Finding Activations: Power, Specificity, and Selection Bias

Thomas Nichols, Ph.D.
Department of Statistics &
Warwick Manufacturing Group
University of Warwick

with
Jeanette Mumford, PhD
University of Texas, Austin

OHBM 2011 – Advanced fMRI Course – 26 June, 2011

Outline

- Specificity, Sensitivity & Power
 - How many subjects to get a good result
- Circularity
 - How to guarantee a good (but meaningless) result

Why Power Analysis?

- To answer
 - How many subjects do I need for my study?
 - How many runs per subject should I collect?
- For grants
 - Reviewers
 - Want it (even if they don't believe/understand it)
 - Funders
 - Don't want to waste money on studies likely to fail,
 - Or on studies where fewer subjects would suffice

Test Outcome: One Test

Below Above Thresh.

Truth (unobserved)

Test Outcome: One Test

Test Outcome: Long Run

Power Analysis: Necessary information

- N Number of Subjects
 - Adjusted to achieve sufficient power
- α The size of the test you'd like to use
 - Commonly set to 0.05 (5% false positive rate) for ROI
 - Set to corrected level for voxel-wise
- Δ The size of the effect to be detected
 - Based on intuition or similar studies
- $\sigma 2$ The variance of Δ
 - Has a complicated structure with very little intuition
 - Depends on many things

Why is it so difficult for group fMRI?

Temporal autocorr.

 $Cov(Y) = \sigma_{w}^{2}V$

Subject 1

Subject 2

Subject N

Between subject variability, σ_B^2

Level 1: Intra-Subject

- Y_k : T_k -vector timeseries for subject k
- X_k : $T_k \times p$ design matrix
- β_k : p-vector of parameters
- ε_k : T_k -vector error term, $Cov(\varepsilon_k) = \sigma_k^2 V_k$

Level 1: Autocorrelation

- What's your V_k (N×N matrix)?
 - Who has intuition on magnitude of autocorrelation?
 - True V_k is very complicated
 - SPM uses per-subject, global, cheap & cheerful AR (1) approximation ($\rho \approx 0.2$)
 - FSL uses per-subject, local, tapered & spatially regularized arbitrary Autocorrelation function
- AR(1) + White Noise
 - Estimated from residuals
 - Specified by σ_{WN} , σ_{AR} & ρ

Level 2: Between

- $X_g: N \times p_g$ design matrix
- β_g : p_g -vector of parameters
- ε_g : N-vector error term

$$- Cov(\varepsilon_g) = V_g = diag \left\{ c(X^T_k V_k^{-1} X_k)^{-1} \sigma_k^2 c^T \right\} + \sigma_B^2 I_N$$
 Within subject variability Between

Between subject variability

Estimating Parameters

- How to you estimate parameters for a future study?
 - Look at other people's study results for similar studies
 - Usually not enough data reported
 - Look at your own similar studies
- Average parameter estimates over ROIs of interest
- With all this in place, can then estimate

Power = P(
$$T(c\beta) > t_\alpha \mid H_A$$
)

Model

- Block design 15s on 15s off
- TR=3s
- Hrf: Gamma, sd=3
- Parameters estimated from Block study
 - FIAC single subject data
 - Read 3 little pigs
 - Same/different speaker, same/different sentence
 - Looked at blocks with same sentence same speaker

•
$$\delta = 0.69\% \ \sigma_g = 0.433\%$$

$$\rho = 0.73, \ \sigma_{AR} = 0.980 \ \%, \ \sigma_{WN} = 1.313\%$$

$$\alpha = 0.005$$

Power as a function of run length and sample size

More importantly....cost!

- Cost to achieve 80% power
- Cost=\$300 per subject+\$10 per each extra minute

How Many Runs?

- Can also expand to a 3 level model and study impact of adding runs
- Example
 - ER study
 - Study used 3 runs per subject
 - Estimate between run variability
 - Assume within subject variability is the same across subjects
 - Assume study design is same across subjects

How many runs?

fMRI Power Calculator

- Fmripower by Jeanette Mumford
 - Beta version at fmripower.org
 - ROI based power analysis
 - Works with FSL SPM version coming soon!
 - Runs in Matlab
 - Current version only allows user to specify different #'s of subjects
 - Assumes # of runs for future study will be the same
 - Assumes between subject variability is same across subjects
 - Doesn't control for multiple comparisons

Post hoc power?

- Power
 - A prediction about a future study
- Irrelevant for completed study
 - Null was true, or it wasn't
 - Study negative:
 - Post hoc power < 50%
 - Study positive:
 - Post hoc power > 50%
- See
 - "The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis," Hoenig et al, American Statistician, 55(1), 1-6, 2001

fMRI Power The Easy Approach

- One sample setting
- Set power for a priori ROI
 - Find paper with ROI non-voodoo results
 - Find effect size
 - $\delta = \overline{x} / \sigma$
 - Or, reverse engineer δ from t $t = \overline{x} / (\sigma/\sqrt{n}) \Rightarrow \delta = t/\sqrt{n}$
 - Specify alpha, $n \rightarrow Get power!$
 - DONE!

