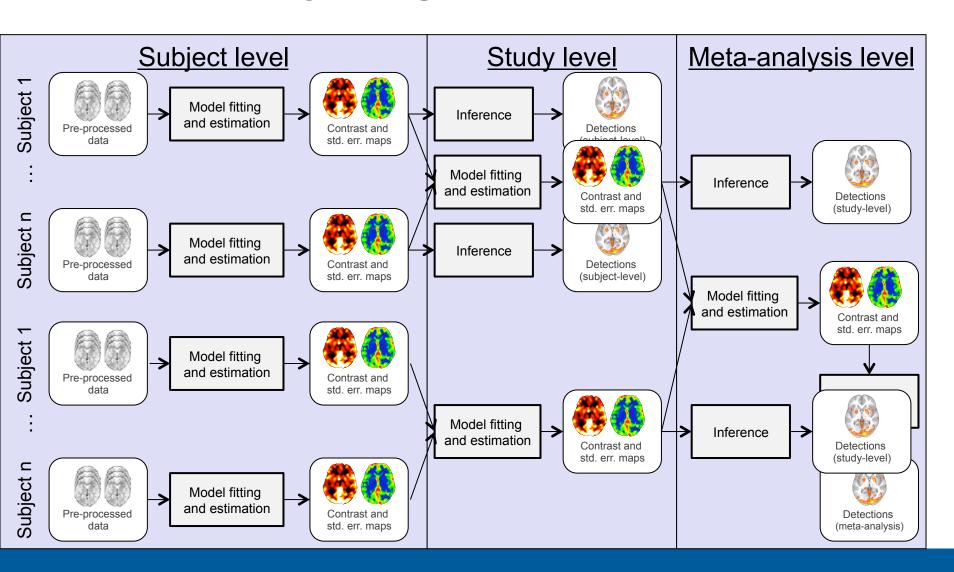
Practical Image-Based Meta-Analysis

Camille Maumet & Thomas Nichols
OHBM Neuroimaging Meta-Analysis
Educational course
14 June 2015



Agenda

- Meta-analyses in Neuroimaging
 - Neuroimaging study
 - Why meta-analysis?
 - Coordinate-Based and Image-Based
- Image-Based Meta-Analysis
 - Gold standard
 - Other approaches
- Validity of IBMA approaches in neuroimaging

Meta-analysis gold standard

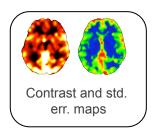
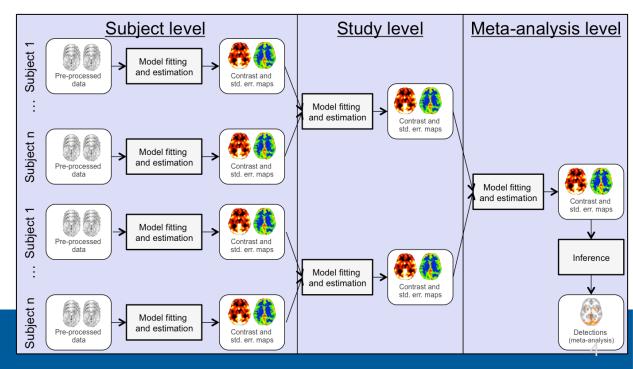
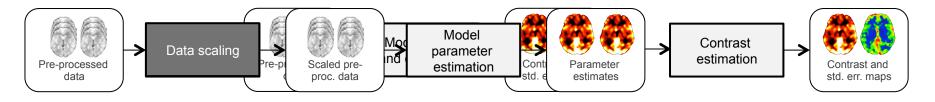


Image-Based Meta-analysis

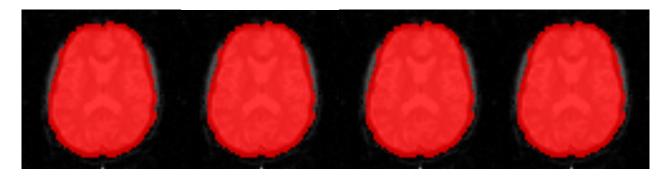
Gold standard:


Third-level Mixed-Effects GLM

- Requirements
 - study-level Contrast estimates and Standard


error maps.

