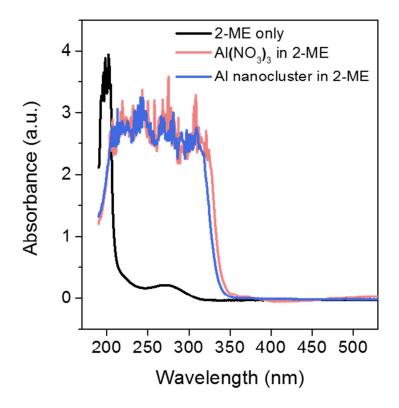
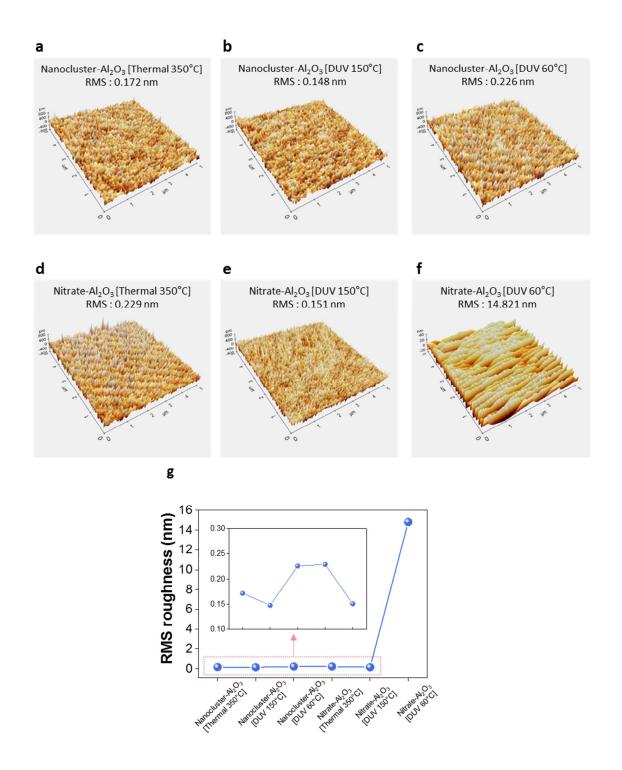
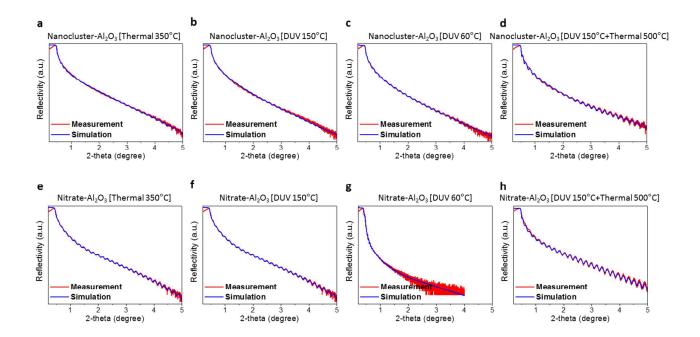
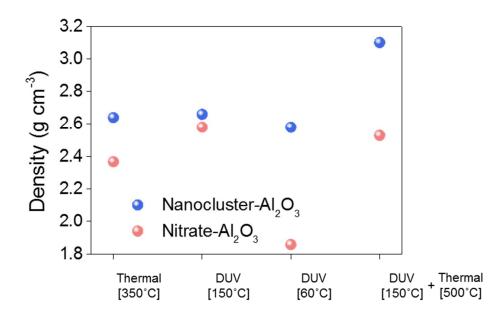

Supporting Information:

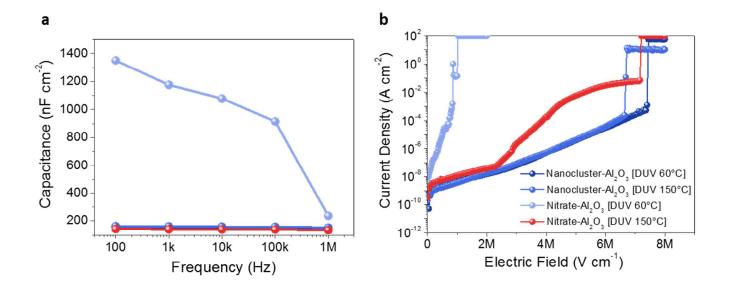
Ultralow Temperature Solution-Processed Aluminum-Oxide Dielectrics via Local Structure Control of Nanoclusters