Problems with the Easy Approach

- Only works for 1-sample t-test
- Assumes same experimental design
 - Same experimental efficiency
 - Same run-length
- Assumes same intrasubject noise level
 - Same Tesla, etc

• These limitations motivated Mumford & Nichols (2009) work

Dumb Group Modelling: Not bad, actually

- One-sample t on contrasts vs. Full MFX modelling
 - "Holmes & Friston" almost impossible to break

- 2-sample & correlation might give trouble
 - Dramatic imbalance or heteroscedasticity

Power Conclusion

- Power Calculations
 - Useful fiction to keep statisticians employed, grant panels happy
 - You have to assume knowledge of the outcome of the experiment!
- Still, some utility
 - Are very subtle effects detectable at all
 - Relative comparisons of design efficiency

Outline

- Specificity, Sensitivity & Power
 - How many subjects to get a good result
- Circularity
 - How to guarantee a good (but meaningless) result

Voodoo Correlations

- Meta-analysis
 - Correlations from 54 social-neurosicence pubs
- All correlations

Voodoo Correlations

- Meta-analysis
 - Correlations from 54social-neurosicence pubs
- Non-independent results
 - Peak correlations
- Independent results
 - Correlations from a priori masks

Correlation Bias Explained

- Apples & Oranges
 - Single selected correlation (e.g. GSR & personality score)
 not comparable with
 Search over 100,000 correlations (e.g. best of GSR & 100,000 voxels)
- Sample Correlations ≠ True Correlations
 - Estimated r's bounce around true ρ
 - Peak r's bounce far from true ρ especially for small N
- Multiple testing needed
 - Focus on *inference*, controlling false positives
 - Not estimation of effect magnitude
- See
 - Kriegeskorte et al. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. *Nature Neuroscience*, 12(5), 535-540

Brain Mapping Inference

(on where any signal is)

- Perform t-test at 100,000 voxels
- Threshold, mark significant
 - FWE 0.05
 - 95% confident all true positives
 - FDR 0.05
 - 95% true positives on average
- Estimation of effect magnitude?
 - None!
 - Only 'estimation' of set of signal voxels

Brain Mapping Estimation

(on signal in a given location)

- Define ROI Mask
 - Average voxel-wise%BOLD within mask
- Inference on location?
 - None!
 - Location assumed!
 - Only inference is
 - H₀: zero BOLD in ROI
 - H_A: non-zero BOLD in ROI

e.g. Amygdala
BOLD = 2.1%

Estimation Bias from Circularity

- Conditional inference
 - Only measure *X* in voxels with $Z \ge u$

- Bias Conditional on a detection
 - $\operatorname{E}(X \mu \mid Z \ge u) = \phi(u^*)/[1 \Phi(u^*)] \ \sigma/\sqrt{N}$

$$u^* = u - \mu / (\sigma/\sqrt{N})$$

Assume no null voxels in ROI

- φ CDF of Standard Normal
- Φ PDF of Standard Normal
- Biased by term that depends on
 - Standard Error σ/\sqrt{N}
 - − Shifted threshold *u**
 - Shifted by non-centrality parameter (NCP) $\mu / (\sigma / \sqrt{N})$

Bias Reduces with Signal & N

Practical Advice (1)

- Emphasize if peak estimate given
 - Especially if % change or r
- Consider *not* showing a plot
- Bias-free estimates
 - Compute mean % BOLD for all voxels in a mask
 - Which mask?
 - Define when planning study!
 - Anatomical mask
 - WFUPickAtlas, Harvard-Oxford
 - Functional mask...

Practical Advice (2) Functional Masks

- From different data
 - Literature or independent subjects
 - From same subjects, unrelated data
- Independent contrast from same acquisition
 - E.g. create mask with (A+B)/2
 - For A–B, compute mean % BOLD within mask
 - Though see Kriegeskorte et al. 2009 supp. mat.
 - Just because contrasts [½½½] & [-1 1] orthogonal doesn't mean the COPEs orthogonal
 - Imbalanced design & autocorrelation can prevent perfect independence of COPEs

Conclusions: Circularity

- Circularity
 - Selection bias, but severity of bias variable
- Inference
 - Search over space → Localize
- Estimation
 - Assume location → Measure signal
- Make crystal clear what you report

Power Publications

- Desmond & Glover (2002)
 - Desmond & Glover, 2002. Estimating sample size in functional MRI (fMRI)
 neuroimaging studies: statistical power analyses. *J. Neurosci. Methods* 118, 115–128.
 - fMRI power method
 - Assumes simple box-car model
 - Ignores temporal autocorrelation
- Mumford & Nichols (2008)
 - Mumford & Nichols, 2008. Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. *NeuroImage*, 39(1), 261-268.
 - Allows arbitrary experimental design
 - Accounts for autocorrelation

fmripower

Estimation Bias: What if ROI misses signal?

Conditional expectation now a mixture

$$- \, \mathrm{E}(\, X - \mu \, | \, Z \geq u \,) = \\ f_{Ho} \quad \varphi(u) / [1 - \Phi(u)] \quad \sigma / \sqrt{N} \quad + \\ - f_{Ho} \, \mu \quad + (1 - f_{Ho}) \, \varphi(u^*) / [1 - \Phi(u^*)] \quad \sigma / \sqrt{N} \\ \text{where}$$

 f_{Ho} is fraction of ROI that is null

- So now have different directions of bias
 - "Winner's Curse" biases up
 - False positive voxels biases up
 - Diluting true positives biases down

Bias: Effect of Null voxels in

