm{Ac}_{2} \mathrm{O}$. The residue was purified by silica gel flash chromatography using DCM : MeOH $40: 1$ as eluent. The product $\mathbf{3 0}$ was obtained as white solid ($24 \mathrm{mg}, 67 \%$ over 2 steps).

This compound $\mathbf{3 0}$ shows exactly the same ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR to the product $\mathbf{3 0}$ prepared from 29 (Part 3).

Part 6. Chain elongation through Fukuyama reduction and Barbier allylation.

Benzyl
(4S,5S)-4-[(1S,2S,3R)/(1S,2S,3S)-2-formylamino-3-hydroxy-5-isopropyl-oxycarbonyl-1-(triethylsiloxy)hex-5-en-1-yl]-2,2,5-trimethyl-1,3-oxazolidine-3-carboxylate

(19syn/19anti):

To a 250 mL round bottom flask, thioester $16 \mathrm{a}(4.24 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd} / \mathrm{C}(10 \%$ Pd on activated carbon, $1.00 \mathrm{~g}, 100 \mathrm{mg} / \mathrm{mmol}$ substrate, 0.10 equiv base on Pd) were added. After argon protection of the flask, anhydrous THF (40 mL) was added, and the mixture was stirred mildly. $\mathrm{Et}_{3} \mathrm{SiH}(6.00 \mathrm{~mL}, 38 \mathrm{mmol}, 0.60 \mathrm{~mL} / \mathrm{mmol}$ substrate, 3.8 eq .) was added dropwise during 20 min , then the mixture was mildly stirred at r.t. for 2 h . When full conversion of $\mathbf{1 6 a}$ was achieved as indicate by TLC, the mixture was filtered through celite, and the filtrate was concentrated under vacuum to give the crude aldehyde 17, which was used directly in the Barbier reaction without storage.

To a 50 mL round bottom flask, indium powder $(3.44 \mathrm{~g}, 30.0 \mathrm{mmol}, 3.0$ equiv) was added, followed by EtOH (40 mL), isopropyl bromomethylacrylate $18(6.66 \mathrm{~mL}, 45.0 \mathrm{mmol}, 4.5$ equiv), and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(6.0 \mathrm{~mL})$. The mixture was sonicated for 20 min at $50{ }^{\circ} \mathrm{C}$ to generate the corresponding indium reagent. This so-obtained solution of indium reagent was added into the solution of crude aldehyde (freshly generated via Fukuyama reduction as described before) in EtOH (20 mL) in one portion, and the mixture was stirred at r.t. for 2 h . The reaction was quenched by NaHCO_{3} (sat. aq, 50 mL), then the mixture was diluted with water (200 mL) and extracted with ethyl acetate $(3 \times 200 \mathrm{~mL})$. The water phase was acidified by 1 M HCl solution, and was further extracted with ethyl acetate $(2 \times 150 \mathrm{~mL})$. The organic phase was combined, sequentially washed with $1 \mathrm{M} \mathrm{HCl}(200 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ (sat. aq, 200 mL), and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $3: 1 \mathrm{v} / \mathrm{v}$ as eluent. The mixture of two diastereomers 19syn/anti was obtained as colorless syrup ($4.89 \mathrm{~g}, 82 \%$).

For characterization, 19syn and 19anti were carefully separated by multiple silica gel column chromatography in small scale, and the ratio was calculated to be $3: 1 \sim 5: 1$ (varied from batch
to batch) base on the weight of the purified 19syn and 19anti. The configuration of the newly formed chiral center was not determined at this stage, due to the complex NMR spectra caused by the existence of multiple rotamers (from acetonide and formamide). In the following steps, the TES group and acetonide group on $19 s y n / a n t i$ were removed to simplify the spectra, and the configuration was determined via comparison of the spectra with reported similar structures (vide infra).

For diastereomer 19syn:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, complex mixture of rotamers): $\delta=0.59-0.65(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.23-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.61(\mathrm{~m}, 3 \mathrm{H})$, 2.34-2.45 (m, 2H), 3.89-4.05 (m, 3H), 4.28-4.36(m, 2H), 4.97-5.04 (m, 1H), 5.06-5.18 (m, 2H), $5.62(\mathrm{br}, 1 \mathrm{H}), 6.15-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.54(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.90-8.13(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, complex mixture of rotamers): $\delta=5.9,6.2,7.4,7.5,16.0,22.0$, $22.9,24.3,26.8,27.7,37.7,38.0,54.5,62.2,62.6,62.8,67.2,67.7,69.1,69.2,70.0,72.8,73.3$, $73.6,93.6,127.9,128.2,129.0,129.4,137.8,138.1,138.8,154.0,154.8,162.3,162.6,165.7$, 167.5.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 629.3229, found: 629.3210.

For diastereomer 19anti:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, complex mixture of rotamers): $\delta=0.66(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.97(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.23-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.16$ $(\mathrm{m}, 1 \mathrm{H}), 2.58-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{br}, 1 \mathrm{H}), 3.49(\mathrm{br}, 1 \mathrm{H}), 3.67(\mathrm{br}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.31-4.38 (m, 1H), $4.59(\mathrm{br}, 1 \mathrm{H}), 4.94-5.00(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{br}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 6.12-6.14(\mathrm{~m}$, $1 \mathrm{H}), 6.31-6.54(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.85-7.97(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, complex mixture of rotamers): $\delta=5.9,7.4,15.9,21.99,22.02,23.2$, $27.0,38.0,56.0,65.3,67.2,67.8,69.0,70.3,71.9,73.4,94.2,127.7,128.4,129.0,129.1,129.5$, $138.3,139.3,154.5,161.6,167.6$

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 629.3229, found: 629.3210.

Synthesis of benzyl (4S,5S)-4-[(1S,2S,3R)-2-formylamino-1,3-dihydroxy-5-(isopropyloxy-

 carbonyl)hex-5-en-1-yl]-2,2,5-trimethyl-1,3-oxazolidine-3-carboxylate (21syn):

To an Eppendorf tube, TBAF (1 M solution in THF, $0.88 \mathrm{~mL}, 0.88 \mathrm{mmol}, 2.0$ equiv) and HOAc ($0.061 \mathrm{~mL}, 1.06 \mathrm{mmol}, 2.4$ equiv) were added. The mixture was then added to a sitrred solution of 19syn ($270 \mathrm{mg}, 0.44 \mathrm{mmol}$) in THF (8.0 mL). After being stirred at r.t. for 2 h , the mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified silica gel flash chromatography using DCM : ethyl acetate $1: 1 v / v$ as eluent. The product $21 \boldsymbol{s y n}$ was obtained as colorless syrup ($143 \mathrm{mg}, 65 \%$). In NMR, 21syn was a complex mixture of multiple rotamers, caused by acetonide and formamide.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from complex mixture of multiple rotamers): $\delta=$ $1.22-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.51$ $\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.53-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.87-3.98(\mathrm{~m}$, $2.4 \mathrm{H}), 4.06-4.12(\mathrm{~m}, 1.4 \mathrm{H}), 4.26-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.82(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $0.4 \mathrm{H}), 4.96-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.6 \mathrm{H})$, 7.36-7.40 (m, 5H), 7.95-7.99 (m, 1H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from complex mixture of multiple rotamers): $\delta=$ $15.3,15.5,22.0,23.7,24.8,27.4,27.5,37.4,37.7,52.3,54.4,61.6,63.7,67.4,68.4,69.0,69.1$, $71.1,71.2,71.6,72.5,73.2,73.4,73.6,74.1,93.8,127.6,128.0,128.5,128.7,129.2,129.3,129.4$, $129.5,137.5,138.2,139.0,139.3,153.5,156.0,162.7,166.5,167.5$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 515.2364, found: 515.2368.

Synthesis of benzyl (4S,5S)-4-[(1S,2S,3S)-2-formylamino-1,3-dihydroxy-5-(isopropyloxy-carbonyl)hex-5- en-1-yl]-2,2,5-trimethyl-1,3-oxazolidine-3-carboxylate (21anti):

To an Eppendorf tube, TBAF (1 M solution in THF, $0.36 \mathrm{~mL}, 0.36 \mathrm{mmol}, 2.0$ equiv) and

HOAc ($0.025 \mathrm{~mL}, 0.43 \mathrm{mmol}, 2.4$ equiv) were added. The mixture was then added to a sitrred solution of 19anti (108 mg, 0.18 mmol$)$ in THF $(4.0 \mathrm{~mL})$. After being stirred at r.t. for 2 h , the mixture was diluted with ethyl acetate $(30 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified silica gel flash chromatography using DCM : ethyl acetate $1: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product 21anti was obtained as colorless syrup ($71 \mathrm{mg}, 81 \%$). In NMR, 21anti was a complex mixture of multiple rotamers, caused by acetonide and formamide.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from complex mixture of multiple rotamers): $\delta=$ $1.23-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.52(\mathrm{~m}, 6 \mathrm{H}), 2.25-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.68(\mathrm{~m}$, $1 \mathrm{H}), 3.54-3.57(\mathrm{~m}, 0.6 \mathrm{H}), 3.65-3.96(\mathrm{~m}, 4 \mathrm{H}), 4.12-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.73$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.96-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.17(\mathrm{~m}, 1.2 \mathrm{H}), 5.28(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.65$ $(\mathrm{s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.89(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.85-7.96(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from complex mixture of multiple rotamers): $\delta=$ $15.5,15.8,22.0,23.8,24.9,27.8,37.2,37.6,53.4,55.2,61.2,63.3,67.3,67.8,68.3,69.0,69.1$, $72.6,73.3,74.3,93.8,127.4,127.5,127.9,128.3,128.6,129.0,129.4,129.5,137.5,138.2,139.0$, $139.3,153.7,155.8,162.6,163.2,166.3,167.5$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 515.2364, found: 515.2366.

Synthesis of isopropyl (4R,5S,6S,7S,8S)-7-(benzyloxycarbonylamino)-5-formylamino-2-

 methylene-4,6,8- trihydroxynonanoate (22syn):

To a 25 mL round bottom flask containing 21syn ($89 \mathrm{mg}, 0.18 \mathrm{mmol}$), HOAc (3.0 mL) and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were added. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 20 h . Then the mixture was concentrated under vacuum, and the residue was purified by silica gel flash chromatography using DCM : MeOH $30: 1$ to $15: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product $22 \boldsymbol{s y n}$ was obtained as colorless foam (45 $\mathrm{mg}, 55 \%$. In NMR 22syn was a mixture of rotamers caused by formamide cis/trans conformations.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from major rotamer): $\delta=1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$,
$1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.33\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.46\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=4.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{q}, ~ J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{br}, 1 \mathrm{H}), 3.95-4.03(\mathrm{~m}, 3 \mathrm{H})$, 4.07-4.11 (m, 1H), $4.61(\mathrm{br}, 1 \mathrm{H}), 4.97-5.07(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.14(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 5 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from major rotamer): $\delta=20.0,22.0,37.8,51.6,58.0$, $67.0,69.1,70.0,73.5,75.7,127.9,128.6,128.8,129.4,138.3,138.7,157.4,162.9,167.6$. HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 475.2051$, found: 475.2032.

Synthesis of isopropyl (4S,5S,6S,7S,8S)-7-(benzyloxycarbonylamino)-5-formylamino-2-methylene-4,6,8- trihydroxynonanoate (22anti):

To a 25 mL round bottom flask containing 21anti ($70 \mathrm{mg}, 0.14 \mathrm{mmol}$), HOAc (3.0 mL) and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were added. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 20 h . Then the mixture was concentrated under vacuum, and the residue was purified by silica gel flash chromatography using DCM : MeOH $30: 1$ to $15: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product 22anti was obtained as colorless foam ($37 \mathrm{mg}, 58 \%$). In NMR 22anti was a mixture of rotamers caused by formamide cis/trans conformations.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from major rotamer): $\delta=1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.28\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.64\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=2.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.42-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{br}, 1 \mathrm{H}), 3.77-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{br}, 1 \mathrm{H}), 4.97-5.07(\mathrm{~m}, 3 \mathrm{H}), 5.64-5.67(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 5 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from major rotamer): $\delta=19.9,22.0,37.9,53.1,57.7$, $67.0,69.1,70.4,71.6,71.8,127.7,128.6,128.8,129.4,138.3,139.3,157.4,162.6,167.6$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 475.2051$, found: 475.2032.

Comparison of the NMR spectra of $22 s y n$ and 22 anti with the reported spectra of similar structures:

The configuration of the newly formed chiral center was determined via comparison the NMR spectra of $\mathbf{2 2}$ with Ito's product, which has similar structure. ${ }^{5}$ As shown in the Figure S2, the differences betweeen $\delta \mathrm{H}-3 \mathrm{a}$ and $\delta \mathrm{H}-3 \mathrm{~b}$ are smaller (0.11 ppm in $22 \boldsymbol{s y n}$ and 0.21 ppm in Ito's syn product) in syn diastereomers, while the differences are much larger (0.36 ppm in $\mathbf{2 2 a n t i}$ and 0.33 ppm in Ito's anti product) in anti diastereomers. The coupling constants in 22syn and 22anti also show good accordance with Ito's syn and anti products, respectively.

22syn
$2.33\left(J_{1}=14.0 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}\right)$ $2.46\left(J_{1}=14.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}\right)$ $\Delta \delta=0.11 \mathrm{ppm}$

$2.34\left(J_{1}=14.2 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}\right)$ $2.55\left(J_{1}=14.2 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}\right)$ $\Delta \delta=0.21 \mathrm{ppm}$

 22anti $2.28\left(J_{1}=14.0 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}\right)$ $2.64\left(J_{1}=14.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}\right)$ $\Delta \delta=0.36 \mathrm{ppm}$

$2.31\left(J_{1}=14.2 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}\right)$
$2.64\left(J_{1}=14.2 \mathrm{~Hz}, J_{2}\right.$ too small) $\Delta \delta=0.33 \mathrm{ppm}$

Scheme S5. Comparison of adducts 21 syn/anti with Ito's products.

Part 7. Synthesis of Pse glycosyl donors from chain elongation product.

Benzyl (4S,5S)-4-[(1S,2R)-2-formylamino-5-isopropyloxycarbonyl-3-oxo-1-(triethylsiloxy)

-hex-5-en-1-yl]-2,2,5-trimethyl-1,3-oxazolidine-3-carboxylate (20):

To a stirred solution of $19 \mathbf{s y n}$ and 19anti mixture ($2.56 \mathrm{~g}, 4.21 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (35 mL), Dess-Martin reagent ($2.68 \mathrm{~g}, 6.32 \mathrm{mmol}, 1.5$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was sitrred at $0{ }^{\circ} \mathrm{C}$ for 2 h to achieve full conversion, as indicated by TLC. The mixture was then diluted with DCM (100 mL), filtered through celite, and washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $2: 1 v / v$ as eluent to give $\mathbf{2 0}$ as colorless foam $(2.50 \mathrm{~g}, 98 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from major rotamer): $\delta=0.60(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$, $0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.99(\mathrm{~m}, 1 \mathrm{H})$, $4.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.92-4.98(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{br}, 1 \mathrm{H}), 7.33-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.77$ (br, 1H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, selected peaks from major rotamer): $\delta=5.7,7.3,14.9,15.8,15.9$, $21.87,21.91,44.0,60.9,62.6,64.9,65.1,67.4,69.2,70.2,71.0,73.3,94.3,128.2,129.1,129.4$, $129.5,136.1,162.2,166.5,167.4,207.3$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 627.3072, found: 627.3062.

Benzyl (4S,5S)-4-[(1S,2S,3S)-2-formylamino-1,3-dihydroxy-5-(isopropyloxycarbonyl)hex-5-

 en-1-yl]-2,2,5-trimethyl-1,3-oxazolidine-3-carboxylate (21anti):

To a plastic tube, TBAF (1 M in THF, $8.28 \mathrm{~mL}, 8.28 \mathrm{mmol}, 2.0$ equiv) and HOAc (0.57 mL ,
$9.94 \mathrm{mmol}, 2.4$ equiv) were added. This mixture was then added to the solution of $\mathbf{2 0}(2.50 \mathrm{~g}, 4.14$ mmol, 1.0 equiv) in THF (50 mL). The mixture was stirred at r.t. for 2 h , then around half amount of the solvent was removed under vacuum. The residue was diluted with ethyl acetate (200 mL), and the organic phase was thoroughly washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, water, and brine. The organic phase was dired over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude β-hydroxyketone intermediate was obtained as colorless syrup quantitatively and was directly used in the next step.

The β-hydroxyl group directed diastereoselective reduction was conducted following reported procedure. ${ }^{6}$ To a 250 mL round bottom flask, $\mathrm{NaBH}(\mathrm{OAc})_{3}(4.39 \mathrm{~g}, 20.7 \mathrm{mmol}, 5.0$ equiv), anhydrous $\mathrm{MeCN}(66 \mathrm{~mL})$, and HOAc $(6.6 \mathrm{~mL})$ were added under argon sequentially. The mixture was stirred at $-40^{\circ} \mathrm{C}$, then a solution of freshly prepared β-hydroxyketone in anhydrous $\mathrm{MeCN}(17 \mathrm{~mL})$ was added dropwise. After addition, the mixtrue was stirred at $-40{ }^{\circ} \mathrm{C}$ for 1 h , and was sitrred at $-20^{\circ} \mathrm{C}$ overnight. When full conversion was achieved as indicated by TLC, around $3 / 4$ amount of the solvent was removed under vacuum, and the residue was diluted with ethyl acetate $(200 \mathrm{~mL})$. The organic phase was thoroughly washed with water, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and brine. After being dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum, and the residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $1: 1.5 \mathrm{v} / \mathrm{v}$ as eluent. The product 21 anti was obtained as colorless foam ($1.88 \mathrm{~g}, 92 \%$ over 2 steps $)$. This product show exactly identical NMR spectra to the product obtained from 21anti via deprotection of TES.

Isopropyl (4S,5S,6S,7S,8S)-7-(benzyloxycarbonylamino)-5-formylamino-2-methylene-4,6,8-

trihydroxynonanoate (22anti):

To a 25 mL round bottom flask containing 21 anti ($2.66 \mathrm{~g}, 5.40 \mathrm{mmol}, 1.0$ equiv), HOAc (12 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ were added. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 20 h . Then the mixture was concentrated under vacuum. The residue was purified by silica gel flash chromatography using DCM : MeOH $30: 1 v / v$ as eluent to recover the unconverted material ($1.40 \mathrm{~g}, 53 \%$), and using

DCM : MeOH $15: 1 v / v$ to elute the product ($1.12 \mathrm{~g}, 46 \%$).
The recovered material $(1.40 \mathrm{~g}, 2.85 \mathrm{mmol})$ was redissolved in $\mathrm{HOAc}(9 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(6$ mL). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 20 h . After concentration, the residue was purified as described above. The product 22 anti (combined from two rounds) was obtained as colorless foam $(1.77 \mathrm{~g}, 72 \%)$. This product show exactly identical NMR spectra to the sample synthesized in small scale.

