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Abstract—The concept of reproducibility has been the keystone
of both ancient and modern scientific methods. In spite of this,
digital science has recently been put to task to improve its
failing record of repeatable experimentation. A plethora of digital
archives have appeared in response, yet the community has not
defined the end goal. There exists no means of comparing or
evaluating digital archives nor the quality of preserved software,
and thus no means of knowing if the tools are valid toward that
goal. A metric for evaluating software sustainability is provided
and used to define a metric for evaluating and comparing
interactive software archives.

I. THE CRISIS OF SOFTWARE PRESERVATION

In the past several years, it has become evident that
software—which is a particular form of digital media often
overlooked with respect to preservation—is driving scientific
research. A recent survey of UK scientists suggests that mod-
ern research is in fact impossible without software [1]. Yet,
in a reproducibility study done within the field of Computer
Science, which is obviously dominated by software-backed
research, shows that only 32% of recent CS research is
reproducible [2]. That is, the digital results of typical CS
studies can not be replicated. Other fields have similarly raised
this alarm: 90% of scientists surveyed by Nature indicated
there is a slight or significant reproducibility crisis [3].

This crisis should be alarming to all of us. After all, the
scientist Ibn al-Haytham in the early 11th century suggested
science must be a process that encourages repetition [4];
this idea influenced Galileo and Newton hundreds of years
later. Without the step of repeatability, coincidence could be
mistaken for cause. Therefore, an experiment has to be devised
in such a way that it can be independently verified by a
second experiment. Yet, much of our digital science today
can not be reproduced due to lost or unpublished software
code. The CS reproducibility study showed that only 35% of
code was publicly available. Even when code is available, this
study found that 15% of code did not work at all when used
by an independent reviewer [2]. This situation highlights the
importance of software preservation in science.

Consequently, software preservation has become a new fo-
cus of the scientific world; commercial and academic projects
have sprouted to fill the void for software preservation. There
are emerging standards for packaging content in projects such
as Popper [5], Research Objects [6], and DataMill [7]. Existing
online code and data repository systems geared toward the
tech industry such as GitHub [8], GitLab [9], and BitBucket
[10]. Similar websites such as RunMyCode [11], MyExperi-
ment [12], defunct Research Compendia, Zenodo [13], Open

Science Framework [14], and two independent projects both
called Datahub [15][16] have been created to host scientific
code and data. There are also software frameworks that a
researcher can leverage to build their own software, such
as torch.ch [17] and GenePattern [18]. There are tools to
capture and replay the dynamic execution of software such as
ReproZip [19], CDE [20], and Sumatra [21]. Another strategy
are curated collections of software such as Madagascar [22].
Tools to design and evaluate workflows, including Taverna
[23], Galaxy [24], VisTrails [25], and Kepler [26]. A plethora
of literate programming solutions to combine code and prose
such as Jupyter [27], Collage [28], and Beaker Notebook
[29] have appeared. Services have sprung up to run science
code in the cloud, like Chameleon Cloud [30], NanoHub [31],
and two commercial services: defunct Wind River Helix Lab
Cloud and newcomer Code Ocean [32]. Finally, there are
tools that describe a software environment and generate virtual
machines on the fly such as Umbrella [33], Simulocean [34],
and Occam [35]. In fact, the problem has shifted somewhat
from a reproducibility crisis to an issue of there being too
many solutions and knowing which ones to use!

II. TOWARD EVALUATING SOFTWARE PRESERVATION

It is obvious that there is every motivation to create software
archives that can keep digital artifacts for scientific research
running. Yet, we have no means to evaluate these archival
systems. How can we compare one artifact to another and
determine which is packaged better? Turned around, how do
we know which archive system meets our goals when there are
so many? The broader scientific software community needs to
put effort into defining what quality means for both artifacts
and archives. In this short paper, we briefly define such a
criteria, apply it by looking at existing archives and their
drawbacks, and how it shows through experience that this
metric is appropriate.

To our knowledge, there is no other evaluation metric for
digital archive systems. However, there has been prior discus-
sion about what quality means for the artifacts themselves. C.
Titus Brown briefly illustrated in 2013 what they called “The
Ladder of Academic Software Reusability + Sustainability”
[36] which defined a series of goal posts software can achieve
toward sustainability, which is the ability for that software to
be reused in the future. At the first level, software had to be
downloadable. At another level, it had to be installable and
runnable. At a higher level, the software can repeat its prior
results, and at the highest rung the code could be modified
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Fig. 1: The Degrees of Software Sustainability

and redistributed. In this design, software at a higher position
on the ladder is presumed to have the attributes at the lower
rungs. The higher the software, the higher the quality of its
preservation.