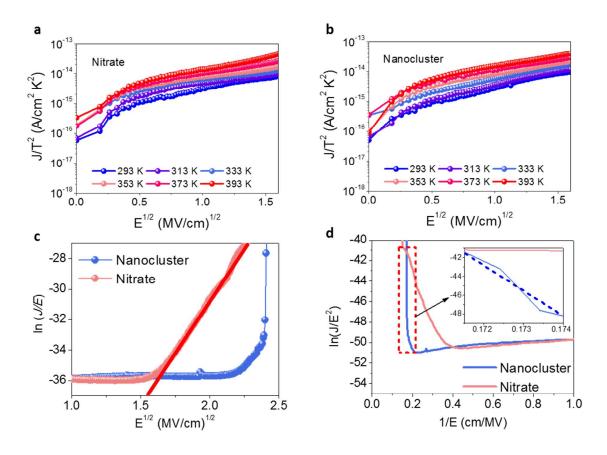

Jeong-Wan Jo^{1†}, Yong-Hoon Kim^{2†}, Joohyung Park³, Jae Sang Heo¹, Seongpil Hwang⁴, Won-June Lee⁵, Myung-Han Yoon⁵, Myung-Gil Kim^{3*}, and Sung Kyu Park^{1*}

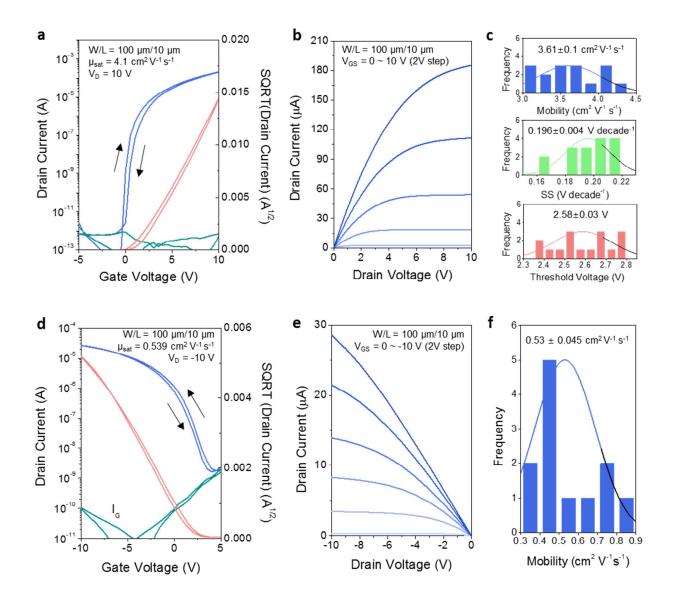

Figure S1. ²⁷Al MAS NMR spectrum of the nanocluster-aluminum precursor powder obtained by evaporating the nanocluster-aluminum precursor solution (solvent: 2-methoxyethanol)

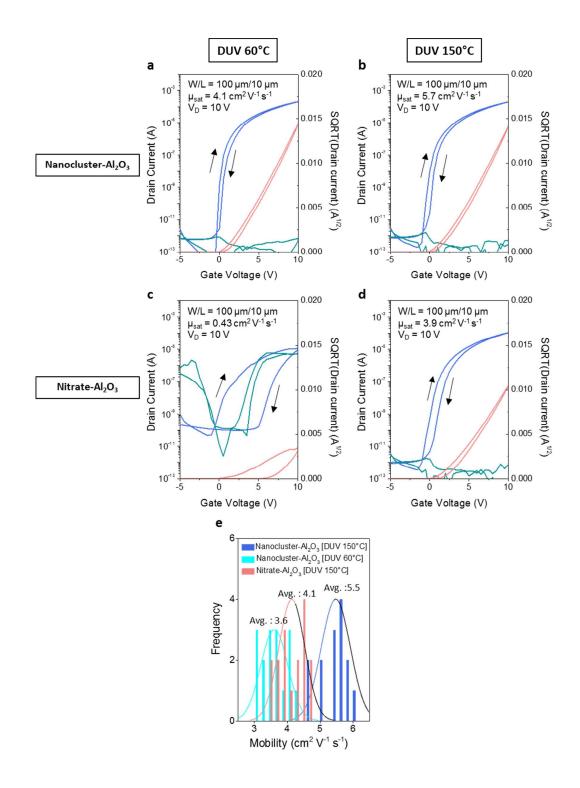

Figure S2. N1s XPS spectra of DUV activated aluminum oxide films. The DUV activation was carried out at temperatures of 50 and 150 °C.