Synthesis of isopropyl (4S,5S,6S,7S,8S)-7-(benzyloxycarbonylamino)-2-methylene-5-(2,2,2-trichloroethoxycarbonylamino)-4,6,8-trihydroxynonanoate (23):

To a 100 mL round bottom flask, a solution of $\mathrm{HCl}(\mathrm{aq})$ in $\mathrm{MeOH}(3 \%, 18 \mathrm{~mL}$, prepared from conc. HCl 1.5 mL and MeOH 16.5 mL) was added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, then $22 a n t i$ $\left(1.77 \mathrm{~g}, 3.92 \mathrm{mmol}, 1.0\right.$ equiv) was added. The mixtrue was stirred at $0{ }^{\circ} \mathrm{C}$ to r.t. for 8 h . The solvent was removed under vacuum without heating, and the residue was co-evaporated with MeCN for two times to remove water and HCl thoroughly. The crude intermediate with formyl group removed was obtained as colorless foam, which was directly used in the next step.

The intermediate was dissolved in MeCN 30 mL , then $\operatorname{TrocCl}(1.62 \mathrm{~mL}, 11.8 \mathrm{mmol}, 3.0$ equiv) was added, followed by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq, $0.5 \mathrm{M}, 15 \mathrm{~mL}$). The mixture was stirred at r.t. for 2 h , then the solvent was removed under vacuum. The residue was dissolved in ethyl acetate $(100 \mathrm{~mL})$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate 1 : 1.5 to $1: 2$ as eluent. The product 23 was obtained as colorless foam $(1.63 \mathrm{~g}, 69 \%$ over 2 steps $)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=1.12(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.235(J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.242(\mathrm{~d}, J=$ 6.4 Hz, 3H), 2.28 (dd, $\left.J_{1}=14.0 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.66\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.51\left(\mathrm{dt}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.64(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.93-4.00(\mathrm{~m}$, $1 \mathrm{H}), 4.18(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.05(\mathrm{~m}$, $1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=19.9,21.97,22.01,37.9,56.5,57.6,67.0,69.1,70.4,71.5,71.8$, $75.1,96.9,127.7,128.7,128.8,129.4,138.3,139.2,155.7,157.4,167.5$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 621.1144, found: 621.1134.

Synthesis of isopropyl 7-(benzyloxycarbonylamino)-2,4,8-tri-O-acetyl-5-(2,2,2-trichloro-ethoxycarbonylamino)-3,5,7,9-tetradeoxy-L-glycero-L-manno-2-nonulopyranosonate (24):

The solution of $23\left(1.17 \mathrm{~g}, 1.95 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{DCM}(30 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. The O_{3} (generated from O_{2} and carried by the flow of O_{2}) was bubbled though this solution for 30 min. The colour of the solution turn purple, which indicated the saturation of O_{3} in DCM . The excess amount of O_{3} was blown off by the flow of O_{2} and the purple colour disappeared. To this solution, $\mathrm{Me}_{2} \mathrm{~S}(0.50 \mathrm{~mL}$, excess) was added to reduce the peroxide intermediate. After 1 h reduction at r.t., the solution was concentrated, and the residue was purified by silica gel flash chromatography using DCM : MeOH 30:1 to $20: 1$ as eluent. The intermediate $\mathbf{S 9}$ was obtained as colorless foam $(1.06 \mathrm{~g}, 91 \%)$, which was the mixture of linear and cyclic tautomers.

To the solution of the intermediate $\mathbf{S} 9(1.06 \mathrm{~g}, 1.76 \mathrm{mmol}, 1.0$ equiv) in pyridine (8 mL), $\mathrm{Ac}_{2} \mathrm{O}(4 \mathrm{~mL})$ and DMAP ($5 \mathrm{mg}, 0.044 \mathrm{mmol}, 0.025$ equiv) were added sequentially. The mixture was stirred at r.t. for 2 h . The mixture was concentrated under vacuum, and the residue was dissolved in ethyl acetate (150 mL). The solution was washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, dired over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by silica gel flash chromatography. The anomer $\mathbf{2 4 \beta}$ was eluted by n-hexane : ethyl acetate $3: 1$ and was obtained as colorless solid $(0.893 \mathrm{~g}, 69 \%)$, while the anomer $\mathbf{2 4 \boldsymbol { \alpha }}$ was eluted by n-hexane : ethyl acetate $2: 1$ and was obtained as colorless solid ($0.254 \mathrm{~g}, 20 \%$). The configurations of both anomers were determined by HMBC spectra (correlation between $\mathrm{H}-3 \mathrm{a}$ and C-1).

For anomer 24 $\mathbf{\alpha}$:
$[\alpha]^{25}{ }_{\mathrm{D}}-73.9^{\circ}(c=0.49, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 1.25-1.28\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$,
1.98 (s, 3H, CH3CO), $1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.05\left(\mathrm{dd}, J_{1}=13.7 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}\right), 2.11(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.28\left(\mathrm{dd}, J_{1}=13.7 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 4.04(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.28$ $(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 4.41-4.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.45\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.88(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.97\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.00\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right)$, 5.07-5.14 (m, 3H, PhCH $\left.{ }_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \& \mathrm{H}-8\right), 5.19-5.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.87(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 7.30-7.37 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=15.1,20.7,20.9,21.1,21.4,21.5,30.8,47.9,52.1,66.9,67.2$, $70.6,71.4,71.7,74.5,95.7,97.3,128.16,128.18,128.5,136.1,155.0,155.7,165.5,167.9,170.2$, 170.4.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 749.1253$, found: 749.1252.
For anomer 24 $\boldsymbol{\beta}$:
$[\alpha]^{25}-52.5^{\circ}(c=0.69, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24-1.29\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-9 \&\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.08(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3} \mathrm{CO}\right), 2.44\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}\right.$, $\left.J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 4.28\left(\mathrm{td}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.39-4.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \&$ $\mathrm{H}-5), 4.43\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.78(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.96(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 5.03\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 5.04-5.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.07-5.10(\mathrm{~m}, 1 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.10\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.14-5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.55(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 7.29-7.37 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=13.8,20.8,20.9,21.1,21.5,21.6,31.6,47.7,52.1,67.1,67.2$, $69.9,70.5,73.4,74.6,95.7,96.5,128.9,128.13,128.5,136.3,154.8,155.8,167.0,168.2,170.1$, 170.3.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 749.1253$, found: 749.1251.

4-Methylphenyl 7-N-benzyloxycarbonyl-4,8-di- O-acetyl-1-isopropyl-5- N -(2,2,2-trichloro-ethoxycarbonyl)- α-thiopseudaminoside (25):

To a 50 mL round bottom flask, $24(623 \mathrm{mg}, 0.856 \mathrm{mmol}, 1.0$ equiv) and 4-toluenethiol (638
$\mathrm{mg}, 5.13 \mathrm{mmol}, 6.0$ equive) were added. Anhydrous DCM (17 mL) was added under argon, and the concentration of $\mathbf{2 4}$ was controlled at 50 mM . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($211 \mu \mathrm{~L}, 1.71 \mathrm{mmol}, 2.0$ equiv) was added dropwise. The mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ to r.t. for 20 h . The reaction was quenched by sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $4: 1$ to $3: 1$ as eluent. The thioglycoside donor 25 was obtained as single α anomer $\left(J_{\mathrm{C} 1-\mathrm{H} 3 \mathrm{a}}=0 \mathrm{~Hz}\right.$, measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) colorless foam (544 $\mathrm{mg}, 80 \%)$.
$[\alpha]^{25}{ }_{\mathrm{D}}-117^{\circ}(c=0.66, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.12\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.08(\mathrm{t}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.36\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 4.30$ $\left(\mathrm{td}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.41-4.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.57(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.83-4.89\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 4.98(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 5.00\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 5.10\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.12(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.14-5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.31\left(\mathrm{dt}, J_{1}=12.4 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.52(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.29-7.38(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=15.5,21.0,21.3,21.5,21.6,32.6,48.4,52.9,67.2,67.6,70.4$, $71.4,71.7,74.6,89.2,95.8,126.5,128.2,128.6,129.9,134.8,136.4,139.7,154.9,155.8,167.4$, 170.4, 170.6.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 813.1389$, found: 813.1385.

4-Methylphenyl

7-N-benzyloxycarbonyl-1-isopropyl-5- N-(2,2,2-trichloroethoxycarbonyl)

- α-thiopseudaminoside (26):

To a stirred solution of $\mathbf{2 5}(487 \mathrm{mg}, 0.615 \mathrm{mmol}, 1.0$ equiv) in acetone (27 mL), a $\mathrm{HCl}(\mathrm{aq})$ solution (prepared from conc. HCl 2.7 mL and water 10.7 mL) was added. The mixture was
refluxed for 1 h , then more water $(8.9 \mathrm{~mL})$ was added. The mixture was further refluxed for 16 h . After being cooled to r.t., the acetone was removed under vacuum, then the water phase was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The organic phase was washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $2: 1$ to 1.5 : 1 as eluent. The diol 26 was obtained as colorless solid ($416 \mathrm{mg}, 95 \%$).
$[\alpha]^{25}{ }_{D}-157^{\circ}(c=0.69, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=1.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 1.07(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.(\mathrm{CH})_{2} \mathrm{CH}\right), 1.22\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.96\left(\mathrm{dd}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}\right)$, $2.23\left(\mathrm{dd}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.57\left(\mathrm{td}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=\right.$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.87-3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 4.16-4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4 \& \mathrm{H}-5), 4.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 4.70\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.76\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.81-4.87(\mathrm{~m}$, $\left.1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.03\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.07\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.63(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.16(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.24-7.40(\mathrm{~m}, 7 \mathrm{H}$, ArH).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=19.5,21.3,21.7,21.9,35.9,52.3,56.7,65.9,67.1,69.9,70.8$, $74.9,75.4,90.0,96.7,126.9,128.8,128.9,129.4,130.7,137.1,138.3,141.3,156.5,157.1,168.4$. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 729.1178, found: 729.1141.

4-Methylphenyl 7-N-benzyloxycarbonyl-5-N,4-O-carbonyl-1-isopropyl-5- N -(2,2,2-trichloro-ethoxycarbonyl)- α-thiopseudaminoside (27):

To a 1.5 mL Eppendorf tube, TBAF (1.0 M solution in THF, $0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}, 4.0$ equiv) and HOAc ($0.011 \mathrm{~mL}, 0.20 \mathrm{mmol}, 2.0$ equiv) were added. This mixture was then added to the solution of $\mathbf{2 6}(71 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) in THF $(0.80 \mathrm{~mL})$. The mixture was stirred at r.t. for 12 h , then was diluted with ethyl acetate $(30 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum to give
intermediate $\mathbf{S 1 0}$ in crude form, which was used in the next step without purification.
To the solution of crude $\mathbf{S 1 0}$ in pyridine (3.0 mL), $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL}$, large excess amount) was added. The mixture was stirred at r.t. overnight. After concentration, the residue was diluted with ethyl acetate (30 mL). The solution was washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then the solvent was removed under vacuum. The residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $1: 1.5$ as eluent. The product 27 was obtained as colorless solid ($52 \mathrm{mg}, 87 \%$ over 2 steps).
$[\alpha]^{25}{ }_{\mathrm{D}}-135^{\circ}(c=0.83, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.80\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.47(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 2.01\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}\right), 2.11(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.17\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 3.76\left(\mathrm{dd}, J_{1}=\right.$ $\left.10.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.80(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.11\left(\mathrm{td}, J_{1}=9.5 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-7), 4.65-4.70\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 4.86-4.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.11(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 5.15\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.32\left(\mathrm{qd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 5.50(\mathrm{~d}, J$ $=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.34-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.45$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=15.9,21.0,21.3,21.4,21.5,32.9,51.3,53.5,67.8,70.0,70.4$, $71.2,71.8,89.2,126.4,128.5,128.6,128.8,129.7,135.7,136.0,140.0,157.2,157.3,167.8,171.4$. HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 623.2034, found: 623.2015.

4-Methylphenyl

7- N -benzyloxycarbonyl-4,8-di- O -chloroacetyl-1-isopropyl-5- N -(2,2,2-trichloroethoxycarbonyl)- α-thiopseudaminoside (28):

To a stirred solution of $\mathbf{2 6}(274 \mathrm{mg}, 0.388 \mathrm{mmol}, 1.0$ equiv $)$ in anhydrous $\mathrm{DCM}(15 \mathrm{~mL})$, N-methylmorpholine ($213 \mu \mathrm{~L}, 1.94 \mathrm{mmol}, 5.0$ equiv) and chloroacetic anhydride ($332 \mathrm{mg}, 1.94$ mmol, 5.0 equiv) were added sequentially. To this solution, DMAP ($2.4 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.05$ equiv) was added. The mixture was stirred at r.t. for 2 h . After full conversion of 26, the mixture
was sequentially washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $4: 1$ as eluent. The product 28 was obtained as colorless solid ($300 \mathrm{mg}, 90 \%$).
$[\alpha]^{25}-94.9^{\circ}(c=0.94, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.166\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.172(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 2.13(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $2.39\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 3.93-4.04\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{ClCH}_{2}\right), 4.35\left(\mathrm{td}, J_{1}=10.0\right.$ $\left.\mathrm{Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.43-4.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.45\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.52(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.87-4.92\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 4.95\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.98(\mathrm{~d}$, $\left.\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.01(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.09(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right)$, $5.21-5.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.40\left(\mathrm{dt}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.56(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NH}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.30-7.38(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=14.8,21.3,21.60,21.63,32.2,40.8,41.1,48.2,52.6,67.4,69.7$, $70.7,71.4,73.0,74.8,88.8,95.6,126.3,128.2,128.4,128.7,130.1,134.5,136.3,139.9,155.1$, 155.9, 166.77, 166.84, 167.3.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 881.0609, found: 881.0557.

Part 8. Synthesis of xyloside building block, fucosamine building block, and disaccharide acceptor.

2,3,4-Tri- O-acetyl- α / β-d-xylopyranosyl trichloroacetimidate (S12):

To a stirred solution of ethylenediamine ($2.41 \mathrm{~mL}, 36.0 \mathrm{mmol}, 1.2$ equiv) in THF (200 mL), acetic acid ($2.40 \mathrm{~mL}, 42.0 \mathrm{mmol}, 1.4$ equiv) was added. A white slurry was formed immediately. To this mixture, a solution of $\mathbf{3 6}(9.55 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv $)$ in THF (100 mL) was added in one portion. The mixture was stirred at r.t. for 16 h , till the full conversion was achieved (monitored by TLC). The THF was removed under vacuum, and the residue was diluted with ethyl acetate $(300 \mathrm{~mL})$, washed thoroughly with water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the product 2,3,4-tri- O-acetyl- α / β-D-xylopyranose $\mathbf{S 1 1}$ was obtained as white solid $(5.77 \mathrm{~g}, 70 \%)$. The product was pure enough and used in the next step without further purification.

To a stirred solution of $\mathbf{S 1 1}(2.76 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (15 mL), trichloroacetonitrile ($3.00 \mathrm{~mL}, 30.0 \mathrm{mmol}, 3.0$ equiv) was added, followed by $\mathrm{DBU}(0.15 \mathrm{~mL}$, $1.00 \mathrm{mmol}, 0.10$ equiv). The colour of the mixture became dark brown gradually. After being stirred at r.t. for 12 h , the solvent was removed under vacuum, and the residue was purified by silica gel column chromatography (buffered with $\mathrm{Et}_{3} \mathrm{~N}$) using n-hexane : ethyl acetate $4: 1$ to $3: 1$ v / v as eluent. The product $\mathbf{S 1 2}$ was obtained as white solid ($3.31 \mathrm{~g}, 79 \%$). ${ }^{7}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \alpha$ anomer): $\delta=2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3} \mathrm{CO}\right), 2.07(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.82(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 3.99\left(\mathrm{dd}, J_{1}=11.2 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}\right), 5.07$ $\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.07-5.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.57(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, $6.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 8.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, α anomer): $\delta=20.4,20.6,20.7,60.7,68.5,69.3,69.9,90.7,93.1$, $160.8,169.78,169.83,169.85$.

4-Methoxyphenyl 2,3,4-tri- O-acetyl- β-d-xylopyranoside (37):

To a flame dried Schlenk flask, molecular sieves $4 \AA$ (3.00 g , flame dried), 4-methoxyphenol
$\mathbf{S 1 3}(1.08 \mathrm{~g}, 8.66 \mathrm{mmol}, 1.1$ equiv), anhydrous DCM (30 mL) , and $\mathbf{S 1 2}(3.31 \mathrm{~g}, 7.87 \mathrm{mmol}, 1.0$ equiv) were added sequentially. The mixture was stirred at r.t. for 30 min , then was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left(97 \mu \mathrm{~L}, 0.79 \mathrm{mmol}, 0.10\right.$ equiv) was added, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to r.t. for 8 h . The reaction was quenched by $\mathrm{Et}_{3} \mathrm{~N}$ and filtered through celite. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $2: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product $\mathbf{3 7}$ was obtained as white solid $(2.21 \mathrm{~g}, 73 \%) .{ }^{8}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}$), $3.47\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.21\left(\mathrm{dd}, J_{1}=12.0\right.$ $\left.\mathrm{Hz}, J_{2}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}\right), 4.99-5.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.15\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.3 \mathrm{~Hz}, J_{2}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=20.9,55.8,62.1,68.7,70.5,71.1,99.9,114.7,118.6,150.7$, 155.7, 169.5, 170.0, 170.1.

4-Methoxyphenyl 2,3-O-isopropylidene- β-d-xylopyranoside (38):

To a stirred solution of $37(8.44 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(50 \mathrm{~mL})$, catalytic amount of $\mathrm{MeONa}(1.0 \mathrm{~mL}, 25 \%$ solution in MeOH$)$ was added. The mixture was stirred at r.t. for 2 h , and neutralized by DOWEX 50W X8(H) cationic exchange resin. The resin was removed via filtration, and the solvent was removed under vacuum. The product $\mathbf{S 1 4}$ was obtained as white solid, which was directly used in the next step without further purification.

The S14 was dissolved in anhydrous DMF, and 2-methoxypropene ($7.20 \mathrm{~mL}, 75.0 \mathrm{mmol}, 3.4$ equiv) was added. The mixture was heated to $50{ }^{\circ} \mathrm{C}$, then TFA ($17 \mu \mathrm{~L}, 0.22 \mathrm{mmol}, 0.01$ equiv) was added. After being stirred at $50{ }^{\circ} \mathrm{C}$ for 12 h , another batch of 2-methoxypropene ($3.60 \mathrm{~mL}, 37.5$ mmol, 1.7 equiv) and TFA ($8.5 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 0.005$ equiv) were added. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for another 20 h , then was quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was diluted with ethyl acetate $(200 \mathrm{~mL})$, thoroughly washed with water and brine, and concentrated under vacuum. The residue (mainly contains over protected product) was redissolved in $\mathrm{MeOH}(50 \mathrm{~mL}$) and cooled to
$0^{\circ} \mathrm{C}$, then PPTS (200 mg) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min (full conversion of over protected product to product as indicated by TLC), and quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography (buffered with $\mathrm{Et}_{3} \mathrm{~N}$) using n-hexane : ethyl acetate $2: 1$ to $1.5: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product 38 was obtained as white solid $(4.64 \mathrm{~g}, 71 \%) .{ }^{9}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.80(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.37$ (dd, $\left.J_{1}=11.4 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}\right), 3.58-3.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-3), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right)$, 4.09-4.16 (m, 2H, H-4 \& H-5e), 5.17 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 6.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.03$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=26.7,26.9,55.7,67.6,69.3,76.4,81.0,100.7,112.1,114.6$, $118.6,150.5,155.5$.

