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Introduction
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Voxel-wise Heritability Estimation
e Existing Methods

e Falconer's Method: ﬂi =2 X (rmz — rpz)
Pros Simple, fast and easy to use
Cons Poor estimation accuracy

e SEM Method Implemented in Mx/OpenMx

Pros Has better estimation properties

Cons Time-consuming, can have convergence
problems, and requires R <— Nifti conversion

e Our LR-SD Method

e Based on squared differences of paired observations (Grimes
and Harvey, 1980)

e Fast, no iterations, no convergence issues
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Introduction

Contributions

Outline

e Previous work
e Demonstrated validity and excellent bias-variance properties

e As good as or better than OpenMx

e Current work

e Power comparison of voxel-wise and cluster-based heritability
inference methods

e \We demonstrate our method on a real dataset
e Spatial statistics: cluster size, cluster mass

o Non-parametric p-values: uncorrected, corrected
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Brief Method Description

o Linear Regression with Squared Differences (LR-SD)

e Relate squared differences of data pairs to variance
components A,C,E:

E [(MZ; — MZ,)?] = 2F
E[(DZ, -DZ;)’] = A + 2E
E[(I1 — 1»)?] = 2A + 2C + 2E

¢ Modification of Grimes and Harvey's method: n(n — 1)/2 obs.
— (nmz + npz)/2 obs. (50,721 vs. 141)

e Permutation Inference

e Under HO: h? =0, MZ and DZ twin pairs are exchangeable

. ((nmz+nDz)/2

haz /2 ) possible permutations

e Calculate FWE-corrected P-values from maximum distributions
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1D Simulation Results
o

Simulation Setting

Simulation Setting
¢ 10,000 simulations
e Sample sizes: 10+10, 50+50

e 15 ACE parameter settings:

E | CE AE
A 0 0 0 0 |02|03|05]0.7

0
C|i0]02]03]05|07| 0 0 0 0
E|1(08]07|05/03[08|07]|05]|03
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Al 02 (03[02]|05|03]0.2

C| 02 ]02(03[02|03]|05
Ef| 06 |05]05|03|03]|03
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LR-SD vs. OpenMx

Simulations: MSE Comparison
Mean squared error comparison between LR-SD and OpenMx

MSE Comparison: LR-SD (blue) vs. OpenMx (red), n,,=10, n =10
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MSE Comparison: LR-SD (blue) vs. OpenMx (red), n,,=50, n_,=50
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1D Simulation Results
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LR-SD vs. OpenMx

Simulations: Power Comparison
Statistical power comparison between LR-SD and OpenMx

Power for LRT (100%): LR-SD (blue) vs. OpenMx (red), ’Mzzlo' nDZ:10
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LR-SD vs. OpenMx

Simulations: Running Time Comparison

Overall running time comparison between LR-SD and OpenMx
— On average, our LR-SD is around 300 times faster than OpenMx

Running Time Comparison: LR-SD (blue) vs. OpenMx (red), ry,,=10, n, =10
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SimuBGoRISEnG

Power Simulations
e 1,000 simulations
e Sample sizes: 10+10, 50450
e ACE parameter settings: [0.3 0 0.7], [0.5 0.2 0.3], [0.7 0 0.3]
e Signal shapes:

(1) Focal signal (2) Distributed signal
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2D Simulation Results
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ROC Curve Analysis

ROC Curve Comparison

ROC curves of voxel-wise and cluster-based methods for different
ACE settings for focal signal, sample size: 10+10
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2D Simulation Results
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ROC Curve Analysis

ROC Curve Comparison

ROC curves of voxel-wise and cluster-based methods for different
ACE settings for focal signal, sample size: 50+50

Average true positive rate (TPR)

n,,z=20. N =50, Focal Signal
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2D Simulation Results
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ROC Curve Analysis

Area under the ROC Curves

Normalized area under the ROC curves (20 x AUC) for
FPR=0:0.05 for different ACE settings
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Real Data Results
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Real Data

Real Data Acquisition

An fMRI heritability study of working memory brain activation by
Blokland et al., 2011

e n = 319 young and healthy participants

e 75 MZ twin pairs, 66 DZ twin pairs and 37 singletons

e Age range: 20 - 28 (mean £+ SD: 23.6 4 1.8 years)

e 199 females and 120 males

e Performed an n-back (0- and 2-back) working memory task
e Task-related fMRI BOLD signals were acquired

o Age, gender and 2-back performance accuracy were included
as the covariates
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Real Data Results
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Real Data

Running Time

e On a MacPro with 12 physical CPUs (24 logical CPUs), using
the system at full capacity

e Only areas of expected activation were included in the mask
o Totally 14,627 in-mask voxels

e 1,000 permutations, 10 parallelized jobs, each with 100
permutations

¢ Running time for one permutation
e LR-SD: 6 mins
e Mx: around 2 days (= 2880 mins)

Running time for 10 parallelized jobs
e LR-SD: 15.5 hours
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Real Data

Twin Correlations

(1) MZ twin correlation
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Voxel-wise vs. Cluster-based Methods

FWE P-value Images of Significance

(1) Voxel-wise significance image
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Real Data Results
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Voxel-wise vs. Cluster-based Methods

Voxel-wise vs. Cluster-based Methods

o Voxel-wise Method
e Construct empirical distribution of maximum test statistic
o FWE P-value = 0.006 for voxel

o 3 significant voxels

e Cluster-based Method

o Construct empirical distributions of maximum suprathreshold
cluster size and cluster mass

e FWE P-value = 0.003 for cluster size
e FWE P-value = 0.002 for cluster mass
e 3 significant clusters (127, 201, 210)
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Conclusions

Conclusions

@ We have developed a fast, accurate, and non-iterative
heritability inference method, which makes permutation
feasible

® Our LR-SD method is faster than SEM method in
Mx/OpenMx with comparable power and accuracy

© For equivalent false positive rates, cluster-based method gives
higher sensitivity, and thus more statistical power

O Demonstrate the need for permutation inference to take
advantage of cluster statistics
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Thank You!
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