Same units

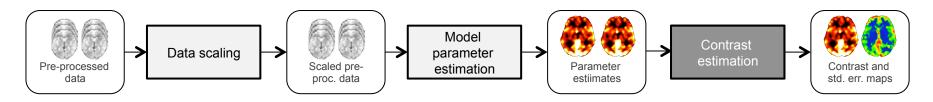


Units of contrast estimates

- Data scaling
 - BOLD signal is not quantitative
 - Use "% BOLD" as units

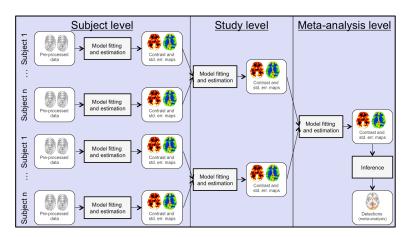

$$scaled_data = \frac{data*100}{mean}$$

 Dependent on mean estimation (mask, method) and scaling target (100, 10000)


Units of contrast estimates

- Model Parameter Estimation
 - Explain the data as a linear combination of explanatory variables (task, age, motion...)
- Dependent on scaling of explanatory variables.
 - Fix amplitude to 1 for block designs
 - Much more complicated for event related

Units of contrast estimates



- Contrast Estimation
 - Linear combination of parameter estimates
 - Final statistics invariant to scale
 - e.g. [1 1 1 1] gives same T's & P's as [¼ ¼ ¼ ¼]
- Rule for contrasts to preserve units
 - Positive elements sum to 1
 - Negative elements sum to -1

Image-based Meta-analysis

- Gold standard:
 Third-level Mixed-Effects GLM
- But...
 - Units will depend on:
 - The scaling of the data (subject-level)
 - The scaling of the predictor(s) that are involved in the selected contrast (subject- and study-level)
 - The scaling of the selected contrast (subject- and studylevel).
 - Contrast estimates and standard error maps are rarely shared...

Image-Based Meta-Analysis Options

- Other statistics available...based on Z's alone
- Fishers's

$$-2\sum_{k}\log P_k \sim \chi_{2k}^2$$

- Sum of -log P-values (from T/Z's converted to P's)
- Stouffer's

$$\sqrt{K} \times \frac{1}{K} \sum_{k} Z_k \sim \mathcal{N}(0, 1)$$

- Average Z, rescaled to N(0,1)
- "Stouffers's Random Effects (RFX)"

$$\frac{1}{K} \sum_{k} c \hat{\beta}_k \sim \mathcal{N}(0, \sigma_{\text{RFX}}^2)$$

Submit Z's to one-sample t-test

Image-Based Meta-Analysis Options

- Other statistics... based on Z's + N's
- Weighted Stouffer's

$$\sum_{k} w_k Z_k \sim \mathcal{N}(0,1), \quad w_k \propto \sqrt{N_k}$$

Z's from bigger studies get bigger weight

Image-Based Meta-Analysis Options

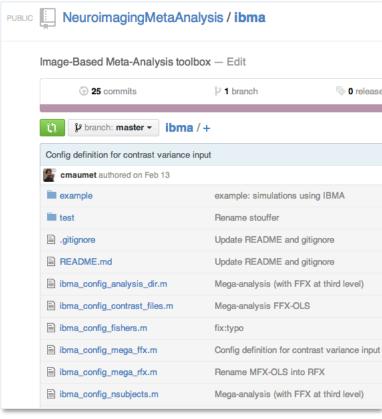
- Other stats... based on contrast estimates only
- Random Effects (RFX) GLM

$$\frac{1}{K}\sum_k c\hat{\beta}_k \sim \mathcal{N}(0,\sigma_{\rm RFX}^2)$$
 – Analyze per-study contrasts as "data"

- ... based on contrast estimates and SE's
- Fixed-Effects (FFX) GLM $\frac{1}{K}\sum_k \hat{\theta}_k \sim \mathcal{N}(0, \sum_k \sigma_{\text{FFX},k}^2/K^2)$ *Don't* estimate variance, just take from first level

Image-Based Meta-Analysis In practice!

Not all of these options are easily used


Meta-Analysis Method	Inputs	Neuroimaging Implementation
'Gold Standard' MFX	Con's + SE's	FSL's FEAT SPM spm_mfx
RFX GLM Stouffer's RFX	Con's Z's	FSL, SPM, AFNI, etc
FFX GLM Fisher's Stouffer's Stouffer's Weighted	Con's +SE's Z's Z's Z's + N's	n/a

Self Promotion Alert: IBMA toolbox

- SPM Extension
- Produces IBMA inferences using permutation/SnPM
- Still in beta!
 - But welcome all feedback
- · Available on github:

https://github.com/NeuroimagingMetaAnalysis/ibma

Meta-analysis of 21 pain studies

- Data: 21 studies of pain in healthy subjects
- Results
 - GLM methods similar
 - Z-based methods similar
 - But FFX Z methods more sensitive (as expected)