This type of ladder inspired Neil Chue Hong’s “Five Stars of
Research Software,” [37] which is a short essay that similarly
defines a set of important attributes with respect to sustainable
research software. In a follow-up paper in 2014, he goes on
to define levels of quality for software reusability. At level 0,
software can merely be retrieved. Jumping to level 3, software
can be legally modified and has adequate usage documentation
and attribution. At level 4, the software has good automated
test coverage and has documented dependencies. [38] The final
level is an idealistic goal: 100% test coverage, correctness, and
so on. It is this high bar that developers are meant to adhere
for the most reusable software.

The open data community has offered its own version of
sustainability guidelines called FAIR [39]. This breaks down
to Findable, defined as searchable and globally identifiable;
Accessible, retrievable via an open and public protocol; In-
teroperable, formatted in a common and known fashion; and
Reusable, appropriately licensed and well-described. It should
be noted that FAIR is meant to promote the accountable
preservation of data and not necessarily software. However,
software archival is clearly important, if not essential, toward
their goal of interoperability and reusability. This is yet another
example of a community pushing the importance of software
repeatability and derivation.

III. THE LADDER OF SOFTWARE SUSTAINABILITY

At their core, these types of ladders and guidelines describe
software quality in broad strokes. They do not define specif-
ically what types of features or best practices achieve the
sustainability they covet. This vagueness is a weakness since
it is difficult to understand how to apply such qualifications to
a particular artifact. For instance, Hong specifically suggests
documentation and automated testing help lower the technical
barrier of derivation which improves the reuse of software.
That does seem intuitive; reuse obviously implies use, and
knowing how to interact with software certainly plays a part.
However, does that relate directly to its quality? For one,
it is not clear good documentation correlates with software

reusability. Nor is it clear how one would measure what good
means, or how to compare the quality of multiple artifacts.

However, these works do illustrate common and accepted
notions of software quality that bridge communities. First,
they strongly suggest that availability is the absolute minimum
requirement. Second, both ladders show derivation, and mak-
ing that process easier, as the goal toward the higher end of
software preservation. These ladders represent the goals of the
digital research community. In order to weigh the effectiveness
of any archival system, the community does need a definition
of the quality of a software artifact. To that end, The Ladder
of Software Sustainability shown in Figure 1 is introduced as
a refinement of the aforementioned work.

Much like the work of Brown and Hong, the first rung of the
ladder represents the shareability of the artifact. Simply put,
the software is packaged. If the software cannot be packaged,
it must be lost, where it no longer exists, or hidden, where it
exists but is privately held. This is the minimum requirement
for software to exist. The next rung captures the idea of
software being retrievable, which means the artifact can be
downloaded if you know where it is. Sometimes this means
you are given a link or permission to download the software
where it may be hidden for most people. Therefore, a stronger
artifact is one which is “discoverable” by some search engine
or through a public service. In short, a public entity has a
stronger quality than an obscured or private entity.

The next two rungs capture the execution of software. A
“deployable” artifact can be executed, but may not be correct
or may generate different results in different environments.
A program that can avoid those pitfalls would be considered
“repeatable”. This difference may not seem significant at first.
However, isolating the environmental effects of differing hard-
ware or system software has inspired an entire field of software
in the form of virtualization tools. Hardware virtualization,
within tools like VMWare [40] or VirtualBox [41], emulate
hardware interfaces to fool software into seeing the same
machine each execution. Other tools, such as Docker [42],
fool software into seeing the same operating system regardless
of the system software the individual is personally using.
Each technique may be the difference between software being
deployable or repeatable.

The following two rungs speak toward the artifact’s abil-
ity to change. The prior work of Brown and Hong feature
derivation as a goal post, but do not go into detail beyond the
application of open source licensing. Yet, there are other forms
of derivation and change that could be enabled within archives.
For one, it seems reasonable to have the ability to change
artistic artifacts or manipulate scientific visualizations through
software modification. There is also the creation of new
artifacts via either cloning existing ones or using software to
produce data which itself needs to be archived. The very nature
of preserving such data suggests the requirement of preserving
the software that is used to read it. This complicates the scope
of derivation. In the end, we want to lose this read-only, “do
not touch” mentality (borrowed from existing museums,) since
it does not apply for digital curation, particularly with respect



Prominence Consistency Interactivity

Systems Level Shareable
Retrievable

Discoverable
Deployable

Repeatable
Configurable

Derivable
Verifiable

tar 1
tar+scp 2

RunMyCode 3
GitHub 3
BitBucket 3
Zenodo 3
Jupyter+Host 4
Umbrella+Host 5
ReproZip+Host 5
Docker+Hub 5
Olive 5
NanoHub 6
Code Ocean 7
Occam 7
community goal 8

TABLE I: Comparing different archival systems in their support for software sustainability. Some presume to have some ”Host”
serving the artifacts, such as GitHub. tar, an application that simply packages files together, and scp, an application that simply
copies files across machines, serve as a baseline. This is determined by examining their feature sets in the other tables.

to interactive software and data, and to the general goal of
scientific exploration.

