Supporting Information for:

Synthesis and Properties of Quinoidal Fluorenofluorenes

Joshua E. Barker, Conerd K. Frederickson, Michael H. Jones, Lev N. Zakharov, and Michael M. Haley*
Department of Chemistry \& Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
haley@uoregon.edu

Table of Contents Page
Experimental Details S2
X-ray Crystallographic Data S6
Computational Details S8
References S14
Copies of NMR Spectra S15

Experimental Details

General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at room temperature using either a Bruker Avance III HD 500 equipped with a Prodigy multinuclear cryoprobe $\left({ }^{1} \mathrm{H}: 500\right.$ $\left.\mathrm{MHz},{ }^{13} \mathrm{C}: 126 \mathrm{MHz}\right)$ or Bruker Avance III HD $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 600.02 \mathrm{MHz},{ }^{13} \mathrm{C}: 150.89 \mathrm{MHz}\right)$ NMR spectrometer with Prodigy multinuclear broadband cryoprobe. Chemical shifts (δ) are expressed in ppm relative to the residual non-deuterated solvent $\left(\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}: 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}\right.$: $77.16 \mathrm{ppm})$. UV-Vis spectra were recorded on an HP 8453 UV -Vis spectrometer. THF and toluene were distilled from Na /benzophenone ketyl under nitrogen prior to use. Compounds $\mathbf{9}^{1}$ and $\mathbf{1 2}^{2}$ were prepared according to literature procedures. Unless stated otherwise, all solvents and reagents were used as received.

Diphenyl diester 10. Phenylboronic acid ($270.7 \mathrm{mg}, 2.22 \mathrm{mmol}$), ditriflate 9 (200 mg , $0.370 \mathrm{mmol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(235.6 \mathrm{mg}, 1.11 \mathrm{mmol})$ were dissolved in dry toluene $(25 \mathrm{~mL})$ and the mixture was sparged with N_{2} for $1 \mathrm{~h} . \mathrm{Pd}(\mathrm{OAc})_{2}(3.3 \mathrm{mg}, 0.0148 \mathrm{mmol})$ and SPhos $(12.2 \mathrm{mg}$, 0.0296 mmol) were then added. After sparging for an additional 20 min the reaction mixture was heated to reflux overnight. After cooling, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water and brine solution, and then dried $\left(\mathrm{MgSO}_{4}\right)$. The crude reaction mixture was purified via column chromatography on SiO_{2} ($3: 2$ hexanes:EtOAc) to yield $10(123 \mathrm{~g}, 84 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~s}, 2 \mathrm{H}), 7.92(\mathrm{~s}$, $2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 10 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.90,140.98,139.70$, $132.60,131.62,130.67,130.31,128.58,128.34,52.38$. HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 397.1440, found 397.1448.

Dione 11. A mixture of diester $10(400 \mathrm{mg}, 1.01 \mathrm{mmol})$, $\mathrm{EtOH}(96 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(24 \mathrm{~mL})$, and $\mathrm{KOH}(906 \mathrm{mg})$ was refluxed overnight. The reaction was concentrated to remove the EtOH and the resulting aqueous mixture was acidified carefully by dropwise addition of concentrated HCl solution. The resulting precipitate was collected, washed with $\mathrm{H}_{2} \mathrm{O}$, and then dried in an oven to give the diacid as a beige solid. The diacid was then stirred in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ overnight. The reaction mixture was poured over ice and stirred for 5 min . The product was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$, hexanes, and acetone to yield dione 11 ($251 \mathrm{mg}, 86 \%$) as a bright red solid. Due to
very poor solubility, NMR data for $\mathbf{1 1}$ could not be obtained. HRMS (EI +) for $\mathrm{C}_{24} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}]^{+}$: calcd 332.0837, found 332.0825.

Fluoreno[3,2-b]fluorene 2. An oven dried flask containing THF (15 mL) and mesityl bromide ($0.127 \mathrm{~mL}, 0.831 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and then $n-\mathrm{BuLi}(0.312 \mathrm{~mL}, 2.5 \mathrm{M}$ solution, 0.779 mmol) was added slowly. The reaction was stirred for 30 min and then added slowly to a THF solution of dione $11(59 \mathrm{mg}, 0.104 \mathrm{mmol})$ under N_{2} at $-78^{\circ} \mathrm{C}$. After warming the solution to room temperature overnight, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with water and then brine solution. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the volatiles removed to give a crude yellow solid that was used without further purification.