4-Methoxyphenyl 4-O-(4-methoxybenzyl)- β-d-xylopyranoside (S15):

To a stirred solution of $\mathbf{3 8}(4.47 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.0$ equiv $)$ in anhydrous DMF (25 mL) , NaH $\left(60 \%\right.$, dispersed on mineral oil, $1.20 \mathrm{~g}, 30.0 \mathrm{mmol}, 2.0$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. After 15 min , 4-methoxybenzyl chloride ($\mathrm{PMBCl}, 3.05 \mathrm{~mL}, 22.5 \mathrm{mmol}, 1.5$ equiv) was added dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to r.t. overnight, then was quenched by water. The mixture was extracted with ethyl acetate $(200 \mathrm{~mL})$ and washed thoroughly with water and brine. After being dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum, and the residue was redissolved in the mixture of $\mathrm{MeOH}(30 \mathrm{~mL})$ and $\mathrm{DCM}(35 \mathrm{~mL})$. To this solution, camphor-10-sulfonic acid (CSA, $348 \mathrm{mg}, 1.50 \mathrm{mmol}, 0.10$ equiv) was added. After being stirred at r.t. for 30 min , the reaction was quenched by $\mathrm{Et}_{3} \mathrm{~N}$, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using n-hexane : ethyl acetate :

DCM 1:1.3:1v/vas eluent. The product $\mathbf{S 1 5}$ was obtained as white solid ($5.05 \mathrm{~g}, 89 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-85.6^{\circ}(c=1.2, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.26(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 3.42\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=7.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.48\left(\mathrm{dd}, J_{1}=9.8 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.54(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.73(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.92\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}\right), 4.57(\mathrm{~d}, J=11.3$
$\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 4.68\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 4.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, $6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.30$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=55.6,56.0,64.8,73.8,74.8,77.0,78.6,103.9,114.7,115.4$, $119.3,130.7,131.8,152.9,156.7,160.9$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 399.1414$, found: 399.1415.

4-Methoxyphenyl 2,3-di-O-benzyl-4-O-(4-methoxybenzyl)- β-d-xylopyranoside (S16):

To a stirred solution of $\mathbf{S 1 5}$ ($4.86 \mathrm{~g}, 12.9 \mathrm{mmol}, 1.0$ equiv) in anhydrous DMF (25 mL), NaH (60%, dispersed on mineral oil, $1.56 \mathrm{~g}, 38.7 \mathrm{mmol}, 3.0$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. After 15 min , $\mathrm{BnBr}\left(4.63 \mathrm{~mL}, 38.7 \mathrm{mmol}, 3.0\right.$ equiv) was added dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ to r.t. overnight, then was quenched by water. The mixture was extracted with ethyl acetate (200 mL) and washed thoroughly with water and brine. After being dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using DCM : ethyl acetate $30: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product $\mathbf{S 1 6}$ was obtained as white solid ($6.77 \mathrm{~g}, 94 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-3.9^{\circ}(c=0.53, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.26\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}\right), 3.60-3.70(\mathrm{~m}, 3 \mathrm{H}$, H-2, H-3 \& H-4), $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.92\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-5e), $4.56\left(\mathrm{~d}, ~ J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.67\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.83(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 4.99(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 6.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.28-7.36(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=55.4,55.8,64.1,73.2,75.3,75.8,77.5,81.8,83.8,103.4,114.0$, 114.7, 118.6, 127.8, 127.9, 128.1, 128.3, 128.5, 129.7, 130.3, 138.5, 138.8, 151.4, 155.5, 159.5.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 579.2353, found: 579.2353.

To a stirred solution of $\mathbf{S 1 6}(3.34 \mathrm{~g}, 6.00 \mathrm{mmol}, 1.0$ equiv) in DCM (150 mL), TFA (15 mL) was added in one portion. The colour of the mixture turned wine red immediately. After being stirred at r.t. for $15 \mathrm{~min}, \mathrm{NaHCO}_{3}$ solid $(25.0 \mathrm{~g})$ was added to neutralize the TFA, and the mixture was stirred until the red colour disappeared. Water was added, and the organic phase was separated. After being dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $4: 1$ to $3: 1 v / v$ as eluent. The product 39 was obtained as white solid ($2.32 \mathrm{~g}, 88 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-32.0^{\circ}(c=1.2, \mathrm{DCM})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.62(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.32\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}\right)$, $3.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.67\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.71-3.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.03\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}\right), 4.68(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.76\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.91\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.95(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 6.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.29-7.36 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=55.7,64.6,69.0,74.5,74.6,80.0,82.0,102.3,114.7,118.4$, $127.95,128.00,128.2,128.6,128.7,138.0,138.4,151.2,155.4$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 459.1778, found: 459.1778.

4-Methoxyphenyl 2,3-di-O-benzyl-4-O-pivaloyl- $\boldsymbol{\beta}$-d-xylopyranoside (S17):

To a stirred solution of $39(2.07 \mathrm{~g}, 4.75 \mathrm{mmol}, 1.0$ equiv) in pyridine (18 mL), pivaloyl chloride ($\mathrm{PivCl}, 1.17 \mathrm{~mL}, 9.50 \mathrm{mmol}, 2.0$ equiv) was added, followed by DMAP ($29 \mathrm{mg}, 0.24$ mmol, 0.05 equiv). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h , then the solvent was removed under vacuum. The residue was diluted with ethyl acetate $(150 \mathrm{~mL})$ and washed thoroughly with 1 M $\mathrm{HCl}(\mathrm{aq})$ and brine. After being dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration, the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $5: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product $\mathbf{S} 17$ was obtained as colorless syrup ($2.34 \mathrm{~g}, 95 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-17.1^{\circ}(c=1.1, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 3.29\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-5a), 3.70-3.78 (m, 2H, H-2 \& H-3), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.13\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-5 \mathrm{e}), 4.73\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.78\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.83(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.964(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.965\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.99-5.03(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4), 6.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.25-7.34(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=27.2,38.8,55.7,62.7,71.4,74.96,75.04,80.8,81.0,103.0$, $114.7,118.5,127.6,127.7,127.8,128.2,128.41,128.44,138.2,138.3,151.2,155.5,177.7$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 543.2353, found: 543.2353.

2,3-Di-O-benzyl-4-O-pivaloyl- α / β-d-xylopyranose (S18):

To a stirred solution of $\mathbf{S 1 7}(1.66 \mathrm{~g}, 3.20 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeCN}(40 \mathrm{~mL})$ and water (10 mL), ammonium cerium(IV) nitrate (CAN, $2.63 \mathrm{~g}, 4.80 \mathrm{mmol}, 1.5$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then the other batch of ammonium cerium(IV) nitrate $(0.88$ $\mathrm{g}, 1.60 \mathrm{mmol}, 0.5$ equiv) was added. After being stirred at $0{ }^{\circ} \mathrm{C}$ for another 30 min , the reaction was quenched by $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq). The mixture was extracted with ethyl acetate (150 mL), washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate 3 : $1 \mathrm{v} / \mathrm{v}$ as eluent. The product $\mathbf{S} 18$ was obtained as white solid ($927 \mathrm{mg}, 70 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}+5.4^{\circ}(c=1.0, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}, mixture of anomers): $\delta=1.19\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \alpha \&\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \beta\right), 3.15$ $(\mathrm{d}, J=3.8 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{OH} \alpha), 3.31\left(\mathrm{dd}, J_{1}=11.8 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{H}-5 \mathrm{e} \beta\right), 3.40\left(\mathrm{dd}, J_{1}=7.8\right.$ $\left.\mathrm{Hz}, J_{2}=6.4 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{H}-2 \beta\right), 3.54\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{H}-2 \alpha\right), 3.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $0.4 \mathrm{H}, \mathrm{OH} \beta), 3.70-3.81(\mathrm{~m}, 1.6 \mathrm{H}, \mathrm{H}-5 \mathrm{a} \alpha, \mathrm{H}-5 \mathrm{e} \alpha, \mathrm{H}-3 \beta), 3.95(\mathrm{t}, J=8.4 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{H}-3 \alpha), 4.11(\mathrm{dd}$, $\left.J_{1}=11.8 \mathrm{~Hz}, J_{2}=4.9 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{H}-5 \mathrm{a} \beta\right), 4.62\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{PhCH}_{2} \alpha\right), 4.69-4.83(\mathrm{~m}, 3.8 \mathrm{H}$, H-1 $\left.\beta, \mathrm{PhCH}_{2} \alpha \& \mathrm{PhCH}_{2} \beta\right), 4.84-4.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \alpha \& \mathrm{H}-4 \beta), 5.12(\mathrm{t}, J=3.5 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{H}-1 \alpha)$, 7.25-7.33 (m, 10H, ArH $\alpha \& A r H \beta)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of anomers) : $\delta=27.19,27,21,38.9,59.4,61.9,70.6,70.8$,
$73.5,74.5,74.9,75.1,77.9,79.0,79.9,81.0,91.5,97.1,127.7,127.8,127.9,128.1,128.5,128.6$, 137.7, 138.0. 138.2, 138.3, 177.9.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 437.1935$, found: 437.1933.

2-Azido-2-deoxy-3,4-di- O-acetyl- $\boldsymbol{\alpha} / \boldsymbol{\beta}$-d-fucopyranose (42):

To a stirred solution of 41 ($1.46 \mathrm{~g}, 6.80 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{MeCN}(35 \mathrm{~mL}), \mathrm{NaN}_{3}$ ($663 \mathrm{mg}, 10.2 \mathrm{mmol}, 1.5$ equiv) was added. The mixture was cooled to $-20^{\circ} \mathrm{C}$, then ammonium cerium(IV) nitrate (CAN, $11.2 \mathrm{~g}, 20.4 \mathrm{mmol}, 3.0$ equiv) was added. The mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 5 h , then was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and washed with water. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The residue was redissolved in $\mathrm{MeCN}(13 \mathrm{~mL})$, then p-thiocresol ($1.27 \mathrm{~g}, 10.2 \mathrm{mmol}, 1.5$ equiv) and DIPEA (2.37 $\mathrm{mL}, 13.6 \mathrm{mmol}, 2.0$ equiv) were added sequentially. The mixture was stirred at r.t. for 10 min , then was diluted with $\mathrm{DCM}(150 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$. After being dried over danhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $3: 1$ to $2: 1 v / v$ as eluent. The product 42 was obtained as yellow syrup ($1.06 \mathrm{~g}, 57 \%$). ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of anomers): $\delta=1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6 \beta), 1.22(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6 \alpha$), $2.068\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \alpha\right.$ or $\mathrm{CH}_{3} \mathrm{CO} \beta$), 2.072 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \alpha$ or $\mathrm{CH}_{3} \mathrm{CO} \beta$), 2.18 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \alpha$ or $\mathrm{CH} H_{3} \mathrm{CO} \beta$), $2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \alpha\right.$ or $\left.\mathrm{CH} H_{3} \mathrm{CO} \beta\right), 3.65\left(\mathrm{dd}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=7.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2 \beta), 3.73\left(\mathrm{dd}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \alpha\right), 3.83(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \beta)$, $4.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} \alpha), 4.42(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \alpha), 4.68\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1 \beta), 4.75(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} \beta), 4.82\left(\mathrm{dd}, J_{1}=10.9 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \beta\right), 5.19(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \beta), 5.30(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \alpha), 5.37-5.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1 \alpha \& \mathrm{H}-3 \alpha)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of anomers): $\delta=16.0,16.2,20.66,20.71,20.8,58.1,62.0$, 64.7, 68.9, 69.4, 69.7, 70.9, 71.7, 92.3, 96.2, 170.3, 170.8.

To a stirred solution of $42(825 \mathrm{mg}, 3.02 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (10 mL), DBU ($45 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 0.10$ equiv) was added. The mixture was sitrred at r.t. overnight, then the solvent was removed under vacuum. The residue was purified by silica gel column chromatography (buffered with $\mathrm{Et}_{3} \mathrm{~N}$) using n-hexane : ethyl acetate $5: 1 v / v$ as eluent. The major α anomer S19 was obtained as white solid ($919 \mathrm{mg}, 73 \%$). The α-configuration of the C-1 was confirmed by ${ }^{1} \mathrm{H}$ \& ${ }^{13} \mathrm{C}$ NMR. The unstable intermediate was directly used in the next step without storage.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.20(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C} H_{3} \mathrm{CO}\right), 4.02\left(\mathrm{dd}, J_{1}=10.7 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.35(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.37-5.41$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3 \& \mathrm{H}-4), 6.46(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 8.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=16.1,20.7,20.8,57.1,67.7,69.2,70.1,90.9,85.0,160.9,169.9$, 170.4.

To a flame dried Schlenk tube, $4 \AA$ molecular sieves (2.00 g , flame dried) was added, followed by $\mathbf{S 1 9}$ ($880 \mathrm{mg}, 2.11 \mathrm{mmol}, 1.0$ equiv), anhydrous DCM (20 mL), and benzyl alcohol ($263 \mu \mathrm{~L}, 2.53 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred at r.t. for 30 min , then was cooled to -78 ${ }^{\circ}{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(26 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 0.10$ equiv $)$ was added, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched by $\mathrm{Et}_{3} \mathrm{~N}$, and the mixture was filtered. After concentration, the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $5: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product $\mathbf{S 2 0}$ was obtained as colourless oil ($560 \mathrm{mg}, 73 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-20.8^{\circ}(c=1.2, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.17(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 3.70-3.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-5), 4.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.70(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\left.\mathrm{PhCH}_{2}\right), 4.76\left(\mathrm{dd}, J_{1}=10.9 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.97(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right), 5.18(\mathrm{dd}$, $\left.J_{1}=3.3 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 7.30-7.41(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=16.2,20.8,60.9,69.3,69.7,71.2,71.6,100.6,128.1,128.2$, 128.6, 136.6, 170.0, 170.6.
$\operatorname{IR}(f i l m) v=3039,2991,2942,2878,2112\left(\mathrm{~N}_{3}\right), 1739,1645,1512,1456,1366,1239,1219,1169$,

1071, 1019, 930, 904, 735, $698 \mathrm{~cm}^{-1}$.
HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 386.1323$, found: 386.1252 .

Benzyl 2-azido-2-deoxy- β-d-fucopyranoside (43):

To a stirred solution of $\mathbf{S 2 0}(560 \mathrm{mg}, 1.54 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(10 \mathrm{~mL})$, MeONa (100 $\mu \mathrm{L}, 25 \%$ solution in MeOH) was added. The mixture was stirred at r.t. for 2 h , and the reaction was neutralized by DOWEX 50W X8(H) cationic exchange resin. The mixture was filter, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using DCM : ethyl acetate $3: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product 43 was obtained as white solid (401 mg, 93\%).
$[\alpha]^{25}{ }_{\mathrm{D}}+37.3^{\circ}(c=1.0, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 2.89(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.18(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{OH}), 3.40\left(\mathrm{dd}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.52(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.57\left(\mathrm{dd}, J_{1}=\right.$ $\left.10.1 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.66(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.66$ (d, $\left.J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.92\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 7.28-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.4,64.1,70.7,71.00,71.04,72.7,100.8,128.1,128.6,136.8$. IR (film) $v=3037,2983,2939,2919,2862,2109\left(N_{3}\right), 1653,1539,1498,1456,1367,1361,1312$, 1277, 1069, 996, 906, 735, $696 \mathrm{~cm}^{-1}$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 302.1111, found: 302.1132.

Benzyl 2,3-di- O-benzyl-4-O-pivaloyl- $\boldsymbol{\beta}$-d-xylopyranosyl-(1 \rightarrow 3)-2-azido-2-deoxy- $\boldsymbol{\beta}$-d-fuco-

 pyranoside (45):

To a stirred solution of $\mathbf{S 1 8}(888 \mathrm{mg}, 2.14 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (16 mL), anhydrous DMF ($50 \mu \mathrm{~L}, 0.64 \mathrm{mmol}, 0.30$ equiv) was added under argon, followed by $(\mathrm{COCl})_{2}$
($478 \mu \mathrm{~L}, 5.57 \mathrm{mmol}$, 2.6 equiv). After being stirred at r.t. for 2 h , the mixture was directly loaded onto a short silica gel column and eluted rapidly by n-hexane : ethyl acetate $10: 1$. The unstable glycosyl chloride donor 40 was obtained as colorless oil ($602 \mathrm{mg}, 65 \%$) and was used directly in the next step without storage. The α-configuration of the C-1 position was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.19\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 3.71\left(\mathrm{dd}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2), 3.76(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 3.93\left(\mathrm{dd}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}\right), 4.00(\mathrm{t}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.69\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.732\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.734(\mathrm{~d}$, $\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.88\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.92\left(\mathrm{ddd}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}\right.$, $\left.J_{3}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.00(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 7.28-7.36(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=27.3,39.0,61.3,70.2,73.3,75.8,78.3,79.6,93.8,127.8,127.9$, $128.2,128.3,128.5,128.7,137.4,138.3,177.7$.

To a flame dried Schlenk flask, $\mathrm{Ag}_{2} \mathrm{O}(483 \mathrm{mg}, 2.09 \mathrm{mmol}, 1.5$ equiv, dried under vacuum at $80^{\circ} \mathrm{C}$ for 3 h before use) was added under argon, followed by 43 ($388 \mathrm{mg}, 1.39 \mathrm{mmol}, 1.0$ equiv), 2-aminoethyl diphenylborinate $44(32 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.10$ equiv), and anhydrous $\mathrm{MeCN}(10 \mathrm{~mL})$. To this stirred mixture, a solution of freshly prepared $40(602 \mathrm{mg}, 1.39 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{MeCN}(3.9 \mathrm{~mL})$ was added in one portion. The concentration of donor and acceptor was 0.10 M . After being stirred at r.t. for 16 h , the mixture was filtered through celite, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $3: 1 v / v$ as eluent. The product 45 was obtained as white solid ($776 \mathrm{mg}, 83 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-5.6^{\circ}(c=0.81, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 2.53(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 3.17\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}\right.$ '), $3.42\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $3.51-3.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 ' \& \mathrm{H}-5), 3.67(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 '), 3.71\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2), 3.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.04\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}\right.$ '), $4.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 4.63\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.67-4.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\left.\mathrm{PhCH}_{2}\right), 4.81\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.81-4.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)^{\prime}\right), 4.96(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.98\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 7.26-7.40(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=16.5,27.2,38.9,62.5,62.7,70.2,70.4,70.7,71.1,75.0,75.2$,
80.7, 80.89, 80.94, 100.8, 104.4, 127.7, 127.8, 127.9, 128.0, 128.1, 128.3, 128.47, 128.52, 137.0, 138.18, 138.23, 177.7.

