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. Motivation

« Connectivity and network analyses have exploded over the last decade, and
hold potential in helping us understand normal and abnormal brain function.

« FC analysis examines associations between time series In specific regions.

» Network analysis quantifies associations between time series in all regions
to create an interconnected representation of the brain (a brain network).

« FC underlie network analyses, subtle distinction overlooked in the literature.



. Motivation

« Systemic organization confers functional abilities as connections may be lost
due to adverse health condition, but compensatory connections may develop to
maintain organizational consistency and functional performance.
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I1. Brain Network Construction and Description

Schematic for generating network from fMRI time series

Voxel/ROI time courses —
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I1. Brain Network Construction and Description

SMALL-WORLD METRICS

clustering coefficient (C)
Proportion of a region’s connections that are connected to each other
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I1. Brain Network Construction and Description

SMALL-WORLD METRICS

clustering coefficient (C)
Proportion of a region’s connections that are connected to each other
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Regions Distance
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path length (L)
Average shortest distance between region pairs




I1. Brain Network Construction and Description

Degree

 Degree — K
— Number of connections
for each node

— Distribution Is assessed
to evaluate network
type/resilience properties

— Assortativity Is assessed
to evaluate network
type/resilience properties




I1. Brain Network Construction and Description

Graph Centrality and Information Flow

Leverage centrality (LC) identifies nodes that have high
degree relative to neighbors

=5

Joyce et al. (2010)



I1. Brain Network Construction and Description
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I1. Brain Network Construction and Description

* Need a multivariate explanatory and predictive brain network model.

Y;: network of subject i
Data

Xi: covariate information (network metrics, demographics, etc.)
@;. parameters

Want P(Y;| X, 8;)
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I11. Multivariate Modeling and Inference: ERGMs

Exponential random graph models have the following form:
P(Y =y) = x(6) 'exp{679(y)} (1)

where

Y n x n(n nodes) random symmetric adjacency matrix,
Y;; = 1 if an edge exists between nodes ¢ and j and Y;; = 0 otherwise;

g(y) vector of prespecified network statistics (functions of network);
@  vector of parameters associated with g(y) (importance, A log-odds);
(@) normalizing constant ensuring probabilities sum to one.

Goal: Identify local metrics g(y) that concisely summarize the global

(whole-brain) network structure.



I11. Multivariate Modeling and Inference: ERGMs

«  Once most appropriate statistics established, parameter profiles (9)
can be utilized to classify and compare whole-brain networks.

E.g., Best Model:

‘»"““ . 1
P(Y — y) — %exp< 61.\’ + (92.';{:2'.'. ........ -+ 83 v_ 7\ ,
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- Caveats: comparisons require use of a uniform set of predictors for all
networks (due to predictor interdependencies) and balanced networks
(same number of nodes for all networks) due to dependence of
predictors on network size.



[11. Multivariate Modeling and Inference: ERGMs

» Use graphical goodness-of-fit (GOF) approach (Hunter et al., 2008) to
establish most appropriate set of explanatory metrics for each subject’s brain
network.



[11. Multivariate Modeling and Inference: ERGMs
(Hunter, 2007)

Goodness of fit intuition

ERGM (approx) Fitted
class MLE ERGM
exp{f'g(y)} — 6  — exp{0g(y)}
T !
yobs Randomly generated

networks Yi, Yo, ..

= Lo A

@ Question: How does y°® “look” as a representative of the
sample Y1, Yo,...?

December 2007 ERGMs for networks



[11. Multivariate Modeling and Inference: ERGMs

» Use graphical goodness-of-fit (GOF) approach (Hunter et al., 2008) to
establish most appropriate set of explanatory metrics for each subject’s brain
network.

« POC: ERGMs fitted to networks from 10 normal subjects (Simpson et al., 2011)
« Several R packages available: ergm, ergm.count, GERGM, Bergm, btergm,

tergm xergm, xergm.common, blkergm, hergm.



[11. Multivariate Modeling and Inference: ERGMs

Final ERGMs (composed of most informative explanatory metrics) for each
subject provided a good fit to the data as evidenced by graphical GOF plots.
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[11. Multivariate Modeling and Inference: ERGMs

Observed Network Simulated Network



[11. Multivariate Modeling and Inference: ERGMs

« Create group "representative” networks via simulation (Simpson et al., 2012).

- Traditional mean/median networks are edge-based and topologically
differ greatly.

Subjects

(and others)

/
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[11. Multivariate Modeling and Inference: ERGMs
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[11. Multivariate Modeling and Inference: ERGMs
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 Statistically principled approach to topologically modeling, analyzing and
simulating complex brain networks.
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Advantages

 Statistically principled approach to topologically modeling, analyzing and
simulating complex brain networks.

» QGreatest appeal lies in ability to efficiently represent complex
network data and allow examining way in which a network's global
structure and function depend on its local structure.
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L imitations

 Not well-suited for local examinations.

e Multiple-subject comparisons can pose problems.
- Each subject fitted individually.

 Difficulty in incorporating novel metrics (more rooted in biology).
- Due to degeneracy issues that may arise.