Under N_{2} the crude diol ($\left.\sim 50 \mathrm{mg}, \sim 0.174 \mathrm{mmol}\right)$ and $\mathrm{SnCl}_{2}(185 \mathrm{mg}, 0.699 \mathrm{mmol})$ were dissolved in toluene (20 mL). Immediately 10 drops of trifluoroacetic acid (TFA) were added and the solution became a deep blue color. Upon completion (ca. 2-4 h), the mixture was passed through a SiO_{2} plug eluting with 1:1 hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was concentrated to dryness then dissolved in minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and layered with $\mathrm{CH}_{3} \mathrm{CN}$ and cooled in the freezer. The precipitated product was filtered to yield $2(17 \mathrm{mg}, 30 \%)$ as a dark blue-purple solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.06(\mathrm{~m}$, $2 \mathrm{H}), 7.02(\mathrm{~s}, 4 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.97,137.64,137.41,137.40,137.00,134.90,131.69,130.42,128.37$, 128.08, 127.64, 126.70, 124.92, 122.08, 120.76, 21.35, 20.46. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon) 342$ $(20,860), 561 \mathrm{sh}(8820), 600(11,640) \mathrm{nm}$. HRMS (EI+) for $\mathrm{C}_{42} \mathrm{H}_{34}[\mathrm{M}]^{+}$: calcd 538.2661, found 538.2677. Note: the poor solubility of $\mathbf{2}$ hindered the acquisition of good NMR spectra, as the poor solubility has the side effect of greatly exaggerating impurities present in the CDCl_{3} of H-grease impurities present in the samples from our Schlenk line.

Diphenyl 13. To a mixture of phenylboronic acid $(6.01 \mathrm{~g}, 44.3 \mathrm{mmol})$, dibromide $\mathbf{1 2}^{2}$ (5.00 $\mathrm{g}, 15.9 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(229 \mathrm{mg}, 0.39 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.02 \mathrm{~g}, 60.8 \mathrm{mmol})$ in a 350 mL heavy-walled flask was added dry toluene $(60 \mathrm{~mL})$. After degassing the mixture with N_{2} for 30 min, the reaction was sealed and heated to reflux overnight. After cooling to r.t. the reaction was
filtered to remove solid impurities and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated under reduced pressure and recrystallized from toluene to yield $\mathbf{1 3}(3.12 \mathrm{~g}, 63 \%)$ as fine white needles. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 140.24,138.11,132.12,131.51,130.33,128.60,128.52,127.08$, 125.60, 20.73. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{20}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 309.1643, found 309.1647.

Dione 14. Diphenyl 13 ($0.503 \mathrm{~g}, 1.6 \mathrm{mmol}$), KOH ($0.972 \mathrm{~g}, 17.3 \mathrm{mmol}$), and pyridine (15 $\mathrm{mL})$ were heated to reflux. Once the mixture was at reflux, $\mathrm{KMnO}_{4}(3 \mathrm{~g}, 19 \mathrm{mmol})$ and water $(8.7 \mathrm{~mL})$ were added portionwise over 4 h . After refluxing overnight, the reaction mixture was cooled and then filtered through a celite plug with a hot solution of 10% aqueous KOH . The filtrate was acidified with concentrated HCl upon which a precipitate formed. Filtration yielded the mono-acid side product as an off-white solid. Further acidification of this filtrate yielded the crude diacid as a white flaky solid, which was subsequently dissolved in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (10 mL) and stirred overnight. The reaction was quenched by pouring over ice to give a bright red precipitate. The solid was filtered and washed with acetone to yield dione 14 ($248 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. Due to poor solubility, ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1 4}$ could not be obtained. HRMS (EI+) for $\mathrm{C}_{24} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}]^{+}$: calcd 332.0837, found 332.0831 .

Fluoreno[4,3-c]fluorene 8. To an oven-dried flask containing dione $\mathbf{1 4}$ ($150 \mathrm{mg}, 0.45$ mmol) dissolved in THF under N_{2} was added mesitylmagnesium bromide ($4 \mathrm{~mL}, 1.0 \mathrm{M}$ solution, 4 mmol) was added at $0^{\circ} \mathrm{C}$. The reaction solution was stirred overnight and transitioned from a dark reddish-brown color to a turquoise color. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase was washed with water and then brine solution. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the volatiles removed. The resulting crude solid was used without further purification.

