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Introduction

Multiple Sclerosis (MS) is a chronic inflammatory-
demyelinating disease of the central nervous system. MS
is divided into five distinct clinical categories and disease
progression differs significantly between these subtypes [3].
Among the five groups, relapsing-remitting (RLRM) is the
most common type of MS. The others are primary pro-
gressive (PRP), secondary progressive (SCP), progressive
relapsing (PRL) and clinically isolated syndrome (CIS).
Currently, in the assessment of MS, MRI data is to a large
extent only used in a qualitative way to assess the dissem-
ination of lesions in space and time [5,6]. Other studies
have shown that conventional MRI measures have rather
low predictive value and are therefore poor indicators for
determining clinical outcomes in MS [4].

We propose an objective classification of MS disease sub-
type using support vector machine (SVM). Unlike previous
work, we use a large number of quantitative features derived
from three MRI sequences. In addition to traditional demo-
graphic and clinical measures, our features include aspects
of lesion geometry, measured by Minkowski functionals, and
statistics of the image intensities within the lesions.

Methods

Minkowski functionals [1] are used to characterize the
connectivity and shape of lesions. In 3D space there are
four functionals, corresponding to volume, surface area,
mean breadth and Euler-Poincaré characteristic, which
provide pose-independent summaries of lesion geometry.
Furthermore, the original images (T1w, T1w-Gd & T2w,
normalized to whole-brain median of 100) are used to
compute various ‘texture’ statistics (see Tab.1).
These features, computed for every lesion, are combined
into summary measures over the whole brain. To preserve
information about the location of lesions the summary
measures are also computed separately for each of 13 ROI’s
according to segmentation into white matter track regions.
In addition to demographic information and clinical scores
(EDSS, PASAT), the fraction of gray matter volume to
whole brain volume is also included in the feature list.

SVM is a binary classification scheme based on finding
a separating hyperplane that splits the data set into two
groups. As a non-linear kernel, radial basis functions are
employed: K(xi,xj) = exp

[
−||xi − xj||2/2σ2

]
. Since this

is a multi-class problem, we adopt an one-vs-one approach
based on a total set of ten pairwise classifiers for all com-
binations of the five MS subtypes and combine this with a
majority voting scheme [1] to make predictions.
To estimate prediction accuracies, stratified k-fold cross-
validation is carried out, where k is given by the number
of elements in the smallest class (here k=10). Addition-
ally, nested cross-validation is used to optimize the model
parameters and ensure unbiased estimates of out-of-sample
accuracy.

Data. The data set used for our analysis consists of 250
subjects scanned at the University Hospital Basel, on a
1.5T scanner, collecting T1w, T2w & T1w-Gd-enhanced
images. White matter lesion masks were created by a semi-
automatic procedure and each scan was affine registered to
MNI space using trilinear interpolation [2]. The number of
subjects per subtype are: 11 CIS, 173 RLRM, 13 PRP, 43
SCP, 10 PRL.
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Results

An exhaustive combinatorial search across all features is
computationally infeasible. Instead we consider a subset
of possible feature combinations which are guided by the
magnitude of weights of the support vectors. Tab.2 shows
the confusion matrix for the feature set with the highest
average prediction accuracy of 47.8% (overall 56.0%). In
comparison, using only demographic and clinical covari-
ates yields considerably lower accuracies (42.0% overall
and 39.8% average accuracy respectively).
An example of normalized support vector weights for the
classifier involving the two MS subtypes RLRM and PRL
is given in Fig.2. The relevance of different geometry
and intensity based features varies depending on which
groups are involved in the classification. For instance,
median T2w lesion volume is important in RLRM vs.
PRL, but less so in other classifiers; and among the seven
EDSS subscores, PYRSC and MNSC seem to be most
significant.
The quadratic means of SVM-weights (Fig.1) give a com-
parison between different sorts of features and their vari-
ability. Demographic attributes and clinical scores carry
a considerable amount of information about the disease.

In general, with regard to lesion geometry, a compari-
son across different classifiers indicates that the median
is in many cases a better measure than the mean, that
the maximum lesion volume, area or mean breadth for
a single lesions is more meaningful than the respective
minimum, and that the Euler-Poincaré characteristic is
more significant than a simple lesion count.

Conclusions

Our work shows that geometry and intra-lesion inten-
sity of T1w hypo-intense and T2w hyper-intense lesions
improve objective classification of MS subtype, over and
above that obtained by simple demographic, lesion vol-
ume and count measures.

Tab.1: Features used for classification.

demographic info sex, age, disease duration

clinical scores EDSS (& subscores), PASAT

gray matter† GM-volume ratio to brain volume

standard measures† total lesion count, total lesion load

lesion geometry† Euler-Poincaré characteristic
volume
surface area
mean breadth

 sum total, mean , median,

max., min., standard dev.

intra-lesion intensity† sum total, mean, median, std. dev.

† from T1w, T2w, T1w-Gd MRI respectively; whole brain summaries or split according to 13 WM ROI’s.

Fig.1 (left): Normalized root
mean square errors of SVM
weights across all classifiers,
showing the relative significance
of different kinds of features
during classification.

Fig.2 (below): Example of
standardized SVM weights for
one classifier (RLRM vs. PRL).
Features (whole-brain sum-
maries) with positive weights
correlate with RLRM, negative
weights with PRL.

Tab.2: Confusion matrix for best feature set‡;
overall & average accuracy: 0.560 & 0.478.

CIS RLRM PRP SCP PRL

CIS 0.818 0.182 0.000 0.000 0.000
RLRM 0.162 0.584 0.058 0.081 0.116
PRP 0.000 0.231 0.308 0.231 0.231
SCP 0.023 0.093 0.116 0.581 0.186
PRL 0.000 0.400 0.200 0.300 0.100

‡
incl. GM volume, T2w median volume by WM ROI’s, whole brain

summaries for T1w mean-breadth stdandard deviation, T2w mean-

breadth median, T1w & T1w-Gd total intra-lesion intensities, along-

side demographic and clinical covariates;

References:
[1] Arns CH, et al. (2001), Phys Rev E 63(3), 031112.
[2] Bendfeldt K, et al. (2009), NeuroImage 45: 60–67.
[3] Cohen JA, et al. (2010), Springer, London.
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