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I. Motivation 

•     Connectivity and network analyses have exploded over the last decade, and 

       hold potential in helping us understand normal and abnormal brain function. 

•     FC analysis examines associations between time series in specific regions. 

•     Network analysis quantifies associations between time series in all regions 

       to create an interconnected representation of the brain (a brain network). 

•    FC underlie network analyses, subtle distinction overlooked in the literature. 



I. Motivation 

• Systemic organization confers functional abilities as connections may be lost 

due to adverse health condition, but compensatory connections may develop to 

maintain organizational consistency and functional performance. 
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• Also,... 
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II. Brain Network Construction and Description 
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Graph Centrality and Information Flow 

Joyce et al. (2010) 

Leverage centrality (LC) identifies nodes that have high 

degree relative to neighbors 



II. Brain Network Construction and Description 

Community Structure 

 



• Need a multivariate explanatory and predictive brain network model. 

 

 

Data 

 

 

 

Want P(Yi| Xi,   i) 

Yi: network of subject i 

Xi: covariate information (network metrics, demographics, etc.) 

i: parameters 


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IV. Modeling and Inferential Methods

Exponential random graph models have the following form:

            
exp Tg (1)

where

   (  nodes) random symmetric adjacency matrix,   
   if an edge exists between nodes  and  and  otherwise;        

g   vector of prespecified network statistics (functions of network);

  gvector of parameters associated with  (importance,  log-odds);  

   normalizing constant ensuring probabilities sum to one.

Goal: Identify local metrics  that concisely summarize the globalg 
        (whole-brain) network structure.

  - Can then use parameter profiles  to compare networks. 

III. Multivariate Modeling and Inference: ERGMs 
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II. ERGMs: A Potential Solution

• Once most appropriate statistics established, parameter profiles  
 can be utilized to classify and compare whole-brain networks.

E.g., Best Model:

   

   

 
  
 

  
exp      +  + 

 - Caveats: comparisons require use of a uniform set of predictors for all

  networks (due to predictor interdependencies) and balanced networks

  (same number of nodes for all networks) due to dependence of

  predictors on network size.
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II. ERGMs: A Potential Solution 

  

III. Multivariate Modeling and Inference: ERGMs 

•     Use graphical goodness-of-fit (GOF) approach (Hunter et al., 2008) to  

       establish most appropriate set of explanatory metrics for each subject’s brain  

       network. 
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II. ERGMs: A Potential Solution 

  

III. Multivariate Modeling and Inference: ERGMs 

(Hunter, 2007) 
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II. ERGMs: A Potential Solution 

  

III. Multivariate Modeling and Inference: ERGMs 

•     Use graphical goodness-of-fit (GOF) approach (Hunter et al., 2008) to  

       establish most appropriate set of explanatory metrics for each subject’s brain  

       network. 

 

 

 

• POC: ERGMs fitted to networks from 10 normal subjects (Simpson et al., 2011) 

• Several R packages available: ergm, ergm.count, GERGM, Bergm, btergm, 

tergm xergm, xergm.common, blkergm, hergm. 
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III. Multivariate Modeling and Inference: ERGMs 



II. ERGMs: A Potential Solution 

     

           Observed Network                   Simulated Network 
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III. Multivariate Modeling and Inference: ERGMs 
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II. ERGMs: A Potential Solution 

•     Create group "representative" networks via simulation (Simpson et al., 2012). 

    -     Traditional mean/median networks are edge-based and topologically 

              differ greatly. 

  

……… 
(and others) 

Subjects 

III. Multivariate Modeling and Inference: ERGMs 
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II. ERGMs: A Potential Solution 

  

III. Multivariate Modeling and Inference: ERGMs 



22 

Advantages 

•    Statistically principled approach to topologically modeling, analyzing and 

      simulating complex brain networks. 

28 

III. Multivariate Modeling and Inference: ERGMs 
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Advantages 

•    Statistically principled approach to topologically modeling, analyzing and 

      simulating complex brain networks. 

•    Greatest appeal lies in ability to efficiently represent complex 

      network data and allow examining way in which a network's global 
      structure and function depend on its local structure. 
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Limitations 

•    Not well-suited for local examinations. 

•    Multiple-subject comparisons can pose problems. 

      -    Each subject fitted individually.  

•    Difficulty in incorporating novel metrics (more rooted in biology). 
      -    Due to degeneracy issues that may arise. 