Under N_{2} the crude diol was dissolved in degassed toluene (20 mL) and anhydrous SnCl_{2} ($809 \mathrm{mg}, 4.3 \mathrm{mmol}$) was added. The reaction was stirred for 16 h at room temperature at which
time the solution had turned a deep purple color. The reaction solution was evaporated and the crude product was purified on a silica gel plug eluting with $4: 1$ hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was recrystallized by layering $\mathrm{CH}_{3} \mathrm{CN}$ over a saturated solution in CHCl_{3}. The solid was was collected by filtration to yield $\mathbf{8}(128 \mathrm{mg}, 47 \%)$ as dark blue crystal. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~s}$, 12H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.00,143.84,138.09,137.68,137.26,136.99,134.15$, 132.92, 130.12, 128.35, 127.88, 126.92, 125.41, 124.99, 122.47, 122.12, 21.34, 20.41. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon) 331(34,160), 554 \mathrm{sh}(14,950), 594(19,480), 637(14,970) \mathrm{nm}$. HRMS (ESI) for $\mathrm{C}_{42} \mathrm{H}_{34}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 539.2736, found 539.2739.

X-ray Crystallographic Data

General. Diffraction intensities for $\mathbf{8}$ were collected at 173 K on a Bruker Apex2 CCD diffractometer using a Incoatec $\mathrm{Cu} I \mu S$ source, $\mathrm{CuK} \alpha$ radiation, $1.54178 \AA$. Space group was determined based on intensity statistics. Absorption correction was applied by SADABS. ${ }^{3}$ Structure was solved by direct methods and Fourier techniques and refined on F^{2} using full matrix least-squares procedures. All non-H atoms were refined with anisotropic thermal parameters. H atoms were treated in calculated positions in a rigid group model. All calculations were performed by the SHELXL-2014/7 packages. ${ }^{4}$

Crystallographic Data for 8: $\mathrm{C}_{42} \mathrm{H}_{34}, \mathrm{M}=538.69,0.09 \times 0.08 \times 0.06 \mathrm{~mm}, \mathrm{~T}=173(2) \mathrm{K}$, Triclinic, space group $P-1, a=7.1561(6) \AA$, $b=8.0619(6) \AA$, $c=12.8650(10) \AA, \alpha=87.837(4)^{\circ}$, $\beta=88.161(4)^{\circ}, \gamma=75.494(4)^{\circ}, V=717.84(10) \AA^{3}, Z=1, Z^{\prime}=0.5, D \mathrm{c}=1.246 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Cu})=$ $0.529 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=286,2 \theta_{\text {max }}=133.00^{\circ}, 8275$ reflections, 2481 independent reflections [Rint $=0.0454], \mathrm{R} 1=0.0621, \mathrm{wR} 2=0.1733$ and $\mathrm{GOF}=1.065$ for 2481 reflections (190 parameters) with $I>2 \sigma(I), \mathrm{R} 1=0.0677, \mathrm{wR} 2=0.1778$ and $\mathrm{GOF}=1.065$ for all reflections, $\mathrm{max} / \mathrm{min}$ residual electron density $+0.459 /-0.442$ e \AA^{-3}.

Figure S1. Molecular structure and atom labeling for fluoreno[4,3-c]fluorene 8; ellipsoids at the 50\% probability level.

Figure S2. Molecular packing of fluoreno[4,3-c]fluorene 8.

Computational Details

All calculations related were performed using Gaussian 09. ${ }^{5}$ Geometries and TD-DFT calculations were optimized using RB3LYP/6-31++G(d,p) level of theory and the structures were verified as global minima by the absence of imaginary frequencies. All NICS-XY scans were carried out with the Aroma package ${ }^{6}$ with the B3LYP/6-311+G* level of theory following the established procedures as a singlet in either the open or closed shell regime as stated in the plot. Biradical character index values were calculated using an unrestricted long range corrected method with a range separating parameter μ of $0.33 \mathrm{bohr}^{-1}$ similar to that used by the Nakano group for calculating the biradical character if indenofluorenes. ${ }^{7}$

Figure S3. Comparison of the NICS-XY scans of the open and closed shell structures for fluorenofluorene isomers $\mathbf{2}^{\prime}, 5^{\circ}$, and $\mathbf{8}^{`}$.