To this end, the “configurable” rung speaks to the specific
act of being able to modify how an artifact runs. That is,
software may be able to take different input files than ones
used in a prior experiment. Another case is when software has
defined configuration parameters which can be manipulated
without changing its code. The modification of code is then
pushed to the “derivable” rung. Closed source software may
be configurable, but it is not easily derivable. However, being
derivable and configurable increases the flexibility of reusing
the software.

Yet, by itself, this ladder falls prey to a similar flaw. It is still
difficult to understand the value of applying it to a particular
artifact when they can be produced or packaged in a variety
of ways using different tools. Simply, how do you compare
one against another? If one tool provides a mechanism for
repeatability, such as Docker, and another tool uses a different
strategy, say VMWare, which is better? It would reduce to
comparing those specific technologies, implying this problem
is alleviated when comparing artifacts that were produced with
the same tools. Therefore, applying this evaluation metric to
the artifact is less informative than applying it to the product
of particular tools. That is, the archival system itself can be
evaluated by looking at the degrees of sustainability that are
promoted by that system. The more features in particular areas
defined by the ladder a tool has, the stronger its support for
that aspect of preservation.

In the end, the idea represented by this ladder is that
software artifacts gain, for each quality they capture, an
increasingly stronger base for which to independently verify
the artifact’s behavior and output. Software verification is
the notion of the preservation of correctness. It is then the
final rung and the ultimate step in the wider goal of digital
preservation and scientific digital reproducibility. That is,
software is preserved so that it can be improved over time.

And once software is correct, by whatever measure, it then
doesn’t disappear and it doesn’t become obsolete. This is
why the evaluation of archival systems is so strongly related
to the definition of software sustainability. When a system
provides the means to promote a particular level of support, it
is then a better system than one that does not. A system that
produces repeatable artifacts is better than a hosting provider
that only maintains retrievable objects, because it gets us closer
to verifiable and accountable software. Overall, good software
archival systems go beyond preservation or scientific purposes
and are vehicles for building more robust computing platforms.

IV. THE EVALUATION OF SOFTWARE ARCHIVES

The sustainability ladder has been applied with respect to
several tools. Table I gives a representable list of projects and
how they compare against the kinds of software preservation
they enable. The following tables relate to each pair of rungs
in our ladder. For each table, properties are marked for a
set of existing projects related to reproducibility. Shareability
is well-understood and common among all of the projects
and is omitted. Table II shows properties related to retrieval,
and discovery which we term Prominence. Table III shows
deployability and repeatability, or, when taken together, we call
Consistency. Table IV shows configurability and derivability,
which imbue the concept of Interactivity. Projects tend to focus
on one of these three categories as they emphasize features and
attributes common to them.

Based on your needs, you can use this breakdown to find
the appropriate tool for your purpose. For many people, the
simple hosting of data is all they need. For instance, the
publishing of graphs or datasets. Here, you may only need
tools which provide strong retrieval and discovery (Table
II). However, for those running software, you should focus
more on projects (or combinations of tools) that fulfill the
deployable and repeatable aspects of the sustainability ladder.
The fulfillment of the entire research life-cycle, which entails
the proposal, hypotheses, experimentation, and conclusion
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TABLE II: Comparing different archival systems based on Prominence: how well artifacts are retrieved or replicated between
archives or from the archive to an interested party. †: Jupyter, Umbrella, and ReproZip are not hosting providers and do not
have discoverability features, but they can be combined with GitHub or similar services that do.
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looping continuously, requires much stronger tools which can
preserve software artifacts that can change over time. For this,
we all look toward the final set of attributes.

Furthermore, we can use these guidelines to envision what
people find important and what can still be done in the
space of digital archives. Looking at the tables, we can see
the idea of discovery and prominence is well understood.
There are a variety of competitive solutions to essentially
host software artifacts. We can also see that there is a high
interest in the development of tools for the consistency of
software execution. This is not a surprise as this has been
driven by both scientific and industry communities to better
handle increasingly prevalent cloud computing environments.

Table IV is important for understanding what comes next.
When we accept software sustainability as being more than
just preservation of an executable, we see that we still have
some room for growth. The sparsity of the table on support for
artifact interactivity represents the state-of-the-art. Combined
with the ladder, which measures the strength of an artifact, this
shows us that these projects are certainly doing something new
and beneficial toward digital preservation and that there are
still new types of archives worth building. As a community, we
need to come together and determine what else comes between
now and the overall goal of preserving verifiable software. It
is this frontier of software archival that we now need to focus
our attention.
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