IR (film) $v=3066,3033,2977,2873,2113\left(\mathrm{~N}_{3}\right), 1733,1650,1454,1363,1279,1143,1070,735$, $698 \mathrm{~cm}^{-1}$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$698.3048, found: 698.3048.

Benzyl 2,3-di-O-benzyl-4-O-pivaloyl- β-d-xylopyranosyl-(1 \rightarrow 3)-2-azido-2-deoxy-4-O-benzyl-β-d-fucopyranoside (S21):

To a flame dried Schlenk flask, $4 \AA$ molecular sieves (1.60 g , flame dried), $\mathbf{4 5}$ ($776 \mathrm{mg}, 1.15$ mmol, 1.0 equiv), anhydrous DMF (16 mL) were, and benzyl bromide ($546 \mathrm{uL}, 4.60 \mathrm{mmol}, 4.0$ equiv) were added under argon. After being stirred at r.t. for 0.5 h , the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and the first portion of $\mathrm{NaH}(60 \%$, dispersed on mineral oil, $92 \mathrm{mg}, 2.30 \mathrm{mmol}, 2.0$ equiv $)$ was added. After being stirred at $0^{\circ} \mathrm{C}$ for 1 h , the second portion of $\mathrm{NaH}(92 \mathrm{mg}, 2.30 \mathrm{mmol}, 2.0$ equiv) was added. After being stirred for another 3 h , the third portion of $\mathrm{NaH}(46 \mathrm{mg}, 1.15 \mathrm{mmol}, 1.0$ equiv) was added. After another 1 h stirring, the reaction was quenched by HOAc and filtered through celite. The filtrate was diluted by ethyl acetate $(150 \mathrm{~mL})$ and washed thoroughly with water and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $5: 1$ to $4: 1 v / v$ as eluent. The product $\mathbf{S 2 1}$ was obtained as colourless syrup (780 mg, 89\%).
$[\alpha]^{25}{ }_{\mathrm{D}}+3.4^{\circ}(c=0.87, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 3.14\left(\mathrm{dd}, J_{1}\right.$ $\left.=11.2 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.43-3.50\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3 \& \mathrm{H}-5\right), 3.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), $3.68\left(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.87\left(\mathrm{dd}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.00\left(\mathrm{dd}, J_{1}=\right.$ $\left.11.2 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 4.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.64-4.71\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1^{\prime} \& \mathrm{PhCH}_{2}\right)$, $4.82\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.87-4.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4 \mathrm{C}^{\prime} \& \mathrm{PhCH}_{2}\right), 7.24-7.40(\mathrm{~m}, 20 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=16.7,27.3,38.9,62.6,63.5,70.7,70.8,71.5,75.0,75.1,75.4$,
$78.1,79.8,81.1,81.6,101.1,105.1,127.67,127.71,127.74,127.8,127.9,128.1,128.25,128.31$, $128.45,128.50,137.2,138.2,138.4,138.5,177.9$.

IR (film) $v=3065,3032,2977,2935,2112\left(\mathrm{~N}_{3}\right), 1733,1648,1454,1363,1280,1144,1070,736$, $698 \mathrm{~cm}^{-1}$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{44} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 788.3518$, found: 788.3495.

Benzyl 2,3-di- O-benzyl- β-d-xylopyranosyl-($1 \rightarrow 3$)-2-azido-2-deoxy-4- O-benzyl- β-d-fucopyranoside (46):

To a stirred solution of $\mathbf{S 2 1}$ ($733 \mathrm{mg}, 0.96 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(20 \mathrm{~mL})$ and DCM (5 $\mathrm{mL}), \mathrm{MeONa}(0.50 \mathrm{~mL}, 25 \%$ solution in MeOH$)$ was added. The mixture was stirred at r.t. for 4 h , then was neutralized by DOWEX 50W X8(H) cationic exchange resin. The mixture was filter, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $3: 1$ to $2: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product 46 was obtained as white solid ($639 \mathrm{mg}, 98 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-18.4^{\circ}(c=1.3, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 2.44(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.26$ (dd, $\left.J_{1}=11.5 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.43-3.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-3 \& \mathrm{H}-5\right), 3.60(\mathrm{~d}, J=$ $\left.2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.65-3.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)^{\prime}\right), 3.87\left(\mathrm{dd}, J_{1}=10.6 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.99(\mathrm{dd}$, $\left.J_{1}=11.5 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 4.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.61(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.64-4.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $4.87(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH_{2}), 4.92-4.96 (m, 3H, PhCH_{2}), 7.23-7.39 (m, 20H, ArH).
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=16.6,63.4,64.3,69.1,70.57,70.61,74.2,74.6,74.7,77.9,79.8$, $80.0,81.7,100.9,104.3,127.5,127.79,127.82,128.0,128.1,128.3,128.4,128.5,128.6,137.0$, $137.8,138.3,138.5$.

IR (film) $v=3037,2938,2112\left(\mathrm{~N}_{3}\right), 1645,1498,1454,1360,1209,1161,1067,984,733,697$ cm^{-1}.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 704.2942, found: 704.2950.

Part 9. Glycosylation research.

General procedure of glycosylation of Pse donors:

Method A: To a Schlenk tube, flame-dried AW-300 molecular sieves ($100 \mathrm{mg} / \mathrm{mL}$ solvent) was added under argon, followed by Pse donor (1.0 equiv), acceptor (2.0 equiv), and freshly distilled anhydrous $\mathrm{DCM}(2.0 \mathrm{~mL} / 0.10 \mathrm{mmol}$ donor, 50 mM$)$. After being stirred at r.t. for 1 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$, and AgOTf (3.0 equiv) was added. Finally, TolSCl (3.0 equiv) was added dropwise, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was filtered through celite, washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography to give the product. The α and β anomers (if formed) were separated and characterized respectively by NMR and HR-MS.

Method B: To a Schlenk tube, flame-dried AW-300 molecular sieves ($100 \mathrm{mg} / \mathrm{mL}$ solvent) was added under argon, followed by Pse donor (1.0 equiv), acceptor (2.0 equiv), and freshly distilled anhydrous DCM-MeCN (3:1 $\mathrm{v} / \mathrm{v}, 2.0 \mathrm{~mL} / 0.10 \mathrm{mmol}$ donor, 50 mM$)$. After being stirred at r.t. for 1 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$, and AgOTf (3.0 equiv) was added. Finally, TolSCl (3.0 equiv) was added dropwise, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was filtered through celite, washed with sat. NaHCO_{3} (aq), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography to give the product. The α and β anomers (if formed) were separated and characterized respectively by NMR and HR-MS.

Benzyl 7-N-benzyloxycarbonyl-4,8-di- O-acetyl-1-isopropyl-5-N-(2,2,2-trichloroethoxy-carbonyl)- α-pseudaminosyl-(2 $\rightarrow 4$)-2,3-di- O-benzyl- β-d-xylopyranoside (48):

Following Method A, the product was synthesized from donor 25 and xyloside acceptor 47 in 0.050 mmol scale. The product was purified by silica gel column chromatography using
n-hexane : ethyl acetate $4: 1 \mathrm{v} / \mathrm{v}$ as eluent. Only the α anomer 48 was obtained $\left(J_{\mathrm{C} 1-\mathrm{H} 3 \mathrm{a}}=0 \mathrm{~Hz}\right.$, measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless solid ($36 \mathrm{mg}, 67 \%$).

Following Method B, the product was synthesized from donor 25 and xyloside acceptor 47 in 0.050 mmol scale. The product was purified by silica gel column chromatography using n-hexane : ethyl acetate $4: 1 v / v$ as eluent. Only the α anomer 48 was obtained as colorless solid ($19 \mathrm{mg}, 35 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-61.1^{\circ}(c=0.45, \mathrm{DCM})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.97\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9{ }^{\prime}\right), 1.33(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.34\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.76(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}$ '), $1.95(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}$), $2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.27\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}^{\prime}\right), 2.89(\mathrm{~d}, \mathrm{~J}=10.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}$), 3.13 (dd, $\left.J_{1}=13.0 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}\right), 3.45-3.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-3)$, $3.78-3.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4 \& \mathrm{H}-5 \mathrm{e}), 3.87-3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5\right.$ '), $4.02\left(\mathrm{td}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-7'), 4.05-4.07 (m, 1H, H-6'), $4.35\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.45(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.63\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.80(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.88-4.99\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{PhCH}_{2}\right), 5.02\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 5.04-5.08(\mathrm{~m}, 1 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.12\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.12-5.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 5.24-5.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, $5.45(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.28-7.44(\mathrm{~m}, 19 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=14.1,21.1,21.4,21.75,21.80,32.6,47.7,52.2,63.8,67.0,67.1$, $69.4,69.6,70.3,70.8,71.3,74.6,74.8,82.5,82.6,95.9,97.2,103.3,128.0,128.1,128.2,128.3$, $128.5,128.6,128.65,128.67,128.8,129.47,129.54,136.8,137.3,137.6,138.1,155.0,155.8$, 167.4, 170.37, 170.42.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{53} \mathrm{H}_{62} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{16}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right):$1087.3159, found: 1087.3040.

Benzyl 7-N-benzyloxycarbonyl-4,8-di-O-acetyl-1-isopropyl-5-N-(2,2,2-trichloroethoxy-carbonyl)- α / β-pseudaminosyl-($2 \rightarrow 4$)-2,3-di- O-benzyl- β-d-xylopyranosyl-(1 \rightarrow 3)-2-azido-4- O -benzyl-2-deoxy- β-d-fucopyranoside (49 α / β):

Following Method A, the product was synthesized from donor $\mathbf{2 5}$ and disaccharide acceptor 46 in 0.10 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $3: 1 v / v$ as eluent. Only the α anomer $49 \boldsymbol{\alpha}$ was obtained $\left(J_{\mathrm{Cl} 1-\mathrm{H} 3 \mathrm{a}}=0\right.$ Hz , measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless solid ($91 \mathrm{mg}, 67 \%$).

Following Method B, the product was synthesized from donor $\mathbf{2 5}$ and disaccharide acceptor 46 in 0.142 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $3: 1 v / v$ and toluene : ethyl acetate $8: 1 v / v$ as eluents to give $\mathbf{4 9 \alpha}$ $(209 \mathrm{mg}, 48 \%)$ and $49 \boldsymbol{\beta}(21 \mathrm{mg}, 5 \%)\left(J_{\mathrm{C} 1-\mathrm{H} 3 \mathrm{a}}=6.7 \mathrm{~Hz}\right.$, measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless solid.

For anomer 49 $\boldsymbol{\alpha}$:
$[\alpha]^{25}{ }_{\mathrm{D}}-25.2^{\circ}(c=0.29, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$ "), $1.22(\mathrm{~d}, J=6.3 \mathrm{H}, 3 \mathrm{H}, \mathrm{H}-6), 1.32$ $\left(\mathrm{d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.75(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}$ "), $1.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO}), 2.03(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.26\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right.$ "), $2.85(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.06(\mathrm{t}, J$ $\left.=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.38\left(\mathrm{dd}, J_{1}=9.2 \mathrm{~Hz}, J 2=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right.$ '), $3.44-3.51$ (m, 3H, H-3, H-5 \& H-3'), $3.60(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.69\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 3.73-3.77$ (m, 1H, H-4'), 3.86-3.88 (m, 1H, H-5"), 3.88 (dd, $\left.J_{1}=10.6 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.01\left(\mathrm{td}, J_{1}\right.$ $\left.=10.7 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 4.06\left(\mathrm{dd}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 4.32(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.35\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.43\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.60(\mathrm{~d}, J=$ $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}\right), 4.66\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.74\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.79(\mathrm{~d}, J$ $\left.=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.92-5.00\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2} \& 5 \times \mathrm{PhCH}_{2}\right), 5.01-5.07(\mathrm{~m}, 1 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.13\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.13-5.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{C}), 5.24\left(\mathrm{dt}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=\right.$ 4.3 Hz, 1H, H-4"), 5.37 (br, 1H, NH), 7.04 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.27-7.44 (m, 24H, ArH).
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=14.2,16.5,21.0,21.3,21.6,21.7,32.4,47.4,52.0,63.3,63.4$, $66.87,66.92,69.3,69.7,70.0,70.4,70.58,70.62,74.4,74.6,75.1,78.1,79.8,82.1,82.2,95.7$, $96.9,100.9,105.2,127.5,127.8,127.9,128.0,128.09,128.13,128.2,128.3,128.4,128.45,128.49$, $128.6,128.7,129.3,129.4,136.5,137.0,137.4,137.8,138.6,154.8,155.7,167.2,170.2,170.3$. IR (film) $v=3037,2925,2112\left(\mathrm{~N}_{3}\right), 1646,1456,1374,1363,1272,1236,1218,1099,1069,1028$ cm^{-1}.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{66} \mathrm{H}_{76} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{19} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1370.4092, found: 1370.4104.
For anomer 49 $\boldsymbol{\beta}$:
$[\alpha]^{25}{ }_{\mathrm{D}}-25.0^{\circ}(c=0.98, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.10\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 1.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9 "), 1.86(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3 \mathrm{a} "), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.63\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-3e'), $3.25-3.31$ (m, 2H, H-2' \& H-5a'), 3.45-3.49 (m, 2H, H-3 \& H-3'), 5.53 (q, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), $3.62(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}), 3.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.84\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=\right.$ 8.0 Hz, 1H, H-2), 3.85-3.89 (m, 1H, H-4'), $4.21\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right)$, 4.27-4.33 (m, 2H, H-5" \& H-7"), $\left.4.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.40(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right)$, $4.60\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.63-4.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}, \mathrm{CCl}_{3} \mathrm{CH}_{2} \& 2 \times \mathrm{PhCH}_{2}\right), 4.75(\mathrm{~d}, J=11.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.74-4.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 4.78\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.90-4.97(\mathrm{~m}, 5 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, \mathrm{CCl}_{3} \mathrm{CH}_{2} \& 3 \times \mathrm{PhCH}_{2}\right), 5.02\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 5.26-5.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{C}), 5.32(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.23-7.39(\mathrm{~m}, 25 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=13.4,16.7,21.0,21.2,21.6,21.8,33.6,47.7,52.6,63.4,65.2$, $67.3,67.8,69.1,70.78,70.82,71.5,72.8,74.7,74.8,75.2,75.4,78.7,79.9,81.7,82.1,95.8,100.9$, $101.2,105.1,127.51,127.53,127.7,127.91,127.94,128.1,128.18,128.19,128.22,128.3,128.39$, $128.43,128.5,128.6,136.4,137.2,138.4,138.9,139.1,154.9,156.0,166.2,170.3,170.4$. IR (film) $v=3038,2994,2112\left(\mathrm{~N}_{3}\right), 1645,1456,1363,1308,1238,1211,1169,1138,1109,1071$, $1027 \mathrm{~cm}^{-1}$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{66} \mathrm{H}_{76} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{19} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1370.4092, found: 1370.4080.

Following Method A, the product was synthesized from donor 27 and xyloside acceptor 47 in 0.050 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $2: 1$ to $1: 1 v / v$ as eluent to give $\mathbf{5 0 \alpha}(9.0 \mathrm{mg}, \mathbf{2 0 \%})$ and $\mathbf{5 0 \beta}(11 \mathrm{mg}$, 24\%) as colorless solid.

Following Method B, the product was synthesized from donor 27 and xyloside acceptor 47 in 0.050 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $2: 1$ to $1: 1 \mathrm{v} / \mathrm{v}$ as eluent to give $\mathbf{5 0 \alpha}(13 \mathrm{mg}, \mathbf{2 9 \%}$) and $\mathbf{5 0 \beta}$ (5.5 $\mathrm{mg}, 12 \%)$ as colorless solid.

The configuration of $\mathbf{5 0 \alpha}$ was determined through derivatization of $\mathbf{4 8}$ (vide infra).
For anomer 50 $\boldsymbol{\alpha}$:
$[\alpha]^{25}{ }_{\mathrm{D}}+3.9^{\circ}(c=0.23, \mathrm{DCM})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9{ }^{\prime}\right), 1.30(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.04\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}\right.$ '), $2.19\left(\mathrm{dd}, J_{1}=\right.$ $\left.15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}^{\prime}\right), 3.12(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 3.18\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0\right.$ Hz, 1H, H-5'), 3.42-3.50 (m, 2H, H-2 \& H-3), 3.68 (dd, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.77$ $\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{e}\right), 3.86\left(\mathrm{td}, J_{1}=9.5 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, \mathrm{H}-4\right), 3.91-3.95(\mathrm{~m}, 1 \mathrm{H}$, H-7'), $4.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.45\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.61-4.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4 \mathrm{'}^{\prime}\right.$, $\left.\mathrm{NH} \& 2 \times \mathrm{PhCH}_{2}\right), 4.89-4.92\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 4.99\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.00-5.04$ $\left(\mathrm{m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.06\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.16-5.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 5.17(\mathrm{~d}, J=12.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.08-7.15(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.20-7.40(\mathrm{~m}, 17 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=15.3,21.4,21.6,21.8,33.0,51.5,54.2,63.7,67.7,68.7,70.0$, $70.77,70.81,71.1,71.4,74.7,76.4,82.4,83.0,96.4,103.2,128.0,128.1,128.2,128.4,128.5$, $128.59,128.61,128.64,128.7,128.76,128.82,136.1,137.2,138.1,138.2,156.8,158.2,167.9$, 171.3.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 919.3624, found: 919.3582.
For anomer 50 $\boldsymbol{\beta}^{\text {: }}$
$[\alpha]^{25}{ }_{\mathrm{D}}+9.2^{\circ}(c=0.38, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.152\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.154(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.38\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9\right.$ '), $2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO}), 2.12\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=4.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}$ '), $2.48\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right.$ '), $3.01(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a})$, $3.35\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.41\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.51(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 3.89$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $4.00-4.06$ (m, 2H, H-4 \& H-7'), 4.29 (dd, $J_{1}=12.0 \mathrm{~Hz}$, $\left.\left.J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}\right), 4.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.61(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right), 4.67(\mathrm{~d}, J$ $\left.\left.=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.73\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.83(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right)$, 4.86-4.91 (m, 2H, H-4' \& $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 4.87\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 5.08(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 5.31-5.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~B}^{\prime}\right), 6.27(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 7.20-7.40(\mathrm{~m}, 20 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=15.2,21.2,21.7,21.8,32.8,50.8,54.2,65.5,68.0,70.3,70.58$, $70.61,71.4,71.5,74.7,74.9,75.8,82.2,82.7,99.2,103.2,127.3,127.5,127.8,128.06,128.11$, $128.2,128.3,128.5,128.6,128.78,128.83,135.8,137.7,138.8,139.3,157.3,158.0,167.7,170.6$. HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 919.3624, found: 919.3584.