Calculated Geometries

| Zero-point correction $=$ | 0.297931 (Hartree/Particle) |
| :--- | :---: | :---: |
| Thermal correction to Energy $=$ | 0.313994 |
| Thermal correction to Enthalpy $=$ | 0.314938 |
| Thermal correction to Gibbs Free Energy= | 0.254485 |
| Sum of electronic and zero-point Energies $=$ | -922.737573 |
| Sum of electronic and thermal Energies $=$ | -922.721510 |
| Sum of electronic and thermal Enthalpies $=$ | -922.720566 |
| Sum of electronic and thermal Free Energies $=$ | -922.781018 |

C	-1.7309	-1.86858	0.
C	-2.46988	-0.60267	0.
C	-1.7539	0.62373	0.
C	-0.36975	0.63339	0.
C	0.36976	-0.6334	0.
C	-0.36975	-1.87376	0.
C	0.36976	1.87376	0.
C	1.73091	1.86857	0.
C	2.46989	0.60267	0.
C	1.75391	-0.62373	0.
C	2.72993	2.93887	0.
C	4.01528	2.312	0.
C	3.82893	0.87735	0.
C	-2.72994	-2.93887	0.
C	-4.01528	-2.31199	0.
C	-3.82892	-0.87734	0.
C	-2.62251	-4.32709	0.
C	-3.79325	-5.09751	0.
C	-5.05672	-4.4855	0.
C	-5.17858	-3.0934	0.
C	2.6225	4.32709	0.
C	3.79323	5.09752	0.
C	5.05671	4.48551	0.
C	5.17858	3.09341	0.
H	-2.29666	1.56648	0.
H	0.19296	-2.80484	0.
H	-0.19296	2.80483	0.
H	2.29666	-1.56648	0.
H	4.62811	0.14461	0.
H	-4.6281	-0.14461	0.
H	-1.65073	-4.81359	0.
H	-3.72245	-6.18124	0.
H	-5.95005	-5.10328	0.

H	-6.15983	-2.62657	0.
H	1.65072	4.81358	0.
H	3.72243	6.18124	0.
H	5.95004	5.1033	0.
H	6.15984	2.62659	0.

5

Zero-point correction $=$	0.297026 (Hartree/Particle)
Thermal correction to Energy $=$	0.313139
Thermal correction to Enthalpy $=$	0.314083
Thermal correction to Gibbs Free Energy $=$	0.253581
Sum of electronic and zero-point Energies $=$	-922.724625
Sum of electronic and thermal Energies=	-922.708512
Sum of electronic and thermal Enthalpies=	-922.707567
Sum of electronic and thermal Free Energies=	-922.768070

C	2.43509	-1.26102	0.
C	2.43427	0.19625	0.
C	1.23944	0.89124	0.
C	0.	0.20425	0.
C	-0.00017	-1.24923	0.
C	1.22698	-1.95349	0.
C	-1.23952	0.89145	0.
C	-2.43433	0.19662	0.
C	-2.43534	-1.26073	0.
C	-1.22722	-1.95334	0.
C	-3.81453	0.61	0.
C	-4.6281	-0.58692	0.
C	-3.77839	-1.71837	0.
C	3.77794	-1.71905	0.
C	4.62805	-0.5878	0.
C	3.81456	0.60948	0.
C	-4.42848	1.87175	0.
C	-5.81686	1.94771	0.
C	-6.6189	0.77726	0.
C	-6.04078	-0.47985	0.
C	6.04074	-0.48095	0.
C	6.61915	0.77599	0.
C	5.81734	1.94663	0.
C	4.42898	1.87103	0.
H	1.23019	1.9794	0.

H	1.21179	-3.04155	0.
H	-1.23002	1.97961	0.
H	-1.2122	-3.04139	0.
H	-4.09665	-2.75433	0.
H	4.09576	-2.75515	0.
H	-3.83191	2.77998	0.
H	-6.30091	2.92012	0.
H	-7.70041	0.87631	0.
H	-6.65792	-1.37423	0.
H	6.65766	-1.37548	0.
H	7.70068	0.87477	0.
H	6.30155	2.91896	0.
H	3.83275	2.7795	0.