•    Developed for static binary networks. 
      -    Development for longitudinal and weighted networks in infancy. 
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IV. Multivariate Modeling and Inference: Mixed Models 

= p f Degree = 2

Degree = 1Degree = 6

Degree = 2

Degree = 1Degree = 6

, , , Xi,   i , , 

= s f Degree = 2

Degree = 1Degree = 6

Degree = 2

Degree = 1Degree = 6

, , , Xi,   i , , 

Simpson and Laurienti (2015) 
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III. Future Work: Mixed Models (another potential solution)

Presence:

         
,1 ,2     

Strength:

         
,1 ,2     
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III. Current IV. Multivariate Modeling and Inference: Mixed Models 

       Z Z 
           


      

       Z Z 
                


      

  deviation of subject-specific intercepts (from population)

  deviation of subject-specific metric-edge relationships

 deviation of subject-specific spatial distance-edge relationships

 /   propensity for node /  (of given dyad) to be connected and 
   magnitude of its connections  
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III. Current IV. Multivariate Modeling and Inference: Mixed Models 

1) Explain: quantifies relationship between Net/COI/Con and probability/strength  

                    of connections. 

 

2) Compare: statistically compares connectivity, network structure, and edge  

                       properties by COI (e.g., between groups). 

 

3) Predict: predicts connectivity and topology based on participant characteristics,  

                   and network structure and its variability via simulations. 

 

4) Threshold: leverages group-level data to better distinguish between “true” 

                        weak connections and noise in individual-level networks. 

 

5) Simulate:  simulates group- and individual-level networks useful for model 

                       GOF assessments, representative network creation, and network 

                       variability assessment. 



III. Current IV. Multivariate Modeling and Inference: Mixed Models 

• Aging Brain: assess neurological underpinnings of cognitive decline by   

                             examining effects of aging on integration of sensory information. 

 

• Young Adults: 27 + 5.8 y/o (n=20) Older Adults: 73 + 6.6 y/o (n=19) 

 

• Three separate conditions of fMRI scans: 

• Rest 

• Visual (viewing of a silent movie) 

• Multisensory (MS) (visual and auditory – movie with sound) 

 

• 90 node AAL atlas based networks constructed for each participant. 



III. Current IV. Multivariate Modeling and Inference: Mixed Models 

Here,




   .        avg avg avgdiff
        

   .


   .            


   .                



III. Current IV. Multivariate Modeling and Inference: Mixed Models 

Predict: 

 

  

Prediction intervals for connection probability as a function of

degree difference in young and older participants at rest.
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Prediction intervals for connection strength as a function of degree

difference in young and older participants at rest.
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Predict: 
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III. Current IV. Multivariate Modeling and Inference: Mixed Models 

Predict: 

 

  

 

Prediction intervals for connection strength as a function of degree 

difference in young and older participants during a multisensory task. 
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II. ERGMs: A Potential Solution 

  

IV. Multivariate Modeling and Inference: Mixed Models 

•     Another example: Used to examine the impacts of pesticide and nicotine  

       exposures on farmworkers’ functional brain networks. 

 

 

 

                   Farmworkers          Non-Farmworkers 

 

 •     FW: More modularly organized with higher functional specificity and lower  

  inter-modular integrity 
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II. ERGMs: A Potential Solution 

  

IV. Multivariate Modeling and Inference: Mixed Models 

•     Matlab GUI interface coming soon!  
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III. Current 

• Provide complementary multivariate approaches for analyzing at network level. 

• I.e., assessing systemic infrastructural properties of network as opposed to 

properties of specific nodes or connections 

 

 

ERGMs 

• Efficiently represent network data by modeling global structure as function of 

local substructural (network) properties. 

 

• Not well-suited for examining specific connections, comparing groups, or 

assessing network-phenotype relationships. 
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Mixed Models 

• Well-suited for examining specific connections, group comparisons, and 

network-phenotype relationship assessment. 

 

• Limited in ability to capture inherent complex dependence structure of networks. 

• Simpson and Laurienti (2015) adapt to brain network context and account 

for dependence structure. 
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III. Current 

Mixed Models 

• Well-suited for examining specific connections, group comparisons, and 

network-phenotype relationship assessment. 

 

• Limited in ability to capture inherent complex dependence structure of networks. 

• Simpson & Laurienti (2015) adapt to brain network context and account for 

dependence structure. 

 

• Rudimentary connectivity/network hybrid method (Simpson & Laurienti, 2016). 

 

• May provide machinery to develop needed advanced hybrid methods. 

 

• Will at least be beneficial in joint network/connectivity analyses in conjunction  

with an appropriate connectivity method. 
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