Benzyl 8-O-acetyl-7-N-benzyloxycarbonyl-5-N,4-O-carbonyl-1-isopropyl- $\alpha / \boldsymbol{\beta}$-pseudaminosyl-

($2 \rightarrow 4$)-2,3-di- O-benzyl- β-d-xylopyranosyl-($1 \rightarrow 3$)-2-azido-4-O-benzyl-2-deoxy- β-d-fucopyran oside ($51 \alpha / \boldsymbol{\beta})$:

Method A: $14 \% \alpha, 15 \% \beta$
Method B: 18\% $\alpha, 11 \% \beta$
Following Method A, the product was synthesized from donor 27 and disaccharide acceptor 46 in 0.050 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $2: 1$ to $1: 1 v / v$ as eluent to give $\mathbf{5 1 \boldsymbol { \alpha }}(8.1 \mathrm{mg}, 14 \%)$ and $\mathbf{5 1} \boldsymbol{\beta}$ (8.7
$\mathrm{mg}, 15 \%)$ as colorless solid.
Following Method B, the product was synthesized from donor 27 and disaccharide acceptor 46 in 0.050 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $2: 1$ to $1: 1 \mathrm{v} / \mathrm{v}$ as eluent to give $\mathbf{5 1 \boldsymbol { \alpha }}(10 \mathrm{mg}, 18 \%)$ and $\mathbf{5 1 \boldsymbol { \beta }}(6.4$ $\mathrm{mg}, 11 \%)$ as colorless solid.

The configuration of $\mathbf{5 1 \alpha}$ was determined through derivatization of $\mathbf{4 9 \alpha}$ (vide infra).
For anomer 51 $\boldsymbol{\alpha}$:
$[\alpha]^{25}{ }_{\mathrm{D}}+12.9^{\circ}(c=1.3, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9{ }^{\prime \prime}\right), 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6)$, $1.28\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.29\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.05\left(\mathrm{dd}, J_{1}=14.5 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}\right.$ "), 2.22 (dd, $J_{1}=14.5 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}$ "), $3.06\left(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.16\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.36\left(\mathrm{dd}, J_{1}=9.0\right.$ $\left.\mathrm{Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.43\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.44-3.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ \& H-3'), $3.59(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.64\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right.$ '), $3.68\left(\mathrm{dd}, J_{1}=\right.$ $\left.11.5 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 3.80-3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 3.86\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-2), 3.89-3.93 (m, 1H, H-7'), 4.32 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.37 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.43$ $\left.\left(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.57\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.66(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right)$, 4.65-4.69 (m, 1H, H-4"), $4.72\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 4.94-5.06\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \& 5\right.$ $\left.\times \mathrm{PhCH}_{2}\right), 5.16\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.18-5.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{C}), 6.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 7.08-7.13 (m, 3H, ArH), 7.20-7.41 (m, 22H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=15.3,16.7,21.4,21.6,21.8,33.0,51.3,54.1,63.48,63.53,67.7$, $68.7,69.8,70.4,70.6,70.7,71.0,74.6,75.1,76.5,78.2,80.1,82.0,82.9,96.3,101.0,105.4,127.7$, $128.0,128.1,128.3,128.4,128.46,128.52,128.56,128.58,128.62,128.7,128.77,128.82,136.1$, 137.1, 138.0, 138.2, 138.7, 156.8, 158.2, 167.7, 171.0.

IR (film) $v=3033,2985,2113\left(\mathrm{~N}_{3}\right), 1646,1308,1239,1215,1163,1100,1066,1048,731,696$ cm^{-1}.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{62} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1180.4737, found: 1180.4608.
For anomer 51 $\boldsymbol{\beta}$:
$[\alpha]_{\mathrm{D}}^{25}+30.9^{\circ}(c=0.21, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.11\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 1.35(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9 \mathrm{C}), 1.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO})$, $2.10\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a} "\right), 2.50\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right.$ "), $3.23-3.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime} \& \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.40\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 3.45\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=2.0\right.$ Hz, 1H, H-3), 3.50-3.54 (m, 2H, H-5 \& H-3'), 3.72 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 3.82 (dd, $J_{1}=10.5$ $\left.\left.\mathrm{Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.89\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.94-3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)^{\prime}\right), 4.04\left(\mathrm{td}, J_{1}=\right.$ $\left.10.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 4.20\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 4.34(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.55\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.63-4.70\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{PhCH}_{2}\right), 4.75(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.82\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.82-4.85\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 4.91-4.99(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-4$ " \& $\left.3 \times \mathrm{PhCH}_{2}\right), 5.05(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 5.35-5.38(\mathrm{~m}, 1 \mathrm{H}$, H-8"), 6.27 (s, 1H, NH), 7.21-7.39 (m, 25H).
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=15.0,16.6,21.2,21.7,21.8,32.6,50.8,54.2,63.3,65.4,68.1$, $69.9,70.6,70.8,70.9,71.5,74.6,74.8,75.1,75.7,78.6,80.5,82.2,82.4,99.0,101.4,105.4,127.3$, $127.5,127.9,128.0,128.1,128.2,128.3,128.48,128.54,128.81,128.85,135.7,137.3,138.6$, 139.2, 139.3, 157.3, 158.0, 167.7, 170.4.

IR (film) $v=3032,2984,2111\left(\mathrm{~N}_{3}\right), 1646,1456,1244,1165,1099,1067,1028,732,695 \mathrm{~cm}^{-1}$.
HR-ESI-MS (m/z): calcd for $\mathrm{C}_{62} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1180.4737, found: 1180.4604.

Benzyl 7-N-benzyloxycarbonyl-4,8-di-O-chloroacetyl-1-isopropyl-5-N-(2,2,2-trichloroethoxy-carbonyl)- α-pseudaminosyl-(2 $\rightarrow 4$)-2,3-di- O-benzyl- β-d-xylopyranoside (52):

Method A: 68\% α only
Method B: 32\% α only
Following Method A, the product was synthesized from donor 28 and xyloside acceptor 47 in 0.050 mmol scale. The product was purified by silica gel column chromatography using n-hexane : ethyl acetate $5: 1 \mathrm{v} / \mathrm{v}$ as eluent. Only the α anomer 52 was obtained $\left(J_{\mathrm{C} 1-\mathrm{H} 3 \mathrm{a}}=0 \mathrm{~Hz}\right.$, measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless solid ($39 \mathrm{mg}, 68 \%$).

Following Method B, the product was synthesized from donor 28 and xyloside acceptor 47 in 0.10 mmol scale. The product was purified by silica gel column chromatography using
n-hexane : ethyl acetate $5: 1 v / v$ as eluent. Only the α anomer 52 was obtained as colorless solid ($37 \mathrm{mg}, 32 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-75.4^{\mathrm{o}}(c=0.75, \mathrm{DCM})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.01\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9{ }^{\prime}\right), 1.34(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.83\left(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}^{\prime}\right), 2.31\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}^{\prime}\right), 2.83$ $(\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.13(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 3.45-3.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-3)$, $3.76-3.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4 \& \mathrm{H}-5 \mathrm{e}), 3.88-4.08\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-6{ }^{\prime}, \mathrm{H}-7^{\prime} \& 4 \times \mathrm{ClCH}_{2} \mathrm{CO}\right), 4.36(\mathrm{~d}, J=$ $\left.12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.42\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.63(\mathrm{~d}, J$ $\left.=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.79\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.91-4.98\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2} \& 4 \times\right.$ $\left.\mathrm{PhCH}_{2}\right), 5.04-5.08\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.12\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.18-5.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right)$, $\left.5.33\left(\mathrm{dt}, J_{1}=12.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right)^{\prime}\right), 5.53(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.31-7.45 (m, 19H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=14.0,21.7,21.8,32.3,40.9,41.2,47.4,51.9,63.7,67.2,69.2$, $69.4,70.4,71.0,71.3,71.5,74.7,74.8,77.0,82.4,82.5,95.7,97.2,103.2,128.07,128.12,128.19$, $128.24,128.3,128.5,128.65,128.69,128.9,129.5,129.7,136.6,137.2,137.5,138.0,155.1,155.8$, 166.7, 166.9, 167.1.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{53} \mathrm{H}_{59} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1177.2199, found: 1177.2048.

Benzyl 7-N-benzyloxycarbonyl-4,8-di-O-chloroacetyl-1-isopropyl-5-N-(2,2,2-trichloroethoxy-

 carbonyl)- α / β-pseudaminosyl-($2 \rightarrow 4$)-2,3-di- O-benzyl- β-d-xylopyranosyl-($1 \rightarrow 3$)-2-azido-4-O-benzyl-2-deoxy- β-d-fucopyranoside ($\mathbf{5 3 \alpha} \alpha / \beta$):

Following Method A, the product was synthesized from donor $\mathbf{2 8}$ and disaccharide acceptor 46 in 0.050 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $3: 1 v / v$ as eluent. Only the α anomer $53 \boldsymbol{\alpha}$ was obtained $\left(J_{\mathrm{Cl} 1-\mathrm{H} 3 \mathrm{a}}=0\right.$

Hz , measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless solid ($50 \mathrm{mg}, 70 \%$).

Following Method B, the product was synthesized from donor 28 and disaccharide acceptor 46 in 0.255 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $4: 1 v / v$ and toluene : ethyl acetate $10: 1 v / v$ as eluents to give $\mathbf{5 3} \boldsymbol{\alpha}$ $(128 \mathrm{mg}, 35 \%)$ and $\mathbf{5 3 \beta}(37 \mathrm{mg}, 10 \%)\left(J_{\mathrm{C} 1-\mathrm{H} 3 \mathrm{a}}=6.6 \mathrm{~Hz}\right.$, measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless solid.

For anomer 53 $\boldsymbol{\alpha}$:
$[\alpha]^{25}{ }_{\mathrm{D}}-43.2^{\circ}(c=0.82, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$ "), 1.22 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6)$, $1.33\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.82(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a} "), 2.31\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=\right.$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}$ "), $2.80(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.07\left(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}\right.$ '), $3.39\left(\mathrm{dd}, J_{1}=\right.$ $\left.9.0 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.45-3.51(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5 \& \mathrm{H}-3 '), 3.60(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, 3.66-3.75 (m, 2H, H-4' \& H-5e'), 3.86-3.90 (m, 2H, H-2 \& H-5"), 3.91-4.08 (m, 6H, H-6", H-7" $\left.\& 4 \times \mathrm{ClCH}_{2} \mathrm{CO}\right), 4.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.36\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.40(\mathrm{~d}, J=$ 9.6 Hz, 1H, PhCH_{2}), $4.61\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{I}^{\prime}\right), 4.92-5.03\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2} \& 5 \times \mathrm{PhCH}_{2}\right)$, 5.04-5.08 (m, 1H, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.13\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.17-5.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8{ }^{\prime \prime}\right), 5.30$ (ddd, $\left.J_{1}=12.3 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, J_{3}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 5.52(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.06(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.27-7.45(\mathrm{~m}, 24 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=14.2,16.5,21.6,21.7,32.1,40.8,41.1,47.2,51.6,63.3,67.0$, $69.0,69.6,70.1,70.59,70.62,70.7,71.5,74.5,74.6,75.2,76.9,78.2,79.7,82.1,82.2,95.6,96.9$, $100.9,105.2,127.5,127.8,127.9,128.0,128.1,128.18,128.19,128.4,128.5,128.6,128.8,129.3$, $129.5,136.4,136.9,137.4,137.7,138.6,155.0,155.7,166.67,166.71,166.9$.

IR (film) $v=3033,2959,2929,2856,2113\left(\mathrm{~N}_{3}\right), 1729,1645,1516,1456,1311,1278,1219,1164$, $1101,1070,1028,698 \mathrm{~cm}^{-1}$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{66} \mathrm{H}_{74} \mathrm{Cl}_{5} \mathrm{~N}_{5} \mathrm{O}_{19} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 1438.3313$, found: 1438.3147.
For anomer 53 $\boldsymbol{\beta}$:
$[\alpha]^{25}{ }_{\mathrm{D}}-33.6^{\circ}(c=1.3, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.09\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 1.35\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9{ }^{\prime}\right), 1.92(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}$,

H-3a"), 2.66 (dd, $\left.J_{1}=13.1 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}^{\prime \prime}\right), 3.25-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime} \& \mathrm{H}-5 \mathrm{a}^{\prime}\right)$, 3.45-3.49 (m, 2H, H-3 \& H-3'), 3.55 ($\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.60 (d, $\left.J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right)$, $3.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 3.84\left(\mathrm{dd}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.85-3.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime} \& 2 \times\right.$ $\mathrm{ClCH}_{2} \mathrm{CO}$), 3.98 (d, $\left.J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CO}\right), 4.02\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CO}\right), 4.18$ (dd, $\left.J_{1}=11.7 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 4.31-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime} \& \mathrm{H}-7{ }^{\prime \prime}\right), 4.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 4.42\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.59\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.63-4.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}$, $\left.\mathrm{CCl}_{3} \mathrm{CH}_{2} \& 2 \times \mathrm{PhCH}_{2}\right), 4.76\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 4.84\left(\mathrm{dt}, J_{1}=12.9 \mathrm{~Hz}, J 2=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right)$, 4.90-4.98(m, 6H, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, \mathrm{CCl}_{3} \mathrm{CH}_{2} \& 4 \times \mathrm{PhCH}_{2}\right), 5.08\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.34(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.35-5.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 7.24-7.40(\mathrm{~m}, 25 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=12.8,16.5,21.4,21.7,33.2,40.7,40.9,47.2,52.0,63.2,65.0$, $67.3,69.5,70.7,70.9,71.7,72.3,74.6,74.7,75.1,75.18,75.25,78.7,79.8,81.4,81.9,95.4,100.7$, $101.0,105.0,127.6,127.68,127.74,127.8,127.9,128.0,128.1,128.2,128.27,128.31,128.35$, $128.5,136.1,137.0,138.2,138.7,138.9,154.9,155.9,165.9,166.6,166.7$.

IR (film) $v=3037,2957,2935,2858,2112\left(\mathrm{~N}_{3}\right), 1645,1456,1358,1310,1209,1167,1109,1071$, 1026, 735, $698 \mathrm{~cm}^{-1}$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{66} \mathrm{H}_{74} \mathrm{Cl}_{5} \mathrm{~N}_{5} \mathrm{O}_{19} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 1438.3313$, found: 1438.3142.

Scheme S6. Elucidation of the glycosidic linkage configurations in 50α and 51α via derivatization of 48 and 49α.

Benzyl 8-O-acetyl-7-N-benzyloxycarbonyl-5-N,4-O-carbonyl-1-isopropyl- α-pseudaminosyl(2 \rightarrow 4)-2,3-di-O-benzyl- β-d-xylopyranoside (50α):

To a stirred solution of $\mathbf{4 8}\left(29 \mathrm{mg}, 0.027 \mathrm{mmol}, 1.0\right.$ equiv) in THF $(0.5 \mathrm{~mL}), \mathrm{MeNH}_{2}(8 \mathrm{M}$ solution in $\mathrm{EtOH}, 1.0 \mathrm{~mL}$) was added in one portion. The mixture was stirred at r.t. for 24 h , then was diluted with ethyl acetate $(20 \mathrm{~mL})$. The solution was washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel preparative TLC using n-hexane : ethyl acetate $1: 1.5 \mathrm{v} / \mathrm{v}$ as eluent. The intermediate with cyclic carbamate structure was obtained as colorless solid ($4.7 \mathrm{mg}, 20 \%$).

The intermediate was dissolved in pyridine $(1.0 \mathrm{~mL})$, then $\mathrm{Ac}_{2} \mathrm{O}(0.10 \mathrm{~mL}$, large excess amount) was added. The mixture was stirred at r.t. overnight, then was concentrated under vacuum. The residue was diluted with ethyl acetate (20 mL), and was thoroughly washed with 1 M HCl (aq), sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and water. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel preparative TLC using n-hexane : ethyl acetate $1: 1 v / v$ as eluent. The product 50α was obtained as colorless solid ($4.0 \mathrm{mg}, 82 \%$).

The product shows exactly the same ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as the disaccharide $\mathbf{5 0 \alpha}$ obtained via glycosylation of donor 27 and acceptor 47. This transformation provides unambiguous evidence for the α configuration of $\mathbf{5 0 \alpha}$.

Benzyl 8-O-acetyl-7-N-benzyloxycarbonyl-5-N,4-O-carbonyl-1-isopropyl- α-pseudaminosyl-

(2 \rightarrow 4)-2,3-di- O-benzyl- β-d-xylopyranosyl-($1 \rightarrow 3$)-2-azido-4-O-benzyl-2-deoxy- β-d-fucopyran oside (51 α):

To a stirred solution of $\mathbf{4 9 \alpha}\left(112 \mathrm{mg}, 0.083 \mathrm{mmol}, 1.0\right.$ equiv) in THF $(1.5 \mathrm{~mL}), \mathrm{MeNH}_{2}(8 \mathrm{M}$ solution in $\mathrm{EtOH}, 3.0 \mathrm{~mL}$) was added in one portion. The mixture was stirred at r.t. for 24 h , then was diluted with ethyl acetate (30 mL). The solution was washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was
purified by silica gel column chromatography using n-hexane : ethyl acetate $1: 1$ to $1: 1.5 \mathrm{v} / \mathrm{v}$ as eluent. The intermediate with cyclic carbamate structure was obtained as colorless solid (54 mg , 58\%).

To a stirred solution of the intermediate ($20 \mathrm{mg}, 0.018 \mathrm{mmol}, 1.0$ equiv) in pyridine (2.0 mL), $\mathrm{Ac}_{2} \mathrm{O}(0.20 \mathrm{~mL}$, large excess amount) was added. The mixture was stirred at r.t. overnight, then was concentrated under vacuum. The residue was diluted with ethyl acetate (20 mL), and was thoroughly washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and water. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $1: 1 v / v$ as eluent. The product $\mathbf{5 1} \boldsymbol{\alpha}$ was obtained as colorless solid ($19 \mathrm{mg}, 92 \%$).

The product shows exactly the same ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as the trisaccharide $51 \boldsymbol{\alpha}$ obtained via glycosylation of donor 27 and acceptor 46. This transformation provides unambiguous evidence for the α configuration of 51α.

Part 10. Total synthesis of pseudaminic acid 1.