Figure S3. Light absorption characteristics of 2-ME, aluminum nitrate solution, and aluminum nanocluster solution.


Figure S4. AFM images of nanocluster- and nitrate-Al₂O₃ films. AFM images of nanocluster-Al₂O₃ films annealed by (a) thermal 350 °C, (b) DUV 150 °C and (c) DUV 60 °C. AFM images of nitrate-Al₂O₃ films annealed by (d) thermal 350 °C, (e) DUV 150 °C and (f) DUV 60 °C. (g) RMS surface roughness of nanocluster- and nitrate-Al₂O₃ films (Thermal 350 °C, DUV 150 °C and DUV 60 °C).


Figure S5. X-ray reflectivity (XRR) spectra of alumina thin films. XRR data and corresponding fitted data as a function of 2-theta: nanocluster-Al₂O₃ films annealed by (a) thermal 350 °C, (b) DUV 150 °C, (c) DUV 60 °C and (d) DUV 150 °C + thermal 500 °C. nitrate-Al₂O₃ films annealed by (e) thermal 350 °C, (f) DUV 150 °C, (g) DUV 60 °C and (h) DUV 150 °C + thermal 500 °C.


Figure S6. Bulk film densities of nanocluster- and nitrate-Al₂O₃ films depending on the annealing condition (Thermal 350 °C, DUV 150 °C, DUV 60 °C, DUV 150 °C + Thermal 500 °C). The data were obtained from XRR data.


Figure S7. Gate dielectric properties of nanocluster- and nitrate- Al_2O_3 films. (a) C-F and (b) J-E characteristics of nanocluster- and nitrate- Al_2O_3 gate dielectrics annealed by DUV 60 °C and DUV 150 °C.

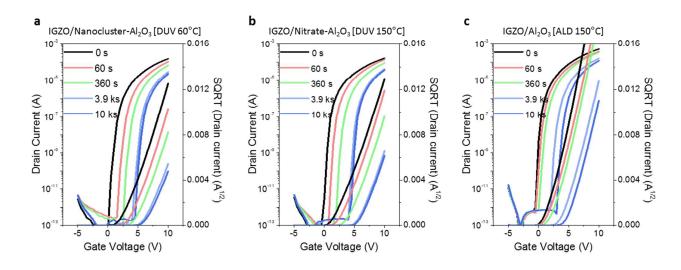
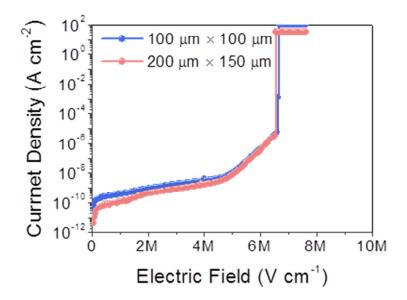
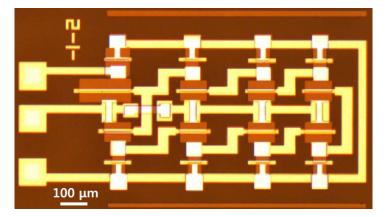
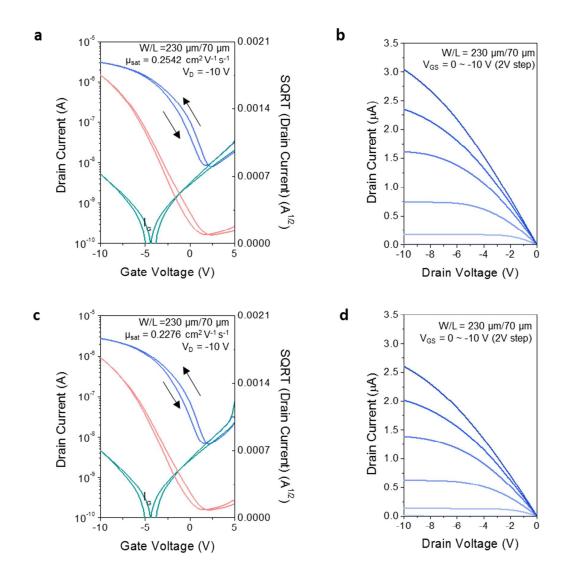

Figure S8. (a) and (b) J/T^2 versus $E^{1/2}$ curves revealing a Schottky emission region, (c) ln (J/E) versus $E^{1/2}$ curves revealing a Poole-Frenkel emission region, and (d) $ln(J/E^2)$ versus 1/E curves revealing an F-N tunneling region in which the plot was fitted to an apparent linear curve of the F-N tunneling equation.

