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Background

Voxel-wise Heritability Estimation

• Existing Methods

• Falconer’s Method: ĥ
2

F = 2× (rMZ − rDZ)

Pros Simple, fast and easy to use

Cons Poor estimation accuracy

• SEM Method Implemented in Mx/OpenMx

Pros Has better estimation properties

Cons Time-consuming, can have convergence
problems, and requires R ←→ Nifti conversion

• Our LR-SD Method

• Based on squared differences of paired observations (Grimes
and Harvey, 1980)

• Fast, no iterations, no convergence issues
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Contributions

Outline

• Previous work

• Demonstrated validity and excellent bias-variance properties

• As good as or better than OpenMx

• Current work

• Power comparison of voxel-wise and cluster-based heritability
inference methods

• We demonstrate our method on a real dataset

• Spatial statistics: cluster size, cluster mass

• Non-parametric p-values: uncorrected, corrected
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Brief Method Description

• Linear Regression with Squared Differences (LR-SD)

• Relate squared differences of data pairs to variance
components A,C,E:

E
[
(MZ1 −MZ2)2

]
= 2E

E
[
(DZ1 − DZ2)2

]
= A + 2E

E
[
(I1 − I2)2

]
= 2A + 2C + 2E

• Modification of Grimes and Harvey’s method: n(n− 1)/2 obs.
→ (nMZ + nDZ)/2 obs. (50,721 vs. 141)

• Permutation Inference

• Under H0: h2 = 0, MZ and DZ twin pairs are exchangeable

•
((nMZ+nDZ)/2

nMZ/2

)
possible permutations

• Calculate FWE-corrected P-values from maximum distributions
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Simulation Setting

Simulation Setting

• 10,000 simulations

• Sample sizes: 10+10, 50+50

• 15 ACE parameter settings:

E CE AE

A 0 0 0 0 0 0.2 0.3 0.5 0.7

C 0 0.2 0.3 0.5 0.7 0 0 0 0

E 1 0.8 0.7 0.5 0.3 0.8 0.7 0.5 0.3

ACE

A 0.2 0.3 0.2 0.5 0.3 0.2

C 0.2 0.2 0.3 0.2 0.3 0.5

E 0.6 0.5 0.5 0.3 0.3 0.3

Voxel-wise and Cluster-based Heritability Inference for fMRI Data Chen X, Blokland G, Strike L and Nichols TE



Introduction Methods 1D Simulation Results 2D Simulation Results Real Data Results Conclusions Acknowledgements

LR-SD vs. OpenMx

Simulations: MSE Comparison
Mean squared error comparison between LR-SD and OpenMx
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LR-SD vs. OpenMx

Simulations: Power Comparison
Statistical power comparison between LR-SD and OpenMx
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LR-SD vs. OpenMx

Simulations: Running Time Comparison
Overall running time comparison between LR-SD and OpenMx
→ On average, our LR-SD is around 300 times faster than OpenMx
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Simulation Setting

Power Simulations
• 1,000 simulations

• Sample sizes: 10+10, 50+50

• ACE parameter settings: [0.3 0 0.7], [0.5 0.2 0.3], [0.7 0 0.3]

• Signal shapes:

(1) Focal signal (2) Distributed signal
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ROC Curve Analysis

ROC Curve Comparison
ROC curves of voxel-wise and cluster-based methods for different
ACE settings for focal signal, sample size: 10+10
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ROC Curve Analysis

ROC Curve Comparison
ROC curves of voxel-wise and cluster-based methods for different
ACE settings for focal signal, sample size: 50+50
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ROC Curve Analysis

Area under the ROC Curves
Normalized area under the ROC curves (20× AUC) for
FPR=0:0.05 for different ACE settings
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Real Data

Real Data Acquisition
An fMRI heritability study of working memory brain activation by
Blokland et al., 2011

• n = 319 young and healthy participants

• 75 MZ twin pairs, 66 DZ twin pairs and 37 singletons

• Age range: 20 - 28 (mean± SD: 23.6± 1.8 years)

• 199 females and 120 males

• Performed an n-back (0- and 2-back) working memory task

• Task-related fMRI BOLD signals were acquired

• Age, gender and 2-back performance accuracy were included
as the covariates
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Real Data

Running Time

• On a MacPro with 12 physical CPUs (24 logical CPUs), using
the system at full capacity

• Only areas of expected activation were included in the mask

• Totally 14,627 in-mask voxels

• 1,000 permutations, 10 parallelized jobs, each with 100
permutations

• Running time for one permutation

• LR-SD: 6 mins

• Mx: around 2 days (= 2880 mins)

• Running time for 10 parallelized jobs

• LR-SD: 15.5 hours
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Real Data

Twin Correlations
(1) MZ twin correlation

(2) DZ twin correlation
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Voxel-wise vs. Cluster-based Methods

FWE P-value Images of Significance
(1) Voxel-wise significance image

(2) Cluster-based significance image
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Voxel-wise vs. Cluster-based Methods

Voxel-wise vs. Cluster-based Methods

• Voxel-wise Method

• Construct empirical distribution of maximum test statistic

• FWE P-value = 0.006 for voxel

• 3 significant voxels

• Cluster-based Method

• Construct empirical distributions of maximum suprathreshold
cluster size and cluster mass

• FWE P-value = 0.003 for cluster size

• FWE P-value = 0.002 for cluster mass

• 3 significant clusters (127, 201, 210)
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Conclusions

1 We have developed a fast, accurate, and non-iterative
heritability inference method, which makes permutation
feasible

2 Our LR-SD method is faster than SEM method in
Mx/OpenMx with comparable power and accuracy

3 For equivalent false positive rates, cluster-based method gives
higher sensitivity, and thus more statistical power

4 Demonstrate the need for permutation inference to take
advantage of cluster statistics
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Thank You!

Voxel-wise and Cluster-based Heritability Inference for fMRI Data Chen X, Blokland G, Strike L and Nichols TE


	Introduction
	Background
	Contributions

	Methods
	1D Simulation Results
	Simulation Setting
	LR-SD vs. OpenMx

	2D Simulation Results
	Simulation Setting
	ROC Curve Analysis

	Real Data Results
	Real Data
	Voxel-wise vs. Cluster-based Methods

	Conclusions
	Acknowledgements
	Thanks!