$\mathbf{8 `}$	
Zero-point correction=	
Thermal correction to Energy $=$	0.297946
(Hartree/Particle)	
Thermal correction to Enthalpy $=$	0.314284
Thermal correction to Gibbs Free Energy $=$	0.253709
Sum of electronic and zero-point Energies=	-922.727065
Sum of electronic and thermal Energies=	-922.710728
Sum of electronic and thermal Enthalpies=	-922.709783
Sum of electronic and thermal Free Energies=	-922.771303

C	-2.46518	0.74896	0.
C	-1.66871	1.93717	0.
C	-0.21186	1.84626	0.
C	0.41918	0.61128	0.
C	-0.41918	-0.61128	0.
C	-1.85981	-0.46798	0.
C	1.85981	0.46798	0.
C	2.46518	-0.74896	0.
C	1.66871	-1.93717	0.
C	0.21186	-1.84626	0.
C	2.05271	-3.26025	0.
C	0.86689	-4.0911	0.
C	-0.28592	-3.24179	0.
C	-2.05271	3.26025	0.
C	-0.86689	4.0911	0.
C	0.28592	3.24179	0.
C	-0.74292	5.48093	0.

C	0.53696	6.04946	0.
C	1.66871	5.23022	0.
C	1.55093	3.82957	0.
C	0.74292	-5.48093	0.
C	-0.53696	-6.04946	0.
C	-1.66871	-5.23022	0.
C	-1.55093	-3.82957	0.
H	-3.54887	0.82873	0.
H	-2.4685	-1.35977	0.
H	2.4685	1.35977	0.
H	3.54887	-0.82873	0.
H	3.07285	-3.62769	0.
H	-3.07285	3.62769	0.
H	-1.62727	6.11254	0.
H	0.65034	7.12956	0.
H	2.65833	5.67755	0.
H	2.45938	3.2406	0.
H	1.62727	-6.11254	0.
H	-0.65034	-7.12956	0.
H	-2.65833	-5.67755	0.
H	-2.45938	-3.2406	0.

Table S1. TD-DFT calculated transitions for model fluorenofluorenes $\mathbf{2}^{\text { }}$ and $\mathbf{8}^{\text {² }}$.

| FF 2` & & & \\ \hline Exited state 1 & HOMO-1 to LUMO & 647.41 nm & Oscillator strength \(\mathrm{f}=0\) \\ \hline Exited state 2 & HOMO-2 to LUMO & 606.55 nm & Oscillator strength \(\mathrm{f}=0.6830\) \\ \hline & HOMO to LUMO & & \\ \hline Excited state 3 & HOMO to LUMO +1 & 466.36 nm & Oscillator strength \(\mathrm{f}=0.0000\) \\ \hline Excited state 4 & HOMO to LUMO +3 & 410.18 nm & Oscillator strength \(\mathrm{f}=0.0000\) \\ \hline & HOMO-2 to LUMO & & \\ \hline Excited sate 5 & HOMO-3 to LUMO & 404.68 nm & Oscillator strength \(\mathrm{f}=0.0296\) \\ \hline \end{tabular} \begin{tabular}{\|l|l|l|l|} \hline FF 8` | | | |
| :--- | :--- | :--- | :--- |
| Exited state 1 | HOMO-1 to LUMO | 765.20 nm | Oscillator strength $\mathrm{f}=0$ |
| Exited state 2 | HOMO-2 to LUMO | 631.05 nm | Oscillator strength $\mathrm{f}=0.3892$ |
| | HOMO to LUMO | | |
| | HOMO-1 to LUMO+1 | | |
| Excited state 3 | HOMO-2 to LUMO | 486.65 nm | Oscillator strength $\mathrm{f}=0.2611$ |
| | HOMO to LUMO | | |
| | HOMO-1 to LUMO+1 | | |

References

1. Knall, A.-C.; Ashraf, R. S.; Nikolka, M.;Nielsen, C. B.; Purushothaman, B.; Sadhanala, A.; Hurhangee, M.; Broch, K.; Harkin, D. J.; Novák, J.; Neophytou, M.; Hayoz, P.; Sirringhaus, H.; McCulloch, I. Adv. Funct. Mater. 2016, 26, 6961-6969.
2. Anton, U.; Adam, M.; Wagner, M.; Qi-Liu, Z.; Müllen, K. Chem. Ber. 1993, 126, 517-521.
3. Sheldrick, G. M. Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, WI, 1998.
4. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
5. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Men-nucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Son-nenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;Dapprich, S.;Daniels,A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2010.
6. Rahalkar, A.; Stanger, A. "Aroma", http://chemistry.technion.ac.i1/members/amnon-stanger/
7. Fukuda, K.; Nagumi, T.; Fujiyoshi, J.-Y.; Nakano, M. J. Phys. Chem. A. 2015, 119, 1062010627.

Copies of NMR Spectra