Benzyl 7-N-benzyloxycarbonyl-4,8-di-O-acetyl-1-isopropyl-5-N-(2,2,2-trichloroethoxy-

 carbonyl)- β-pseudaminoside (54):

Method A: $94 \% \beta$ only
Method B: $95 \% \beta$ only
Following Method A (Part 9), the product was synthesized from donor 25 and benzyl alcohol acceptor (4.0 equiv was used) in 0.10 mmol scale. The product was purified by silica gel column chromatography using toluene : ethyl acetate $10: 1 v / v$ as eluent. Only the β anomer 54 was obtained $\left(J_{\mathrm{C} 1-\mathrm{H} 3 \mathrm{a}}=6.6 \mathrm{~Hz}\right.$, measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless syrup ($73 \mathrm{mg}, 94 \%$).
$[\alpha]_{\mathrm{D}}^{25}-49.7^{\circ}(c=0.85, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.38(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 1.96(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 1.98(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\mathrm{CH}_{3} \mathrm{CO}$), 2.55 (dd, $\left.J_{1}=13.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 3.97(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.32-4.36$ (m, 2H, H-5 \& H-7), 4.40-4.43 (m, 2H, CCl $\left.\mathrm{CH}_{2} \& \mathrm{PhCH}_{2}\right), 4.71(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, 4.80-4.84 (m, 2H, H-4 \& $\left.\mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.97\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.02(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 5.06-5.13\left(\mathrm{~m}, 2 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \& \mathrm{PhCH}_{2}\right), 5.35-5.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}), 7.29-7,37$ (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=13.8,21.0,21.3,21.8,21.9,33.3,48.0,52.9,67.2,67.3,67.9$, $69.6,70.7,72.9,74.7,95.8,99.5,128.27,128.32,128.6,136.4,136.7,155.0,156.0,167.5,170.41$, 170.45.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 797.1617, found: 797.1596.

Benzyl $\quad 5-\mathrm{N}$-acetyl-7- N -benzyloxycarbonyl-4,8-di- O-acetyl-1-isopropyl- β-pseudaminoside

 (55):

To a stirred solution of $54\left(73 \mathrm{mg}, 0.94 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{HOAc}(2.0 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(0.44 \mathrm{~mL}$,
$4.7 \mathrm{mmol}, 5.0$ equiv) and Zn powder ($611 \mathrm{mg}, 9.4 \mathrm{mmol}$, 10 equiv) were added. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 3 h . When full conversion was achieved, the mixture was diluted with ethyl acetate (30 mL) and filtered through celite. The filtrate was washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and brine, and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $1: 1$ as eluent. The product 55 was obtained as white foam ($45 \mathrm{mg}, 74 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-67.1^{\circ}(c=0.13, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},(\mathrm{CH})_{2} \mathrm{CH}\right), 1.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 1.90(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 1.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO})$, $2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.53\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 3.98(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.31\left(\mathrm{td}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.42(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.71(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.81\left(\mathrm{dt}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=\right.$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.84\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.94\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.07-5.12$ $\left(\mathrm{m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.15\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.35-5.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.86(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.30-7.36(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=13.6,21.1,21.3,21.86,21.91,23.5,33.5,45.5,52.8,67.1,67.3$, $67.8,69.6,70.7,73.0,99.6,128.21,128.25,128.27,128.32,128.62,128.65,136.5,136.8,156.2$, $167.5,170.5,170.6,170.9$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{11}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right):$643.2861, found: 643.2835.

Benzyl 5,7-di- N-acetyl-4,8-di- O-acetyl-1-isopropyl- β-pseudaminoside (56):

To a 25 mL round bottom flask containing $55(45 \mathrm{mg}, 0.070 \mathrm{mmol}, 1.0$ equiv $), \mathrm{Pd} / \mathrm{C}(10 \% \mathrm{Pd}$ on activated carbon, 30 mg) and $\mathrm{NH}_{4} \mathrm{OAc}(11 \mathrm{mg}, 0.14 \mathrm{mmol}, 2.0$ equiv), DCM (2.0 mL) and $\mathrm{MeOH}(2.0 \mathrm{~mL})$ were added. The mixture was stirred under $1 \mathrm{~atm} \mathrm{H}_{2}$ atmosphere for 1 h , then was filtered through celite to remove catalyst. The filtrate was concentrated under vacuum, and the residue was dissolved in pyridine (2.0 mL). To this mixture, $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL}$, excess amount) was added. After being stirred at r.t. for 1 h , the mixture was concentrated under vacuum. The residue
was dissolved in ethyl acetate (30 mL), and the solution was sequentially washed with 1 M HCl (aq) and sat. NaHCO_{3} (aq). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using DCM : MeOH $30: 1$ as eluent. The product 56 was obtained as colorless solid ($36 \mathrm{mg}, 93 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-48.6^{\circ}(c=0.21, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.29\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 1.88(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3} \mathrm{CO}\right)$, $1.995\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.005\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3} \mathrm{CO}\right), 2.52\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=\right.$ 4.0 Hz, $1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}), 4.09\left(\mathrm{dd}, J_{1}=10.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.42(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$) , $4.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.56\left(\mathrm{td}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.80\left(\mathrm{dt}, J_{1}=13.0 \mathrm{~Hz}\right.$, $\left.J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.84\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.08-5.13\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.32(\mathrm{qd}$, $\left.J_{1}=6.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 5.60(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, 7.29-7.38 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=14.3,21.1,21.4,21.88,21.91,23.35,23.39,33.4,45.6,50.8$, $67.1,67.8,70.2,70.6,72.6,99.5,128.3,128.4,128.6,136.8,167.5,170.4,170.72,170.74,171.6$. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 573.2419, found: 573.2395.

5,7-Diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-2-nonulopyranosonic acid (1):

To a stirred solution of $\mathbf{5 6}(30 \mathrm{mg}, 0.055 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(2.2 \mathrm{~mL})$ and THF (0.55 mL), the solution of $\mathrm{LiOH}(\mathrm{aq})(1 \mathrm{M}$ solution, $0.55 \mathrm{~mL}, 0.55 \mathrm{mmol}, 10$ equiv) was added dropwise. The mixture was stirred at r.t. for 24 h . When full conversion was achieved, the mixture was neutralized by DOWEX 50(H) resin. After filtration, the solvent was removed under vacuum, and the residue was used in the next step without purification.

To a 25 mL round bottom flask containing the saponification product, $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{Pd}$ on activated carbon, 30 mg) was added, followed by $\mathrm{MeOH}(4.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. The mixture was stirred under $1 \mathrm{~atm} \mathrm{H}_{2}$ atmosphere for 12 h . After filtration, the solvent was removed under vacuum, and the residue was further purified by BioGel column using $\mathrm{H}_{2} \mathrm{O}$ as eluent. The product

1 was obtained after lyophilization as white solid ($15 \mathrm{mg}, 80 \%$). The product shows the same NMR spectra as the literature report. ${ }^{11}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9), 1.76(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 1.91$ $\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3} \mathrm{CO}\right), 4.00(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.07-4.17$ (m, 3H, H-5, H-7 \& H-8), 4.22 (br, 1H, H-4).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=15.2,21.8,22.0,34.8,48.8,52.9,65.1,66.7,69.9,96.4,173.7$, 174.6, 176.4 .

Part 11. Attempts for trisaccharide side chain manipulation.

Benzyl 7-N-benzyloxycarbonyl-5-N,4-O-carbonyl-1-isopropyl- α / β-pseudaminosyl-(2 \rightarrow 4)-

2,3-di- O-benzyl- β-d-xylopyranosyl-($1 \rightarrow 3$)-2-azido-4-O-benzyl-2-deoxy- β-d-fucopyranoside

 (57):

To a stirred solution of $\mathbf{4 9 \alpha}\left(112 \mathrm{mg}, 0.083 \mathrm{mmol}, 1.0\right.$ equiv) in THF (1.5 mL), $\mathrm{MeNH}_{2}(8 \mathrm{M}$ solution in $\mathrm{EtOH}, 3.0 \mathrm{~mL}$) was added in one portion. The mixture was stirred at r.t. for 24 h , then was diluted with ethyl acetate (30 mL). The solution was washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $1: 1$ to $1: 1.5 \mathrm{v} / \mathrm{v}$ as eluent. Only the product 57 with Troc group destroyed was obtained as colorless solid (54 mg , 58\%).
$[\alpha]^{25}{ }_{\mathrm{D}}+34.6^{\circ}(c=0.37, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=1.02(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$ "), $1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6)$, $1.237\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.242\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},(\mathrm{CH})_{2} \mathrm{CH}\right), 2.10\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}\right.$, $\left.J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a} "\right), 2.54\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e} "\right), 3.16\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}\right.$ $\left.=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.33\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime}\right), 3.36(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, $3.50\left(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.54\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.55-3.60(\mathrm{~m}, 3 \mathrm{H}$, H-5, H-5" \& H-7"), $3.65\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 3.66(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, $3.71\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.72\left(\mathrm{dd}, J_{1}=10.0 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}\right), 3.88$ (dt, $\left.J_{1}=10.0 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{'}^{\prime}\right), 4.01-4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8{ }^{\prime \prime}\right), 4.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, $\left.4.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 '), 4.62-4.67\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{PhCH}_{2}\right), 4.70(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right)$, $\left.4.74(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.78-4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}), 4.86(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right), 4.87(\mathrm{~d}$, $\left.J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.94\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.95-4.99\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 4.97$ $\left.\left(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.07\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.12(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right)$, 6.07 (s, 1H, NH), 7.20-7.42 (m, 25H)
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=16.9,18.8,21.7,21.8,33.4,51.6,57.2,63.9,64.4,67.6,67.8$,
$71.2,71.3,71.5,72.1,75.2,75.9,76.6,79.9,80.9,82.9,83.1,97.1,102.1,106.0,128.46,128.49$, $128.78,128.82,129.0,129.07,129.10,129.13,129.20,129.24,129.3,129.37,129.39,129.6$, $137.8,138.6,139.6,139.7,140.2,158.4,158.5,169.2$.

IR (film) $v=3033,2975,2857,2112\left(\mathrm{~N}_{3}\right), 1645,1516,1456,1361,1216,1166,1099,1070,735$, $698 \mathrm{~cm}^{-1}$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{60} \mathrm{H}_{69} \mathrm{~N}_{5} \mathrm{O}_{16} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1138.4632, found: 1138.4623.

Benzyl 7-N-benzyloxycarbonyl-1-isopropyl-5- N-(2,2,2-trichloroethoxycarbonyl)- α / β -

 pseudaminosyl-(2 \rightarrow 4)-2,3-di-O-benzyl- β-d-xylopyranosyl-($1 \rightarrow$ 3)-2-azido-4-O-benzyl-2-deoxy - $\boldsymbol{\beta}$-d-fucopyranoside (58):

To a 10 mL round bottom flask containing $\mathbf{5 3 \alpha}(84 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.0$ equiv), DABCO (99 $\mathrm{mg}, 0.883 \mathrm{mmol}, 15$ equiv) and $\mathrm{EtOH}(3.0 \mathrm{~mL})$ were added. The mixture was stirred at $55^{\circ} \mathrm{C}$ for 2 h, then was diluted with ethyl acetate $(30 \mathrm{~mL})$. The solution was washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $2: 1 v / v$ as eluent. The product 58 was obtained as colorless solid ($56 \mathrm{mg}, 76 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-5.2^{\circ}(c=0.77, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$ "), $1.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6)$, $1.31\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.32\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.54(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-3a"), 1.83 (br, 1H, OH), $2.32\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e} "\right), 2.52(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.96$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.08\left(\mathrm{t}, J=11.0,1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.36\left(\mathrm{dd}, J_{1}=9.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-2'), 3.45 (dd, $\left.J_{1}=7.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.46-3.51\left(\mathrm{~m}, \mathrm{H}-5 \& \mathrm{H}-3^{\prime}\right), 3.57(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, 1H, H-4), 3.60-3.66 (m, 3H, H-4', H-5" \& H-7"), 3.79 (dd, $\left.J_{1}=10.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right)$, $3.83\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8{ }^{\prime \prime}\right), 3.87\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.04-4.08(\mathrm{~m}, 1 \mathrm{H}$, H-4"), 4.10 (dd, $\left.J_{1}=10.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 4.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.41(\mathrm{~d}, J=$ $\left.10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.46\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.61\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.66(\mathrm{~d}$, $\left.\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.71\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.73(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right)$,
$4.85\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.92-5.01\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{PhCH}_{2}\right), 5.03-5.08(\mathrm{~m}, 1 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.12\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.33(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.04(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 1H, ArH), 7.22-7.44 (m, 24H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=16.6,19.0,21.7,21.8,35.2,50.8,54.4,63.4,63.5,66.0,67.1$, $69.6,70.5,70.7,70.8,71.0,72.6,74.8,75.0,75.4,76.6,78.5,79.6,82.4,82.5,95.4,97.3,101.0$, $105.1,127.7,127.95,127.98,128.1,128.2,128.30,128.33,128.4,128.5,128.61,128.65,128.9$, $129.4,136.6,137.1,137.8,138.6,155.9,156.3,167.6$.
$\operatorname{IR}(f i l m) v=3032,2987,2933,2857,2112\left(\mathrm{~N}_{3}\right), 1641,1516,1456,1358,1217,1164,1100,1069$, $1040,1028 \mathrm{~cm}^{-1}$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{62} \mathrm{H}_{73} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{17}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 1264.4062, found: 1264.3921.

Benzyl 7-N-benzyloxycarbonyl-1-isopropyl-5- N-(2,2,2-trichloroethoxycarbonyl)- α / β -

 pseudaminosyl-($2 \rightarrow 4$)-2,3-di-O-benzyl- β-d-xylopyranosyl-($1 \rightarrow 3$)-2-acetamido-4-O-benzyl-2-deoxy- β-d-fucopyranoside (59):

To a stirred solution of $\mathbf{5 8}(39 \mathrm{mg}, 0.031 \mathrm{mmol}, 1.0$ equiv) in THF (2.0 mL) under argon atmosphere, $\mathrm{HOAc}(9.0 \mu \mathrm{~L}, 0.016 \mathrm{mmol}, 5.0$ equiv $)$ was added, followed by $\mathrm{PMe}_{3}(1.0 \mathrm{M}$ solution in THF, $0.31 \mathrm{~mL}, 0.31 \mathrm{mmol}, 10$ equiv). The mixture was stirred at r.t. for 10 h , then $\mathrm{H}_{2} \mathrm{O}(0.20$ mL) was added. After being stirred for further 12 h , the mixture was concentrated under vacuum, and the residue was dissolved in ethyl acetate $(20 \mathrm{~mL})$. The solution was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was dissolved in MeOH (2.0 mL), then $\mathrm{DABCO}\left(17 \mathrm{mg}, 0.155 \mathrm{mmol}, 5.0\right.$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}(0.30 \mathrm{~mL}$, large excess amount) were added. The mixture was stirred at r.t. for 2 h , then was diluted with ethyl acetate (20 mL). The solution was sequentially washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and water. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $1: 1.2$ v / v as eluent. The product 59 was obtained as colorless solid ($22 \mathrm{mg}, 56 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-18.3^{\circ}(c=0.88, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$ "), 1.23 ($\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6$), $1.32\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.34\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO})$, $1.55(\mathrm{t}, J=13.0,1 \mathrm{H}, \mathrm{H}-3 \mathrm{a} "), 2.33\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}\right.$ "), $2.46(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 2.98(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.10\left(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.27-3.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ \& H-2'), $3.44\left(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.58(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.61-3.67\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-5 \mathrm{e}^{\prime}\right.$, H-5" \& H-7"), 3.78-3.85 (m, 2H, H-4' \& H-8"), 4.06-4.09 (m, 1H, H-4"), 4.12 (d, J=11.0 Hz, 1H, H-6"), $4.32\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.47\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.48(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.50\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.65\left(\mathrm{dd}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.77(\mathrm{~d}$, $\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.79\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 4.86\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.87(\mathrm{~d}, J$ $\left.\left.=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.93\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.95(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right), 5.00$ $\left(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.05-5.10\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.13(\mathrm{~d}$, $\left.J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.19(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.05(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.25-7.45(\mathrm{~m}, 24 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.8,19.2,21.8,23.5,35.3,50.9,54.4,56.1,63.4,66.2,67.1$, $69.7,70.4,70.6,71.0,71.2,72.6,74.6,75.1,75.2,76.6,77.6,79.5,82.9,95.4,97.4,98.3,105.1$, $127.4,127.5,127.9,128.0,128.17,128.22,128.27,128.33,128.4,128.6,128.8,129.0,129.5$, $136.6,137.78,137.83,138.5,139.3,155.9,156.3,167.5,171.4$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{64} \mathrm{H}_{77} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{18}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 1280.4262, found: 1280.4117.

Methyl (R)-3-benzyloxybutanoate (S23):

Methyl (R)-3-hydroxybutanoate $\mathbf{S 2 2}(1.49 \mathrm{~mL}, 13.3 \mathrm{mmol}, 1.0$ equiv), O-benzyl trichloroacetimidate ($4.03 \mathrm{~g}, 15.9 \mathrm{mmol}, 1.2$ equiv), and $4 \AA$ molecular sieves (2.00 g , flame dried) were added to the mixture of cyclohexane $(20 \mathrm{~mL})$ and DCM $(10 \mathrm{~mL})$. The mixture was stirred at r.t. for 30 min and cooled to $0{ }^{\circ} \mathrm{C}$. Triflic acid ($199 \mu \mathrm{~L}, 2.25 \mathrm{mmol}, 0.17$ equiv) was added dropwise at $0{ }^{\circ} \mathrm{C}$, then the mixture was stirred at r.t. for 16 h . The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, filtered through a pad of celite, and concentrated. The residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $30: 1 v / v$ as eluent. The methyl
(R)-benzyloxybutanoate $\mathbf{S} 23$ was obtained as colourless liquid ($2.09 \mathrm{~g}, 76 \%$). ${ }^{12}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.44\left(\mathrm{dd}, J_{1}=15.1 \mathrm{~Hz}, J_{2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.66\left(\mathrm{dd}, J_{1}=15.1 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.97-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=20.0,42.0,51.7,71.0,72.1,127.7,127.8,128.5,138.6,172.1$.

(R)-3-Benzyloxybutanoic acid (S24):

Methyl (R)-benzyloxybutanoate $\mathbf{S 2 3}(2.09 \mathrm{~g}, 10.1 \mathrm{mmol}, 1$ equiv) was dissolved in THF (40 $\mathrm{mL})$, and a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}\left(847 \mathrm{mg}, 20.2 \mathrm{mmol}\right.$, 2 equiv) in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise. The mixture was stirred at r.t. for 12 h . After acidification with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, the mixture was extracted with ethyl acetate $(150 \mathrm{~mL})$ and dired over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the product (R)-3-benzyloxybutanoic acid S24 was obtained as colourless oil (1.93 $\mathrm{g}, 99 \%$). The product was pure enough for characterization and further application. ${ }^{12}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.47\left(\mathrm{dd}, J_{1}=15.3 \mathrm{~Hz}, J_{2}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.64\left(\mathrm{dd}, J_{1}=15.3 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.94-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.37(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=19.7,42.1,70.9,71.9,127.81,127.84,128.5,138.3,176.9$.

7- N -benzyloxycarbonyl-4,8-di- O -[(R)-3-benzyloxybutyryl]-1-isopropyl-5- N -(2,2,2-trichloroet

 hoxycarbonyl)- α-pseudaminosyl-(2 $\rightarrow 4$)-2,3-di-O-benzyl- β-d-xylopyranosyl-(1 \rightarrow 3)-2-azido-4-O-benzyl-2-deoxy- $\boldsymbol{\beta}$-d-fucopyranoside (61):

To a stirred solution of anhydride $\mathbf{6 0}$ (freshly prepared from the corresponding acid $\mathbf{S 2 4}$ via DCC coupling, $37 \mathrm{mg}, 0.10 \mathrm{mmol}, 10$ equiv, see Part 11) in anhydrous pyridine (0.30 mL), diol 58 ($13 \mathrm{mg}, 0.010 \mathrm{mmol}, 1.0$ equiv) was added, followed by DMAP ($0.6 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.5$ equiv).