« Developed for static binary networks.
- Development for longitudinal and weighted networks in infancy.
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V. Multivariate Modeling and Inference: Mixed Models
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Simpson and Laurienti (2015)




V. Multivariate Modeling and Inference: Mixed Models

Presence:

logit(piji) = X 1Bnet + X1 28c01, Con, 1t + Oiji

Strength:
FZT(SZ]k) — ;j].g,]_/BNet + z(jk,ZIBCOI,Con,Int T HZ]k




V. Multivariate Modeling and Inference: Mixed Models

/ / /
Opi = Zij.bpi = Ziji| byio bpimet bpidist Opi.j Opik]

’ ’ !
Osi = Zijkbsi + eijk = Zig| bsio Bsinet bsidist Osij Osik] + €iji

bi.o deviation of subject-specific intercepts (from population)
b;».:  deviation of subject-specific metric-edge relationships
b, 4is+  deviation of subject-specific spatial distance-edge relationships

6; . propensity for node j/k (of given dyad) to be connected and
magnitude of its connections
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1) Explain: quantifies relationship between Net/COI/Con and probability/strength
of connections.

2) Compare: statistically compares connectivity, network structure, and edge
properties by COI (e.g., between groups).

3) Predict: predicts connectivity and topology based on participant characteristics,
and network structure and its variability via simulations.

4) Threshold: leverages group-level data to better distinguish between “true”
weak connections and noise in individual-level networks.

5) Simulate: simulates group- and individual-level networks useful for model
GOF assessments, representative network creation, and network
variability assessment.



V. Multivariate Modeling and Inference: Mixed Models

Aging Brain: assess neurological underpinnings of cognitive decline by
examining effects of aging on integration of sensory information.

Young Adults: 27 + 5.8 y/o (n=20) Older Adults: 73 + 6.6 y/o (n=19)

Three separate conditions of fMRI scans:
* Rest
 Visual (viewing of a silent movie)
« Multisensory (MS) (visual and auditory — movie with sound)

90 node AAL atlas based networks constructed for each participant.



V. Multivariate Modeling and Inference: Mixed Models
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V. Multivariate Modeling and Inference: Mixed Models

Fredicted Probability

Predicted connection probability by degree difference at rest

Young Adults

Qlder Adults
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Prediction intervals for connection probability as a function of
degree difference in young and older participants at rest.
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V. Multivariate Modeling and Inference: Mixed Models

Predicted Probahility

Predicted connection probability by degree difference during a visual task

Young Adults

Older Adults
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Prediction intervals for connection probability as a function of degree
difference in young and older participants during a visual task.
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V. Multivariate Modeling and Inference: Mixed Models

Predicted connection probability by degree difference during a multisensory task
Young Adults Older Adults
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Prediction intervals for connection probability as a function of degree
difference in young and older participants during a multisensory task.




V. Multivariate Modeling and Inference: Mixed Models

PredlCt: Predicted connection strength by degree difference at rest
Young Adults Qlcler Adults
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Prediction intervals for connection strength as a function of degree
difference in young and older participants at rest.



V. Multivariate Modeling and Inference: Mixed Models

Pf@dlCt: Predicted connection strength by degree difference during a visual task
Young Adults Older Adults
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difference in young and older participants during a visual task.



V. Multivariate Modeling and Inference: Mixed Models

Pr‘edict: Predicted connection strength by degree difference during a multisensory task
Young Adults Older Adults

0.4

0.3 4

0.2 4

0.1

Predicted Strength

0.0 4

-01 4

0 2 4 B g 10 0 2 4 ] g 10

Degree Difference

Prediction intervals for connection strength as a function of degree
difference in young and older participants during a multisensory task.



V. Multivariate Modeling and Inference: Mixed Models

* Another example: Used to examine the impacts of pesticide and nicotine
exposures on farmworkers’ functional brain networks.

Farmworkers Non-Farmworkers

 FW: More modularly organized with higher functional specificity and lower
Inter-modular integrity



V. Multivariate Modeling and Inference: Mixed Models

Matlab GUI interface coming soon!
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ERGMs vs. Mixed Models

* Provide complementary multivariate approaches for analyzing at network level.

« l.e., assessing systemic infrastructural properties of network as opposed to
properties of specific nodes or connections

ERGMs

 Efficiently represent network data by modeling global structure as function of
local substructural (network) properties.

* Not well-suited for examining specific connections, comparing groups, or
assessing network-phenotype relationships.
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network-phenotype relationship assessment.

« Limited in ability to capture inherent complex dependence structure of networks.

« Simpson and Laurienti (2015) adapt to brain network context and account
for dependence structure.



V. Summary
ERGMs vs. Mixed Models

Mixed Models

« Well-suited for examining specific connections, group comparisons, and
network-phenotype relationship assessment.

« Limited in ability to capture inherent complex dependence structure of networks.

« Simpson & Laurienti (2015) adapt to brain network context and account for
dependence structure.

* Rudimentary connectivity/network hybrid method (Simpson & Laurienti, 2016).
« May provide machinery to develop needed advanced hybrid methods.

« Will at least be beneficial in joint network/connectivity analyses in conjunction
with an appropriate connectivity method.
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