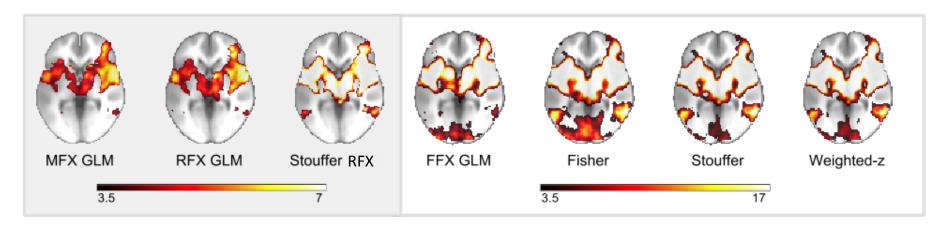


Fig. 1: Result of a meta-analysis of 21 pain studies for 4 fixed-effects (FFX GLM, Fisher, Stouffer, weighted-z) and 2 random-effects (RFX GLM, Stouffer MFX) meta-analytic approaches compared to the reference (MFX GLM) at a threshold of p<0.05 FDR corrected.

Data: Tracey pain group, FMRIB, Oxford.

Validity of IBMA approaches in neuroimaging

Simulations - Methods

 Simulated contrast estimates Y_i and Standard error S_i such as:

$$Y_i \sim \mathcal{N}(0, \underbrace{\frac{\sigma_i^2}{n_i}}_{i} + \underbrace{\tau^2}_{i})$$