The mixture was stirred at r.t. for 16 h , then was diluted with ethyl acetate $(20 \mathrm{~mL})$. The solution was thoroughly washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and water. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $3: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product 61 was obtained as colorless solid (13 mg, 77\%).

The product shows exactly the same ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as the trisaccharide $\mathbf{6 1 \alpha}$ obtained via glycosylation of donor 63 and acceptor 46 (see Part 12).

Part 12. Final steps toward total synthesis of P. aeruginosa 1244 pilin glycan 3.

4-Methylphenyl 7-N-benzyloxycarbonyl-4,8-di- O-[(R)-3-benzyloxybutyryl]-1-isopropyl-5-

N-(2,2,2-trichloroethoxycarbonyl)- α-thiopseudaminoside (63):

To a stirred solution of acid $\mathbf{S 2 4}(1.74 \mathrm{~g}, 9.0 \mathrm{mmol}, 2.0$ equiv) in anhydrous DCM, DCC (925 $\mathrm{mg}, 4.5 \mathrm{mmol}, 1.0$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , then the solvent was removed under vacuum. The residue was dissolved in anhydrous n-hexane (10 mL), and was filtered through celite to remove DCU. After concentration, the desired anhydride $\mathbf{6 0}$ was obtained in crude form $(1.56 \mathrm{~g},<4.0 \mathrm{mmol})$, which was directly used in the acylation of diol 26.

To a stirred solution of anhydride $\mathbf{6 0}(1.56 \mathrm{~g},<4.0 \mathrm{mmol}, \sim 6.0$ equiv) in anhydrous pyridine (7.0 mL), diol 26 ($415 \mathrm{mg}, 0.586 \mathrm{mmol}, 1.0$ equiv) was added in one portion, followed by DMAP ($3.6 \mathrm{mg}, 0.029 \mathrm{mmol}, 0.05$ equiv). The mixture was stirred at r.t. overnight. After concentration, the residue was diluted with ethyl acetate $(80 \mathrm{~mL})$. The solution was thoroughly washed with 1 M $\mathrm{HCl}(\mathrm{aq})$, sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then the solvent was removed under vacuum. The residue was purified by silica gel flash chromatography using n-hexane : ethyl acetate $4: 1$ as eluent. The product $\mathbf{6 3}$ was obtained as colorless solid ($550 \mathrm{mg}, 88 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}-91.6^{\circ}(c=0.81, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.11\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.22-1.26\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-9 \& 2 \times \mathrm{CH}_{3} \mathrm{CHOBn}\right), 2.01(\mathrm{t}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.27(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$), 2.37-2.40(m, 1H, H-3e), $2.39\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{CO}\right), 2.50$ $\left(\mathrm{dd}, J_{1}=15.1 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.51-2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.56\left(\mathrm{dd}, J_{1}=14.7 \mathrm{~Hz}\right.$, $\left.J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.00-4.03\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CHOBn}\right), 4.24-4.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5 \& \mathrm{H}-7)$, $4.42\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.49-4.57\left(\mathrm{~m}, 5 \mathrm{H}, 4 \times \mathrm{PhCH}_{2} \mathrm{OCH} \& \mathrm{H}-6\right), 4.83-4.85(\mathrm{~m}$, $\left.\left.1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 4.95\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.98(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right), 5.02(\mathrm{~d}, J$ $=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.06\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.19-5.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.27\left(\mathrm{dt}, J_{1}=12.5\right.$
$\left.\mathrm{Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.37(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.22-7.36$ (m, 15H, ArH), $7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=15.7,19.6,19.9,21.2,21.4,21.6,32.5,41.80,41.85,48.3,52.8$, $67.1,67.7,70.3,70.8,71.0,71.4,71.88,71.92,72.0,74.6,89.2,95.6,126.3,127.5,127.6,127.7$, $128.1,128.36,128.40,128.45,129.8,135.0,136.3,138.4,138.6,139.7,154.6,155.6,167.1,170.6$, 170.7.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{52} \mathrm{H}_{61} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1081.2852, found: 1081.2805.

Benzyl 7-N-benzyloxycarbonyl-4,8-di-O-[(\boldsymbol{R})-3-benzyloxybutyryl]-1-isopropyl-5- N-(2,2,2-trichloroethoxycarbonyl)- $\alpha / \beta-p s e u d a m i n o s y l-(2 \rightarrow 4)-2,3-d i-O$-benzyl- β-d-xylopyranosyl-(1 \rightarrow 3)-2-azido-4-O-benzyl-2-deoxy- β-d-fucopyranoside ($61 \alpha / \boldsymbol{\beta}$):

Following Method A (Part 9), the product was synthesized from donor 63 and disaccharide acceptor 46 in 0.050 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $3: 1 v / v$ as eluent. Only the α anomer $\mathbf{6 1 \alpha}$ was obtained $\left(J_{\mathrm{C} 1-\mathrm{H} 3 \mathrm{a}}=0 \mathrm{~Hz}\right.$, measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless solid (108 mg, 67\%).

Following Method B (Part 9), the product was synthesized from donor 63 and disaccharide acceptor 46 in 0.30 mmol scale. The product was purified by multiple silica gel column chromatography using n-hexane : ethyl acetate $3: 1 \mathrm{v} / \mathrm{v}$ and toluene : ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$ as eluents to give $\mathbf{6 1 \boldsymbol { \alpha }}(236 \mathrm{mg}, 49 \%)$ and $\mathbf{6 1 \beta}(41 \mathrm{mg}, 9 \%)\left(J_{\mathrm{Cl}-\mathrm{H3a}}=6.6 \mathrm{~Hz}\right.$, measured on Advance DRX Bruker 500 MHz NMR spectrometer by non-decoupled ${ }^{13} \mathrm{C}$ spectrum) as colorless solid.

For anomer 61 α :
$[\alpha]^{25}{ }_{\mathrm{D}}-34.7^{\circ}(c=1.4, \mathrm{DCM})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9 "), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3} \mathrm{CHOBn}\right), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 1.28\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{CHOBn}_{3}\right), 1.30-1.32(\mathrm{~m}$, $\left.6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.73(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a} "), 2.25\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e} "\right)$, $2.32\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.42\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{CO}\right)$, $2.53\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.57\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{CO}_{2} \mathrm{CO}\right)$, $2.86(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.08\left(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.37\left(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, $3.45-3.51(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5 \& \mathrm{H}-3 '), 3.60(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.70\left(\mathrm{dd}, J_{1}=11.4 \mathrm{~Hz}, J_{2}=\right.$ $\left.4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 3.73-3.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{\prime}), 3.83-3.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.88\left(\mathrm{dd}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=\right.$ 8.1 Hz, 1H, H-2), 3.90-3.93 (m, 1H, CH3 CHOBn), 3.97-4.01 (m, 2H, H-7" \& H-6"), 4.04-4.09 (m, 1H, $\left.\mathrm{CH}_{3} \mathrm{CHOBn}\right), 4.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.33\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.44(\mathrm{~d}$, $\left.J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.46\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 4.54\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.59(\mathrm{~d}, J=$ 11.3 Hz, 1H, PhCH $), 4.61\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right.$ '), $4.67\left(\mathrm{~d}, J=12.0,1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.73(\mathrm{~d}, J=$ 11.7 Hz, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.78\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.93-4.95\left(\mathrm{~m}, 4 \mathrm{H}, 3 \times \mathrm{PhCH}_{2} \&\right.$ $\left.\mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.97-5.01\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 5.03-5.07\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 5.13(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH_{2}), $5.17-5.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8{ }^{\prime \prime}\right), 5.27\left(\mathrm{dt}, J_{1}=12.2 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 5.33(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.21-7.42$ (m, 34H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=13.8,16.5,19.88,19.90,21.6,21.7,32.4,41.8,42.0,47.5,52.0$, $63.37,63.45,66.8,69.2,69.5,70.0,70.4,70.59,70.63,70.8,70.9,71.9,72.1,74.5,74.6,75.2$, $76.9,78.2,79.7,82.0,82.3,95.7,96.9,100.9,105.2,127.3,127.5,127.56,127.65,127.8,127.9$, $128.0,128.05,128.11,128.18,128.21,128.24,128.3,128.39,128.43,128.46,128.57,128.63$, $129.3,129.4,136.6,137.0,137.4,137.8,138.5,138.6,138.8,154.7,155.6,167.1,170.6,170.8$.

IR (film) $v=3067,3033,2981,2933,2858,2112\left(\mathrm{~N}_{3}\right), 1739,1643,1516,1454,1377,1362,1308$, $1276,1218,1177,1139,1097,1071,1028,814,735,698 \mathrm{~cm}^{-1}$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{84} \mathrm{H}_{96} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{21} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1638.5556, found: 1638.5369.
For anomer 61 $\boldsymbol{\beta}$:
$[\alpha]^{25}{ }_{D}-23.5^{\circ}(c=0.91, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.11\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$, H-6), $1.19\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOBn}\right), 1.22\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.24(\mathrm{~d}, J=6.2$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOBn}\right), 1.32$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$ "), 1.83 (t, $\left.J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a} "\right), 2.32-2.35$ (m, 1H, CH 2 CO), $2.38\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.49\left(\mathrm{dd}, J_{1}=15.4 \mathrm{~Hz}, J_{2}=\right.$ $\left.7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.55\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.65\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}\right.$
$=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}$ " $), 3.24-3.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{~A} \& \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.36(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.43-3.49$ (m, 2H, H-3 \& H-3'), $3.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 3.62(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 3.82\left(\mathrm{dd}, J_{1}=10.4 \mathrm{~Hz}, J_{2}\right.$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.85-3.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}^{\prime}\right), 3.92-3.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOBn}\right), 3.98-4.02(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CHOBn}\right), 4.18\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{e}^{\prime}\right), 4.20-4.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 4.25-4.29$ (m, 1H, H-7"), $4.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.39\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCl}_{3} \mathrm{CH}_{2}\right), 4.47(\mathrm{~d}, J=11.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.49\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.50\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.56(\mathrm{~d}, J=$ 11.5 Hz, 1H, $\left.\mathrm{PhCH} H_{2}\right), 4.60\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{l}^{\prime}\right), 4.61-4.65\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{PhCH}_{2}\right), 4.70-4.75(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime} \& \mathrm{NH}\right), 4.74\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.79\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.92-5.00$ $\left(\mathrm{m}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, \mathrm{CCl}_{3} \mathrm{CH}_{2} \& 4 \times \mathrm{PhCH}_{2}\right), 5.05\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.30-5.32(\mathrm{~m}, 1 \mathrm{H}$, H-8"), 5.31 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.21-7.39$ (m, 35H, ArH).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=13.4,16.5,19.7,19.8,21.4,21.6,33.6,41.8,41.9,47.6,52.5$, $63.3,65.0,67.1,67.8,69.2,70.5,70.6,70.7,71.0,71.3,71.76,71.84,72.7,74.6,74.8,75.1,75.2$, $75.3,78.5,79.5,81.6,81.9,95.6,100.9,101.0,104.9,127.38,127.41,127.49,127.55,127.59$, $127.62,127.7,127.77,127.79,127.9,128.0,128.09,128.14,128.2,128.3,128.36,128.37,128.5$, $136.3,137.0,138.2,138.5,138.6,138.7,138.8,154.6,155.7,166.0,170.57,170.62$.

IR (film) $v=3066,3033,2982,2933,2112\left(\mathrm{~N}_{3}\right), 1738,1643,1454,1376,1360,1303,1209,1176$, $1135,1070,1027,735,697 \mathrm{~cm}^{-1}$.

HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{84} \mathrm{H}_{96} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{21} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 1638.5556, found: 1638.5374.

Benzyl 5- N - $[(R)$-3-benzyloxybutyryl]-8-O-[(R)-3-benzyloxybutyryl $]$-7- N-benzyloxycarbonyl-

1-isopropyl- α-pseudaminosyl-($2 \rightarrow 4$)-2,3-di- O-benzyl- β-d-xylopyranosyl-($1 \rightarrow 3$)-2-azido-4- O -

benzyl-2-deoxy- β-d-fucopyranoside (62):

In a 1.5 mL Eppendorf tube, TBAF (1.0 M solution in THF, $1.14 \mathrm{~mL}, 1.14 \mathrm{mmol}, 10$ equiv) and HOAc ($0.032 \mathrm{~mL}, 0.507 \mathrm{mmol}, 5.0$ equiv) were added. This mixture was then added to the solution of $\mathbf{6 1 \boldsymbol { \alpha }}(184 \mathrm{mg}, 0.114 \mathrm{mmol}, 1.0$ equiv) in THF (2.28 mL). The final concentration of the TBAF was controlled at 0.33 M . After being heated at $40{ }^{\circ} \mathrm{C}$ for 48 h , the mixture was diluted with
ethyl acetate (30 mL), washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $1: 1 \mathrm{v} / \mathrm{v}$ as eluent. The product $\mathbf{6 2}$ was obtained as colorless solid ($126 \mathrm{mg}, 77 \%$), together with recovered $\mathbf{6 1 \boldsymbol { \alpha }}(17 \mathrm{mg}, 9 \%)$.
$[\alpha]^{25}{ }_{\mathrm{D}}+9.6^{\circ}(c=1.3, \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.98$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$ "), 1.16 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CHOBn}\right), 1.19\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOBn}\right), 1.22\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}-6 \&\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$, 1.27 (d, $\left.J=6.3 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.30\left(\mathrm{t}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}{ }^{\prime}\right), 2.16\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=\right.$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}$ "), 2.25 (dd, $\left.J_{1}=14.6 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.27-2.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} 2 \mathrm{CO})$, $2.33\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{2} \mathrm{CO}\right), 2.52\left(\mathrm{dd}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{CO}\right)$, $3.06\left(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}^{\prime}\right), 3.12(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.32\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.40-3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH} \& \mathrm{H}-3^{\prime}\right), 3.46\left(\mathrm{dd}, J_{1}=10.6 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.50(\mathrm{q}, J$ $=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.59$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.65-3.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{4}^{\prime}, \mathrm{H}-5 \mathrm{e}^{\prime} \& \mathrm{H}-5 \mathrm{~S}^{\prime}\right)$, $3.86-3.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-6 \mathrm{C})$, $3.91-3.97\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CHOBn}\right), 3.99\left(\mathrm{td}, J_{1}=10.9 \mathrm{~Hz}, J_{2}=\right.$ $\left.2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime \prime}\right), 4.05-4.07$ (m, 1H, H-4"), 4.32 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.34 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH_{2}), $\left.4.42(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right), 4.47\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{PhCH}_{2}\right), 4.50(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH_{2}), 4.59 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 4.66 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.73 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.75\left(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.92-5.01\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \& 5 \times \mathrm{PhCH}_{2}\right), 5.10(\mathrm{~d}, J$ $\left.=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.19-5.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~g}), 6.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.18-7.44$ (m, 34H, ArH).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=13.7,16.5,19.8,19.9,21.55,21.60,35.5,42.1,44.3,48.7,52.1$, $63.4,63.5,66.7,66.9,69.1,69.4,69.6,70.1,70.58,70.61,70.8,70.9,72.0,72.5,74.5,75.1,76.8$, 78.2, 79.7, 81.8, 82.5, 97.4, 100.9, 105.2, 127.4, 127.50, 127.54, 127.8, 127.86, 127.95, 128.00, 128.03, 128.1, 128.2, 128.27, 128.29, 128.33, 128.35, 128.38, 128.50, 128.54, 128.59, 128.60, 129.3, 136.5, 137.0, 137.67, 137.73, 138.4, 138.5, 138.8, 155.6, 167.7, 170.7, 174.4.

IR (film) $v=3033,2985,2935,2112\left(\mathrm{~N}_{3}\right), 1724,1646,1518,1497,1454,1376,1359,1267,1217$, 1099, 1070, 735, $698 \mathrm{~cm}^{-1}$.

HR-ESI-MS (m/z): calcd for $\mathrm{C}_{81} \mathrm{H}_{96} \mathrm{~N}_{5} \mathrm{O}_{19}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 1442.6700 , found: 1442.6659.

1-isopropyl- α-pseudaminosyl-(2 \rightarrow 4)-2,3-di- O-benzyl- β-d-xylopyranosyl-(1 $\rightarrow 3$)-2-acetamido-

4-O-benzyl-2-deoxy- $\boldsymbol{\beta}$-d-fucopyranoside (64):

To a stirred solution of $\mathbf{6 2}\left(126 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{MeOH}(10 \mathrm{~mL}), \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($104 \mathrm{mg}, 0.437 \mathrm{mmol}, 5.0$ equiv) was added. The solution was cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{NaBH}_{4}(33 \mathrm{mg}$, $0.874 \mathrm{mmol}, 10$ equiv) was added carefully. The black suspension of reactive nickel boride species was immediately generated. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h to achieve full conversion, then $\mathrm{Ac}_{2} \mathrm{O}\left(0.33 \mathrm{~mL}, 3.50 \mathrm{mmol}, 40\right.$ equiv) was added. After being stirred at $0{ }^{\circ} \mathrm{C}$ for another 1 h , the mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$, washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography using n-hexane : ethyl acetate $1: 1.5$ to $1: 2 v / v$ as eluent. The product 64 was obtained as colorless solid ($97 \mathrm{mg}, 76 \%$).
$[\alpha]^{25}-6.1^{\circ}(c=1.3, \mathrm{DCM})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9 \mathrm{C}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CHOBn}\right), 1.20\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOBn}\right), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 1.23(\mathrm{~d}, J=$ 6.3 Hz, $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.30\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.42(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}$ " $), 1.57$ (s, 3H, CH3CO), 2.17 (dd, $\left.J_{1}=13.5 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e} "\right), 2.27\left(\mathrm{dd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=4.0\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.31-2.37\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CO}\right), 2.52\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), 3.06-3.12 (m, 2H, H-5a' \& NH), 3.25 (dd, $\left.J_{1}=9.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.30-3.35$ (m, 1H, H-2), $3.39(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 '), 3.49(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.63(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.66-3.70 (m, 3H, H-4, H-4' \& H-5e'), 3.73-3.75 (m, 1H H-5"), 3.89 (d, J=9.6 Hz, 1H, H-6"), 3.91-3.99 (m, 2H, $\left.2 \times \mathrm{CH}_{3} \mathrm{CHOBn}\right), 4.00-4.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime \prime}\right), 4.07-4.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 4.32(\mathrm{~d}$, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}\right), 4.42\left(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.43\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.46(\mathrm{~s}, 2 \mathrm{H}$, $\left.2 \times \mathrm{PhCH}_{2}\right), 4.49\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.52\left(\mathrm{~d}, J=11.3 \mathrm{H}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.64\left(\mathrm{dd}, J_{1}=\right.$ $\left.11.0 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.75-4.82\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{PhCH}_{2}\right), 4.87(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})$, 4.92-5.00 (m, 4H, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \& 3 \times \mathrm{PhCH}_{2}\right), 5.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.11(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH $), 5.20-5.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8{ }^{\prime \prime}\right), 5.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.36-6.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.03(\mathrm{t}, J$
$=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.19-7.44(\mathrm{~m}, 34 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=13.7,16.7,19.78,19.84,21.57,21.59,23.4,35.6,42.0,44.2$, $48.8,52.0,55.9,63.4,66.8,66.9,69.2,69.6,69.7,70.3,70.8,70.9,71.1,72.0,72.5,74.3,75.0$, $76.7,77.6,79.1,82.3,82.7,97.3,98.2,105.1,127.3,127.4,127.48,127.51,127.55,127.7,127.86$, $127.95,128.03128 .05,128.08,128.14,128.19,128.21,128.26,128.30,128.49,128.52,128.6$, 128.7, 129.4, 136.5, 137.6, 137.7, 138.3, 138.4, 138.8, 139.1, 155.6, 167.8, 170.8, 171.2, 174.5. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{83} \mathrm{H}_{100} \mathrm{~N}_{3} \mathrm{O}_{20}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 1458.6895 , found: 1458.6849.

