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Introduction
Prior research has observed considerable genetic influence
on brain activity and cognitive processes [4] [1]. Twin s-
tudies are used to disentangle genetic effects from environ-
mental effects. In the classic ACE modeling of twin data,
the variance of the phenotype of interest (V) can be decom-
posed into three components:

•Additive genetic variance (A),

•Common environmental variance (C),

•Unique environmental variance (E),

where the proportion of V accounted for by A is defined as
heritability [6].

Estimation of heritability on imaging phenotypes is be-
coming routine, with the use of variance components or
structural equation modeling (SEM) methods like im-
plemented in Mx/OpenMx, applied one voxel at a time.
But such methods cannot exploit the spatial nature of
the data, nor provide accurate inferences corrected for
familywise errors (FWE) over the brain (Bonferroni offers
FWE-control, but is conservative). Permutation-based
inference implicitly accounts for spatial dependence,
allows cluster inference, and easily delivers exact FWE
corrections. However, current heritability estimation is
too slow and unreliable (i.e. can fail to converge) to allow
permutation. For example, Mx took around 2 days on the
fMRI dataset described below while our method took less
than 20 minutes for each run.

We have developed a multiple regression method for voxel-
wise heritability estimation that uses an approximate but
remarkably fast and highly accurate estimation, being about
150 times faster than Mx. This speed advantage makes
permutation inference feasible, which in turn provides
FWE-corrected voxel-wise and cluster-based p-values.
The accuracy of this method has been reported previously
[2]. In brief, for a simulated sample of 50 monozygotic
(MZ) twins and 50 dizygotic (DZ) twins, the mean squared
error of our method was within ±5% of that of OpenMx
(with similar bias and variance properties, and our method
outperforms OpenMx with even smaller samples).

In this work we conduct power simulations to compare
voxel-wise and cluster-based power for heritability infer-
ence, and demonstrate our method on a real dataset.

Methods
(1) Data Acquisition

A total of n = 319 young and healthy participants, con-
sisting of nMZ = 150 MZ twins, nDZ = 132 DZ twins and
nS = 37 singletons (S), performed an n-back (0- and 2-
back) working memory task during the experiment. Task-
related fMRI BOLD signals were acquired and processed
for further statistical analysis, producing a 2- vs 0-back
contrast for each subject. This sample includes 199 fe-
males and 120 males, with age range: 20-28 (mean±SD:
23.6±1.8 years) [1].

(2) Voxel-wise Inference
Grimes and Harvey [5] proposed estimating heritability
with squared differences of each pair of subjects. Heri-
tability is a function of the variance components (A,C,E)
of the data, and thus it is also a function of the mean of
squared differences of data pairs with the following rela-
tionships:
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2
]
= 2E
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]

= A + 2E
E
[
(I1 − I2)2

]
= 2A + 2C + 2E

where MZ1,MZ2 and DZ1,DZ2 denote MZ and DZ twin
pairs respectively, and I1, I2 denotes uncorrelated subject
pairs (i.e. unpaired-twins or singletons).

Therefore, a computationally efficient (and non-iterative)
non-negative least squares regression can be utilized
to estimate unknown variance component parameter-
s. While Grimes’ method specifies an ordinary least
squares (OLS) linear regression with n(n-1)/2 observa-
tions, we have derived an OLS estimate that only requires
(nMZ+nDZ)/2 observations. Tests on parameters are per-
formed as usual, with a likelihood ratio test (LRT).

(3) Permutation Inference
Applying our method voxel by voxel through the volume
of interest gives a LRT statistic image. Under the null
hypothesis of no heritability, MZ and DZ twin pairs are
exchangeable, allowing (nMZ+nDZ)/2-choose-nMZ/2 per-
mutations. In order to solve the multiple comparisons
problem and control the false positives all over the im-
age simultaneously, FWE-corrected P-values are comput-
ed by considering the maximum statistics [7]. With a per-
mutation test we obtain FWE-corrected p-values on peak
height, cluster size and cluster mass.

Permutation Results
1,000 permutations took around 12 days on a Mac Pro with
dual quad-core CPUs (3.0 GHz), but the code is readily par-
allelizable to further reduce the running time. The most
significant FWE-corrected p-values were 0.006, 0.003 and
0.002 for voxel, cluster size and cluster mass respectively,
which implies the omnibus hypothesis of no heritability is
rejected at level α = 0.05.
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Figure 1: Bland-Altman comparing p-values less than 1 between
our fast approximate NNLS method and ReML. As different

random permutations were used, some disagreement is expected;
expected scatter is shown by oval 95% confidence bands.

Of the totally 14,627 voxels, 25.5% had permutation-based
uncorrected p-values of 1 for our NNLS, 24.9% for ReML,
with only 0.6% disagreement between the two methods.

ROC Sensitivity Analysis
Fig 2 shows two kinds of 2D simulated signals used, focal
and distributed, in ROC evaluation of voxel-wise and
cluster-based methods.

Figure 2: 2D simulated focal (left) and distributed (right) signals.

The standard ROC curves are shown in Fig 3, where cluster-
based method performs better than voxel-wise method on
all ACE settings, and both methods work better with more
focal signal. The corresponding normalized AUC values
for FPR = 0:0.05 are shown in Fig 4, which suggests that
cluster-based method provides better normalized AUC val-
ues with increasing sample size while voxel-wise method

has poor performance on all cases, implying that cluster-
based method has larger power when FPR is controlled.
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Figure 3: ROC curves of voxel-wise and cluster-based methods on
focal and distributed signals for different ACE settings.
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Figure 4: Normalized area under the ROC curves for FPR=0:0.05
(20×AUC) for focal and distributed signals by the use of

voxel-wise and cluster-based methods.

Conclusions
We have presented a comparatively powerful and practi-
cal permutation method for heritability inference in neu-
roimaging. Our use of a fast and accurate non-iterative
method (free of any convergence problems) gives access to
the spatially informed statistics like cluster size and cluster
mass. Although the statistical power is still low in an abso-
lute sense, the cluster-based method has largely increased
the power, demonstrating the importance of such spatial s-
tatistics.
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