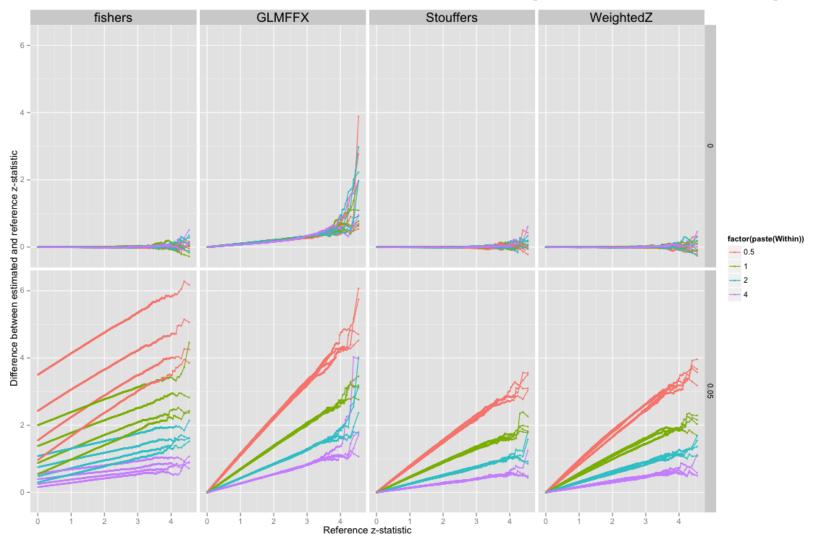
» Where

» Within-study variance

$$\sigma_i^2 \in [1/2, 1, 2, 4]$$

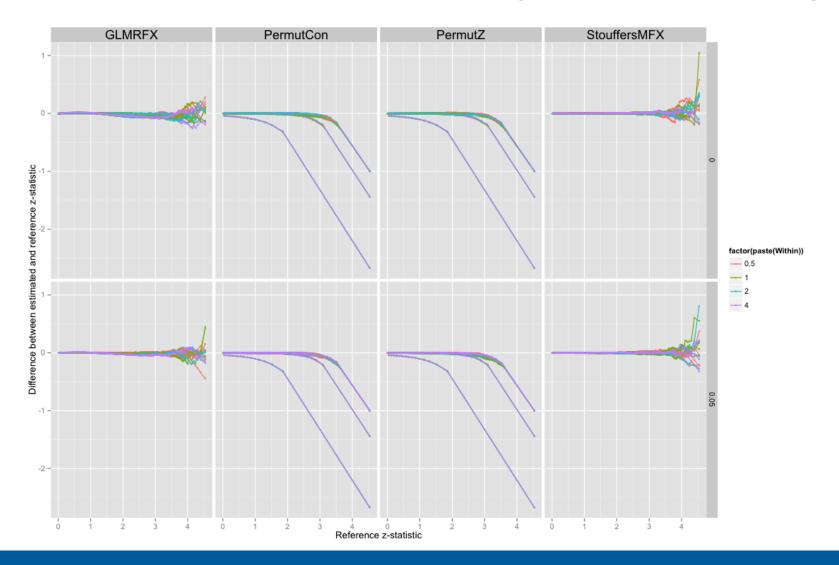
» Between-study variance

$$\tau^2 \in [0, 1/20]$$

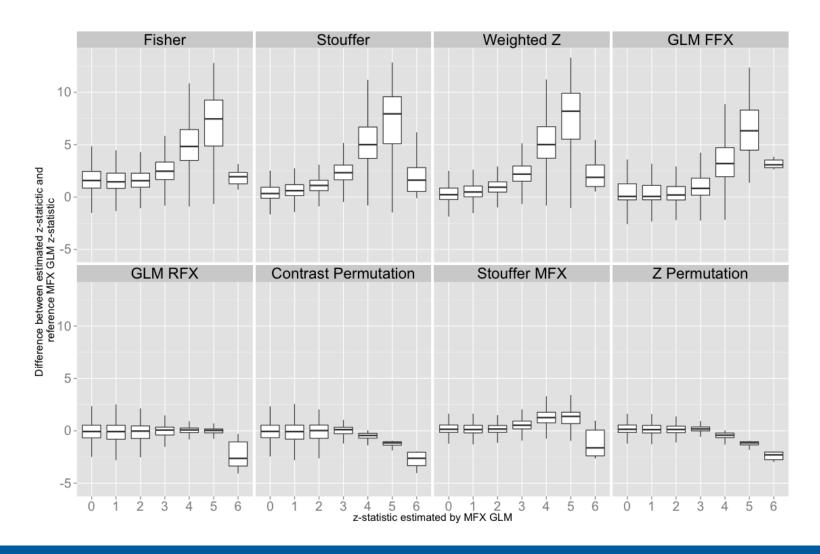

» Sample size η_i

$$25\% \mathcal{U}(11,20) \sim 50\% \mathcal{U}(21,25)$$

$$25\% \ \mathcal{U}(26,50)$$



Simulations – Results (Fixed-Effects)



Simulations – Results (Random-Effects)

Meta-analysis of 21 pain studies

Conclusions

- When data available, Image-Based preferred to Coordinate-Based meta-analysis
- In practice, it is difficult to use the gold standard Mixed-Effects GLM
 - Due to units issues, basically need FEAT for all 3 levels
- When only contrast estimates are available, RFX
 GLM is a practical & valid approach
- Few tools for Z-based IMBA, but underway...

Thank you!

This work is supported by the **Welcome**trust

	Meta-analysis statistic	Nominal H_0 distribution Inputs	
FFX GLM	$\left(\sum_{i=1}^k rac{Y_i}{S_i^2} ight)/\sqrt{\sum_{i=1}^k 1/S_i^2}$	$\mathcal{T}_{(\sum_{i=1}^k n_i-1)-1}$	Y_i,S_i^2
MFX GLM	$\left(\sum_{i=1}^{k} \frac{Y_i}{S_i^2 + \hat{\tau}^2}\right) / \sqrt{\sum_{i=1}^{k} 1 / (S_i^2 + \hat{\tau}^2)}$	\mathcal{T}_{k-1}	Y_i,S_i^2
RFX GLM	$\left(\sum_{i=1}^k rac{Y_i}{\sqrt{k}} ight)/\widehat{\sigma}_C^2$	\mathcal{T}_{k-1}	Y_i
Contrast Permutation	$\left(\sum_{i=1}^k rac{Y_i}{\sqrt{k}} ight)/\widehat{\sigma}_C^2$	Empirical	Y_i
Fisher's	$-2\sum_{i=1}^k \ln(\varPhi(-Z_i)))$	$\chi^2_{(2k)}$	$oldsymbol{Z}_i$
Stouffer's	$\left(\sum_{i=1}^k Z_i ight)/\sqrt{k}$	$\mathcal{N}(0,1)$	Z_i
Weighted Stouffer's	$\left(\sum_{i=1}^k \sqrt{n_i} Z_i ight)/\sqrt{\sum_{i=1}^k n_i}$	$\mathcal{N}(0,1)$	Z_i, n_i
$\mathbf{Z} \mathbf{M} \mathbf{F} \mathbf{X}$	$\left(\sum_{i=1}^k Z_i ight)/\sqrt{k}\hat{\sigma}$	\mathcal{T}_{k-1}	Z_i
Z Permutation	$\left(\sum_{i=1}^k Z_i ight)/\sqrt{k}$	Empirical	Z_i

Table 1. Statistics for one-sample meta-analysis tests and their sampling distributions under the null hypothesis H_0 . Empirical null distributions are determined using permutations with sign flipping.