7-N-Formylamino-5- N - [(R)-3-hydroxybutyryl $]$ - $\alpha-$ pseudaminosyl-(2 $\rightarrow 4$)- β-d-xylopyranosyl-(

$1 \rightarrow 3$)-2-acetamido-2-deoxy- α / β-d-fucopyranose (3):

To a stirred solution of $\mathbf{6 4}(42 \mathrm{mg}, 0.029 \mathrm{mmol})$ in THF $(5.8 \mathrm{~mL})$, the solution of $\mathrm{LiOH}(12$ $\mathrm{mg}, 0.29 \mathrm{mmol}, 10$ equiv $)$ in $\mathrm{H}_{2} \mathrm{O}(0.58 \mathrm{~mL})$ was added. The concentration of $\mathbf{6 4}$ was controlled at 5 mM . The mixture was stirred at r.t. for 24 h . When full conversion was achieved, the mixture was neutralized by $\mathrm{NaHSO}_{4}\left(0.1 \mathrm{M}\right.$ solution in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, and was extracted by ethyl acetate $(50 \mathrm{~mL})$. The organic phase was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel flash chromatography using

DCM : MeOH $10: 1$ to $5: 1$ as eluent. The product 65 was obtained as colorless solid (35 mg , 97\%).

To a 10 mL round bottom flask containing $\mathbf{6 5}(20 \mathrm{mg}, 0.016 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd} / \mathrm{C}(10 \%$ Pd on activated carbon, 30 mg$), \mathrm{HOAc}(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were added. The mixture was stirred under $1 \mathrm{~atm} \mathrm{H}_{2}$ atmosphere for 48 h . After filtration, the filtrate was diluted with $\mathrm{H}_{2} \mathrm{O}$ and lyophilized to give the global deprotected intermediate $\mathbf{S 2 5}$, which was used in the next formylation step without purification.

To a flask containing S25, anhydrous $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added, followed by $\mathrm{Et}_{3} \mathrm{~N}(0.20$ $\mathrm{mL})$. The mixture was cooled to $-40{ }^{\circ} \mathrm{C}$, then a solution of formic anhydride $\left(\sim 0.8 \mathrm{~mol} / \mathrm{L}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$, freshly prepared from HCOOH and DCC following reported procedure, 1.0 mL) was added. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , then was stirred at $-20^{\circ} \mathrm{C}$ for 5 h . The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}$ dilution, and the MeOH and $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum. The suspension was filtered to remove DCU (from formic anhydride preparation step), and the filtrate was lyophilized to give the crude product with good purity (as indicated by ${ }^{1} \mathrm{H}$ NMR). The crude product was further purified by C 18 silica gel column using $\mathrm{H}_{2} \mathrm{O}$ as eluent. The product 3 was obtained as white powder ($8.2 \mathrm{mg}, 75 \%$ over 2 steps) after lyophilization.
$[\alpha]^{25}{ }_{\mathrm{D}}-32.9^{\circ}\left(c=0.55, \mathrm{H}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, mixture of α and β anomers at the reducing end): $\delta=1.07(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1.5 \mathrm{H}, \mathrm{H}-9 " \alpha$ or $\beta), 1.10-1.12\left(\mathrm{~m}, 7.5 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOH} \alpha \beta, \mathrm{H}-6 \alpha \beta \& \mathrm{H}-9 " \alpha\right.$ or $\left.\beta\right), 1.42(\mathrm{t}, J=13.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a} " \alpha \beta), 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO} \alpha \beta\right), 2.01\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e} " \alpha \beta\right)$, $2.26\left(\mathrm{dd}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO} \alpha \beta\right), 2.34\left(\mathrm{dd}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CO} \alpha \beta$), 3.12-3.18 (m, 2H, H-2' $\alpha \beta$ \& H-5a' $\alpha \beta$), 3.42-3.44 (m, 2H, H-3' $\alpha \beta$ \& H-4' $\alpha \beta$), 3.64 (t, J $=6.7 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-5 \alpha$ or $\beta), 3.67\left(\mathrm{dd}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-3 \beta\right), 3.77(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $0.5 \mathrm{H}, \mathrm{H}-4 \beta), 3.80-3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \beta, \mathrm{H}-4 \alpha \& \mathrm{H}-5 \mathrm{e}^{\prime} \alpha \beta\right), 3.87\left(\mathrm{dd}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 0.5 \mathrm{H}\right.$, $\mathrm{H}-3 \alpha), 4.06-4.18$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{H}-2 \alpha, \mathrm{H}-5 \alpha$ or β, Н-4" $\alpha \beta$, Н-5" $\alpha \beta, \mathrm{H}-6 " \alpha \beta, \mathrm{H}-7 " \alpha \beta, \mathrm{H}-8 " \alpha \beta \&$ $\left.\mathrm{CH}_{3} \mathrm{CHOH} \alpha \beta\right), 4.26\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-1^{\prime} \alpha\right.$ or $\left.\beta\right), 4.32\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-1^{\prime} \alpha\right.$ or $\left.\beta\right), 4.51$ (d, $J=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-1 \beta), 5.01(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-1 \alpha), 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} H O \alpha \beta)$.
${ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, mixture of α and β anomers at the reducing end): $\delta=15.5,16.1,21.98$, $22.02,22.2,35.4,44.8,48.6,48.7,52.1,52.6,62.8,64.8,65.0,66.1,66.8,70.3,70.6,71.2,72.7$, $72.8,73.6,73.7,76.8,79.9,91.0(\mathrm{C}-1 \alpha), 94.9(\mathrm{C}-1 \beta), 98.2\left(\mathrm{C}-2{ }^{2}\right), 104.7(\mathrm{C}-1 ' \alpha$ or $\beta), 104.9(\mathrm{C}-1$ ' α
or β), 163.8, 174.6, 174.7, 174.9, 176.3.
HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{17}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 684.2822, found: 684.2005.

References

(1) Kawulka, K. E.; Sprules, T.; Diaper, C. M.; Whittal, R. M.; McKay, R. T.; Mercier, P.; Zuber, P.; Vederas, J. C. Biochemistry 2004, 43, 3385-3395.
(2) Bongini, A.; Panunzio, M.; Bandini, E.; Martelli, G.; Spunta, G. J. Org. Chem. 1997, 62, 8911-8913.
(3) Rotstein, B. H.; Winternheimer, D. J.; Yin, L. M.; Deber, C. M.; Yudin, A. K. Chem. Commun. 2012, 48, 3775-3777.
(4) Lee, Y. J.; Ishiwata, A.; Ito, Y. Tetrahedron 2009, 65, 6310-6319.
(5) Lee, Y. J.; Kubota, A.; Ishiwata, A.; Ito, Y. Tetrahedron Lett. 2011, 52, 418-421.
(6) Franck-Neumann, M.; Miesch-Gross, L.; Gateau, C. Eur. J. Org. Chem. 2000, 3693-3702.
(7) Wilstermann, M.; Magnusson, G. J. Org. Chem. 1997, 62, 7961-7971.
(8) Ishiwata, A.; Sakurai, A.; Nishimiya, Y.; Tsuda, S.; Ito, Y. J. Am. Chem. Soc. 2011, 133, 19524-19535.
(9) Tamura, J.; Yamaguchi, A.; Tanaka, J.; Nishimura, Y. J. Carbohydr. Chem. 2007, 26, 61-82.
(10) Gagarinov, I. A.; Fang, T.; Liu, L.; Srivastava, A. D.; Boons, G.-J. Org. Lett. 2015, 17, 928-931.
(11) Williams, J. T.; Corcilius, L.; Kiefel, M. J.; Payne, R. J. J. Org. Chem. 2016, 81, 2607-2611.
(12) Seebach, D.; Brändli, U.; Schnurrenberger, P.; Przybylski, M. Helv. Chim. Acta. 1988, 71, 155-167.
${ }^{1} \mathbf{H}$ NMR of compound S_{2}

${ }^{13}$ C NMR of compound $S 2$

${ }^{1} \mathrm{H}$ NMR of compound 10

${ }^{13}$ C NMR of compound 10

${ }^{1} \mathrm{H}$ NMR of compound 11

${ }^{13} \mathrm{C}$ NMR of compound 11

${ }^{1} \mathrm{H}$ NMR of compound 13

${ }^{13}$ C NMR of compound 13

${ }^{1} H$ NMR of compound $\mathbf{1 5 a}$

${ }^{13} \mathrm{C}$ NMR of compound 15 a

${ }^{1} H$ NMR of compound $\mathbf{1 5 b}$

${ }^{13} \mathrm{C}$ NMR of compound 15 b

${ }^{1} \mathrm{H}$ NMR of compound 12

${ }^{13} \mathrm{C}$ NMR of compound 12

${ }^{1} H$ NMR of compound $S 4$

${ }^{13} \mathrm{C}$ NMR of compound S4

${ }^{1} \mathrm{H}$ NMR of compound 14

${ }^{13} \mathrm{C}$ NMR of compound 14

${ }^{1} H$ NMR of compound $16 a$

${ }^{13} \mathrm{C}$ NMR of compound 16 a

${ }^{1} H$ NMR of compound $\mathbf{1 6 b}$

${ }^{13} \mathrm{C}$ NMR of compound 16 b

${ }^{1} H$ NMR of compound S6a

${ }^{13} \mathrm{C}$ NMR of compound S6a

${ }^{1} H$ NMR of compound $\mathbf{S 6 b}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 6 b}$

${ }^{1} \mathrm{H}$ NMR of compound 29

${ }^{13} \mathrm{C}$ NMR of compound 29

${ }^{1} \mathbf{H}$ NMR of compound 30

${ }^{13}$ C NMR of compound 30

${ }^{1}$ H NMR of compound 31

${ }^{13}$ C NMR of compound 31

${ }^{1} H$ NMR of compound 33a

${ }^{13} \mathrm{C}$ NMR of compound 33a

${ }^{1} H$ NMR of compound $34 a$

${ }^{13} \mathrm{C}$ NMR of compound 34a

${ }^{1}$ H NMR of compound S7

${ }^{13} \mathrm{C}$ NMR of compound S 7

${ }^{1}$ H NMR of compound 35

${ }^{13}$ C NMR of compound 35

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 35

2D NOESY of compound 35

${ }^{1}$ H NMR of compound 33b

${ }^{13} \mathrm{C}$ NMR of compound 33b

${ }^{1}$ H NMR of compound 34b

${ }^{13} \mathrm{C}$ NMR of compound 34b

${ }^{1} H$ NMR of compound $19 s y n$

${ }^{13} \mathrm{C}$ NMR of compound 19 syn

${ }^{1} \mathrm{H}$ NMR of compound 19 anti

${ }^{13} \mathrm{C}$ NMR of compound 19 anti

${ }^{1} \mathrm{H}$ NMR of compound 20

${ }^{13}$ C NMR of compound 20

${ }^{1} H$ NMR of compound 21syn

${ }^{13}$ C NMR of compound 21 syn

${ }^{1} \mathrm{H}$ NMR of compound 21anti

${ }^{13} \mathrm{C}$ NMR of compound 21anti

${ }^{1} H$ NMR of compound $22 s y n$

${ }^{13} \mathrm{C}$ NMR of compound 22 syn

${ }^{1} \mathrm{H}$ NMR of compound 22anti

${ }^{13} \mathrm{C}$ NMR of compound 22 anti

${ }^{1} \mathrm{H}$ NMR of compound 23

${ }^{13} \mathrm{C}$ NMR of compound 23

${ }^{1} H$ NMR of compound $\mathbf{2 4 \alpha}$

${ }^{13} \mathrm{C}$ NMR of compound 24α

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 24α

${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HSQC of compound 24α

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC of compound 24α

${ }^{1} \mathrm{H}$ NMR of compound 24β

${ }^{13} \mathrm{C}$ NMR of compound 24β

${ }^{1} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$ COSY of compound $\mathbf{2 4 \beta}$

${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC of compound 24β

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC of compound 24β

${ }^{1} \mathrm{H}$ NMR of compound 25

${ }^{13} \mathrm{C}$ NMR of compound 25

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 25

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 25

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC of compound 25

${ }^{1} H$ NMR of compound 26

${ }^{13}$ C NMR of compound 26

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 26

${ }^{1} \mathrm{H}$ NMR of compound 27

${ }^{13} \mathrm{C}$ NMR of compound 27

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 27

${ }^{1} \mathrm{H}$ NMR of compound 28

${ }^{13}$ C NMR of compound 28

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 28

${ }^{1}$ H NMR of compound S15

${ }^{13}$ C NMR of compound S15

${ }^{1}$ H NMR of compound S16

${ }^{13} \mathrm{C}$ NMR of compound S16

${ }^{1} \mathbf{H}$ NMR of compound 39

${ }^{13} \mathrm{C}$ NMR of compound 39

${ }^{1} \mathrm{H}$ NMR of compound S 17

${ }^{13} \mathrm{C}$ NMR of compound S 17

${ }^{1} H$ NMR of compound S18

${ }^{13} \mathrm{C}$ NMR of compound S18

${ }^{1} H$ NMR of compound S19

${ }^{13} \mathrm{C}$ NMR of compound S19

${ }^{1} H$ NMR of compound $\mathbf{S 2 0}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 2 0}$

${ }^{1} \mathrm{H}$ NMR of compound 40

${ }^{13}$ C NMR of compound 40

${ }^{1} \mathrm{H}$ NMR of compound 43

${ }^{13} \mathrm{C}$ NMR of compound 43

${ }^{1} \mathrm{H}$ NMR of compound 45

${ }^{13} \mathrm{C}$ NMR of compound 45

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 45

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 45

${ }^{1}$ H NMR of compound $\mathbf{S 2 1}$

${ }^{13} \mathrm{C}$ NMR of compound S 21

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound S 21

${ }^{1}$ H NMR of compound 46

${ }^{13}$ C NMR of compound 46

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 46

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 46

${ }^{1}$ H NMR of compound 48

${ }^{13} \mathrm{C}$ NMR of compound 48

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 48

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HSQC of compound 48

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC of compound 48

${ }^{1} H$ NMR of compound 49α

${ }^{13} \mathrm{C}$ NMR of compound 49α

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 49α

${ }^{1} \mathrm{H}^{13} \mathrm{C} \operatorname{COSY}$ of compound 49α

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC of compound 49α

${ }^{1}$ H NMR of compound 49β

${ }^{13}$ C NMR of compound 49β

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 49β

${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC of compound 49β

${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMBC of compound 49β

${ }^{1} H$ NMR of compound 50α

${ }^{13}$ C NMR of compound 50α

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 50α

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HSQC of compound 50α

${ }^{1} H$ NMR of compound 50β

${ }^{13} \mathrm{C}$ NMR of compound 50β

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ of compound $\mathbf{5 0 \beta}$

${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HSQC of compound 50β

${ }^{1} H$ NMR of compound 51α

${ }^{13} \mathrm{C}$ NMR of compound 51α

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 51α

${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HSQC of compound 51α

${ }^{1}$ H NMR of compound 51β

${ }^{13}$ C NMR of compound 51β

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ of compound 51β

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 51β

${ }^{1} \mathrm{H}$ NMR of compound 52

${ }^{13}$ C NMR of compound 52

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 52

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HSQC of compound 52

${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC of compound 52

${ }^{1}$ H NMR of compound 53α

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 53α

${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC of compound 53α

${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC of compound 53α

${ }^{1}$ H NMR of compound 53β

${ }^{13} \mathrm{C}$ NMR of compound 53β

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound $\mathbf{5 3 \beta}$

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 53β

${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMBC of compound 53β

${ }^{1}$ H NMR of compound 54

${ }^{13}$ C NMR of compound 54

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 54

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 54

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC of compound 54

${ }^{1} \mathrm{H}$ NMR of compound 55

${ }^{13} \mathrm{C}$ NMR of compound 55

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 55

${ }^{1}$ H NMR of compound 56

${ }^{13}$ C NMR of compound 56

${ }^{1} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$ COSY of compound 56

${ }^{1} \mathrm{H}$ NMR of compound 1

${ }^{13} \mathrm{C}$ NMR of compound 1

${ }^{1} \mathrm{H}$ NMR of compound 57

${ }^{13} \mathrm{C}$ NMR of compound 57

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 57

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 57

${ }^{1} \mathrm{H}$ NMR of compound 58

${ }^{13}$ C NMR of compound 58

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 58

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 58

${ }^{1}$ H NMR of compound 59

${ }^{13}$ C NMR of compound 59

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 59

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HSQC of compound 59

${ }^{1} \mathrm{H}$ NMR of compound 63

${ }^{13}$ C NMR of compound 63

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 63

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 63

${ }^{1} H$ NMR of compound 61 α

${ }^{13} \mathrm{C}$ NMR of compound 61α

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 61α

${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HSQC of compound $\mathbf{6 1 \alpha}$

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC of compound 61α

${ }^{1} \mathrm{H}$ NMR of compound 61β

${ }^{13}$ C NMR of compound 61β

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound $\mathbf{6 1 \beta}$

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HSQC of compound 61β

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC of compound $\mathbf{6 1} \beta$

${ }^{1} \mathrm{H}$ NMR of compound 62

${ }^{13} \mathrm{C}$ NMR of compound 62

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 62

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 62

${ }^{1} \mathrm{H}$ NMR of compound 64

${ }^{13}$ C NMR of compound 64

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 64

${ }^{1} \mathrm{H}_{-}^{13} \mathrm{C}$ HSQC of compound 64

${ }^{1} \mathrm{H}$ NMR of compound 3

${ }^{13} \mathrm{C}$ NMR of compound 3

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 3

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of compound 3

[^0]: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2: 1$ mixture of two rotamers): $\delta=15.6$ (major \& minor), 24.3

