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Introduction
Longitudinal neuroimaging data present significant modelling challenges due
to subject dropout and within-subject correlation. Another complication is
that non-parametric permutation inference [6,8] cannot be generally applied
as the longitudinal correlation violates the assumption of null hypothesis ex-
changeability, and subject dropout can render different subjects incompatible
for permutation. To address these limitations, we propose the use of an al-
ternate non-parametric procedure, the Wild Bootstrap [4], and isolate which
of its many variants are the most appropriate for longitudinal and repeated-
measures neuroimaging data.

The Wild Bootstrap
Broadly speaking, the Wild Bootstrap (WB) generates samples of the data
based on a fitted model, as follows: (1) the model’s residuals are adjusted
using a small sample bias correction, (2) the set of adjusted residuals for each
subject is resampled by multiplying them by a single random value, and (3)
the resampled residuals are added back to the predicted model. The random
values are drawn independently from a resampling distribution, such as the
Rademacher distribution (-1 or 1 with equal probability) [4] or the Mammen
distribution ((1−

√
5)/2 with probability (

√
5+1)/(2

√
5), (1+

√
5)/2 otherwise)

[5].
For the original data and each resampling, we use the Sandwich Estimator
method [2] to construct a Wald statistic, creating a null distribution. Like per-
mutation tests, this null distribution can be used to make inference on the
original Wald statistic. In the context of neuroimaging, the Wild Bootstrap
procedure can be used to estimate the null distribution of the maximum Wald
statistic or the maximum cluster size, allowing a control of the voxel-wise or
cluster-wise Family-Wise Error Rate (FWER), respectively.

Monte Carlo Simulations
We used Monte Carlo simulations to compare 80 WB variants, differing by the
choice between (1) an unrestricted (not imposing the null hypothesis; U-WB)
or a restricted (imposing the null hypothesis; R-WB) model, (2) five resam-
pling distributions (i.e. the Rademacher distribution, the Mammen distribution,
the Normal distribution N(0, 1) and two distributions proposed in [7] referred
to as Webb4 and Webb6 distributions), (3) four Sandwich Estimator versions,
differing by whether they impose the null hypothesis (R-SwE) or not (U-SwE),
and assume heterogeneous (SHet) or per-group homogeneous (SHom) within-
subject covariance matrices, and (4), for both the bootstrap residuals and
the Sandwich Estimator, the use of a small-sample bias adjustment (SC2) or
none (S0). The settings considered corresponded to unbalanced designs with
missing data (inspired by the real longitudinal neuroimaging ADNI dataset
described in the top right section of this poster) under six different types of
subject covariance structures: (1) Compound Symmetry (CS), (2) Toeplitz as-
suming a linear decay of the correlation over time, (3) heterogeneous variance
over time, (4) heterogeneous variance between groups, (5) compound sym-
metric correlations & heterogeneous variance over time, and (6) Toeplitz cor-
relations & heterogeneous variance over time. For each realisation (10,000
per setting), we used each of the 80 WB variants to test 24 contrasts at 5%
level of significance. Fig. 1 summarises the obtained results (see caption for
more details).

Fig. 1: Boxplots showing the False Positive Rate control of several WB variants as a function
of the total number of subjects over 144 scenarios (consisting of the 24 contrasts tested
and the 6 within-subject covariance structures considered). The best WB variants seem
those considering a restricted model (R-WB) and the Rademacher distribution (which seems
slightly better than the Webb4 and Webb6 distributions in some scenarios). No appreciable
differences between the Sandwich Estimator versions and the use of a small-sample bias
adjustment were observed, but it seems that the use of a small-sample bias adjustment
and the Sandwich Estimator considering per-group homogeneous within-subject covariance
matrices yielded a slightly better control of the False Positive Rate in some settings.
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Real Data Longitudinal Analysis
We used the R-WB with the Rademacher distribution (with resampled resid-
uals adjusted as in the R-SwE SHom

C2 ) and the R-SwE SHom
C2 to analyse an un-

balanced longitudinal Tensor-Based Morphometry dataset. Data are from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), consisting of 817 sub-
jects divided in 3 groups (229 Normal, 400 MCI and 188 AD subjects) with a
varying number of scans/subject (min = 1, max = 6, mean = 4.1 scans/subject)
[2,3]. We tested for a greater atrophy effect in the AD vs. the Normal subjects
by controlling for a voxel-wise FWER at 5%. For comparison, we also tested
for the same effect using a permutation test on subject summary slopes ex-
tracted from subject-specific models; this model is not generally valid [2] but
is commonly used. The results of the analysis are summarised in Fig. 2.

Fig. 2: ADNI data, test of AD volume decline vs. Normal volume decline with WB (left) and
with a permutation test on summary measures (right). The voxel-wise 5% FWER-corrected
thresholded images are -log10(pFWER) images. The WB inference yielded more significant
voxels (44,793 voxels) than the permutation test on summary measures (33,341 voxels).

Real Data Repeated Measures Analysis
We used the R-WB with the Rademacher distribution (with resampled resid-
uals adjusted as in the R-SwE SHom

C2 ) and the U-SwE SHom
C2 to analyse a

repeated-measures fMRI dataset. Data are from the Human Connectome
Project (HCP) [1], consisting of 2-back vs. 0-back memory task contrasts for
four visual stimuli (body parts, faces, places and tools). We tested for positive
& negative average effects across stimuli (two 1-degree of freedom tests) and
for any difference between stimuli (one 3-degrees of freedom F-test) by con-
trolling for a voxel-wise and a cluster-wise (primary threshold at p = 0.001)
FWER at 5%.

Fig. 3: Real data analysis of the HCP dataset with WB. Left: voxel-wise 5% FWER-corrected
thresholded -log10(pFWER) images on any differences of the 2-back vs. 0-back tasks between
stimuli (406 voxels & 45 clusters survived the voxel-wise & cluster-wise thresholding, respec-
tively). Middle: boxplots of the 2-back vs. 0-back beta for each stimuli at the selected voxel.
Right: voxel-wise 5% FWER-corrected -log10(pFWER) images on average positive (red/yellow
colour; 13,749 voxels & 8 clusters survived the voxel-wise & cluster-wise thresholding, re-
spectively) and negative (blue colour; 7,101 voxels & 11 clusters survived the voxel-wise &
cluster-wise thresholding, respectively) effects of the 2-back vs. 0-back tasks across stimuli.
The slices are located at z = 30mm (top) and z = 2mm (bottom) of the anterior commissure.

Discussion
In this work, we have proposed the use of the Wild Bootstrap to make non-
parametric inferences for longitudinal and repeated-measures neuroimaging
data. Using Monte Carlo stimulations we have isolated the best WB vari-
ants and we have illustrated its use on two real datasets. The WB has
been implemented into the SwE toolbox for SPM (http://warwick.ac.uk/
tenichols/SwE) and is currently under development for FSL.
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