Figure S9. Electrical characteristics of *a*-IGZO and CNT TFTs using ultralow-temperature-annealed nanocluster-Al₂O₃ gate dielectrics (60 °C). (a) Transfer and (b) output characteristics of *a*-IGZO TFTs with an ultralow-temperature-annealed nanocluster-Al₂O₃ gate dielectric ($T_{anneal} = 60$ °C). (c) A statistical distribution of saturation mobility, subthreshold swing (SS), and threshold voltage (V_T) of IGZO TFTs on glass. (d) Transfer and (e) output characteristics of CNT TFTs with an ultralow-temperature-annealed nanocluster-Al₂O₃ gate dielectric ($T_{anneal} = 60$ °C). (f) A statistical distribution of saturation mobility of CNT TFTs.

Figure S10. Electrical characteristics of *a*-IGZO TFTs with nanocluster- and nitrate-Al₂O₃ gate dielectrics fabricated on glass substrates. (a-d) Transfer characteristics of *a*-IGZO TFTs with nanocluster- and nitrate-Al₂O₃ gate dielectrics annealed by DUV 60 °C and DUV 150 °C. (e) A statistical distribution of field-effect mobility for *a*-IGZO TFTs with various gate dielectrics.

Figure S11. Positive gate-bias stress (PBS) data for flexible *a*-IGZO TFTs with various alumina gate dielectrics ($V_{GS} = +5 V$, t = 10 ks). *a*-IGZO TFTs with, (a) nanocluster-Al₂O₃ gate dielectric DUV-annealed at 60 °C, (b) nitrate-Al₂O₃ gate dielectric DUV-annealed at 150 °C and (c) Alumina gate dielectric deposited by ALD at 150 °C. All samples were un-passivated and fabricated on PI substrates.

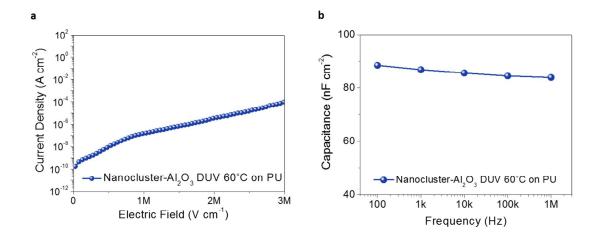

Figure S12. J-E characteristics of nanocluster alumina gate dielectrics with different electrode dimensions.

Figure S13. An optical microscope image of a 7-stage ring oscillator using IGZO TFTs with nanocluster alumina gate dielectric.

Figure S14. Electrical characteristics of CNT TFTs with nanocluster-Al₂O₃ gate dielectrics fabricated on PU substrates. (a-d) Transfer and output characteristics of CNT TFTs with nanocluster-Al₂O₃ gate dielectrics annealed by DUV 60 °C on PU substrate.

Figure S15. Gate dielectric properties of nanocluster-Al₂O₃ film directly fabricated on PU substrate. (a) J-E and (b) C-F characteristics of nanocluster-Al₂O₃ gate dielectrics annealed by DUV 60 °C on PU substrate.

Dielectric	M-O (~531 eV)	M-OH (~532.3 eV)
Nanocluster-Al ₂ O ₃ [Thermal 350°C]	82.4 %	17.6 %
Nanocluster-Al ₂ O ₃ [DUV 150°C]	87.8 %	12.2 %
Nanocluster-Al ₂ O ₃ [DUV 60°C]	85.0%	15.0%
Nitrate-Al ₂ O ₃ [Thermal 350°C]	79.3 %	20.7 %
Nitrate-Al ₂ O ₃ [DUV 150°C]	83.7 %	16.3 %
Nitrate-Al ₂ O ₃ [DUV 60°C]	24.1 %	75.9%

Table S1. Tabulated XPS (O1s) results of nanocluster- and nitrate-Al₂O₃ films. The areal ratios of M-O and M-OH bonding in nanocluster- and nitrate-Al₂O₃ films annealed under different conditions.