Supporting Information

Enantio- and Diastereoselective Organocatalytic Conjugate Additions of Nitroalkanes to Enone Diesters

Matthew A. Horwitz, Jennifer L. Fulton, Jeffrey S. Johnson

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States

jsj@unc.edu

Table of Contents	Page
General information (materials and methods)	S2
General procedure for synthesis of enone diesters	S2-S3
Characterization data for enone diesters	S3-S7
Optimization of asymmetric conjugate addition of nitroalkanes	S7-S8
General procedure for asymmetric conjugate addition of nitroalkanes	S8-S9
Gram scale asymmetric conjugate addition reaction	S9
Characterization data for conjugate addition products	S9-S15
Procedure for transesterification of 2a	S16
Local desymmetrization sequence for transesterification/lactamization of 2a	S16-S17
References	S17
HPLC traces	S18-S34
Crude ¹ H NMR spectra for the asymmetric reactions	S35-S50
¹ H and ¹³ C NMR spectra of new compounds	S51-118

General Information:

Methods: Infrared (IR) spectra were obtained using a Jasco 460 Plus Fourier transform infrared spectrometer. Proton and carbon magnetic resonance spectra (¹H NMR, ¹³C NMR, ¹⁹F NMR) were recorded on a Bruker model DRX 400 or 600 (¹H NMR at 400 MHz or 600 MHz, ¹³C NMR at 101 MHz or 151 MHz, ¹⁹F NMR at 376 MHz with solvent resonance as the internal standard (¹H NMR: CDCl₃ at 7.26 ppm and ¹³C NMR: CDCl₃ at 77.0 ppm). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, app s = apparent singlet, br s = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet), coupling constants (Hz), and integration. High resolution mass spectra were obtained with a Thermo Fisher Scientific Finnigan[™] LTQ-ICR FT[™] (all samples prepared in methanol). Melting points were obtained using a Thomas Hoover UniMelt Capillary Melting Point Apparatus. Analytical thin layer chromatography was carried out using Whatman 0.25 mm silica gel 60 plates, Sorbent Technologies 0.20 mm Silica Gel TLC plates. Visualization was allowed by UV light, phosphomolybdic acid in ethanol, or aqueous ceric ammonium nitrate solution. HPLC analysis was performed on a Perkin Elmer flexar photodiode array (PDA) system equipped with Daicel IA, IC, AD, and OD-H columns. Asymmetric reactions were carried out in a Thermo Sigma UCR-150N aluminum block UC reactor with stirring. Purification of the reaction products was carried out by using Siliaflash-P60 silica gel (40- 63µm) purchased from Silicycle. Yields refer to isolated yields after flash column chromatography; some samples contain residual minor diastereomers. Since all asymmetric trial results are the averages of two trials, the stereoisomer ratios listed in the paper may not exactly match those represented in the NMR and HPLC data below.

Materials: Diethyl ether (Et₂O) was passed through a column of neutral alumina under nitrogen prior to use. Wittig reagents were prepared according to a literature procedure.¹ Triaryliminophosphorane catalysts **C1-C3** were prepared according to literature procedures.² Commercially available nitroethane and nitropropane were used as received. Raney[®]-Nickel 2800 (W.R. Grace and Co. Raney[®]) slurry in H₂O was used as received.

General procedure for synthesis of enone diesters:

A modification of literature procedures was used.³⁻⁴ A flame-dried 100 mL round-bottomed flask equipped with a reflux condenser was charged with $Rh_2(OAc)_4$ (0.046 mmol, 0.02 equiv), toluene (10 mL), and propylene oxide (22.4 mmol, 10.0 equiv). The mixture was heated to 85 °C in an oil bath for 10 min. A solution of di-*tert*-butyl 2-diazomalonate⁵ (2.25 mmol, 1.0 equiv) in toluene (2 mL) was added dropwise. An additional volume of toluene (1 mL) was used as a rinse to complete the addition of the diazomalonate. The reaction was stirred at 85 °C for 1 h then allowed to return to room temperature.

The reaction flask was placed in an ice bath. MgSO₄ (500 mg) was added to the reaction, followed by the appropriate Wittig reagent (3.37 mmol, 1.5 equiv). The reaction was allowed to slowly warm to room temperature and was stirred for 16 h. The crude mixture was filtered through a short silica plug with CH_2Cl_2 (to remove solids) and concentrated *in vacuo*. The crude materials thusly obtained were purified using flash column chromatography, with the gradient noted below.

Characterization data for enone diesters:

Di*-tert*-butyl **2-(2-oxo-2-phenylethylidene)malonate (1a):** The title compound was prepared on a larger scale according to the general procedure. Di-*tert*-butyl 2-diazomalonate (8.49 g, 35.0 mmol) was used and all components of the general procedure were scaled proportionally. The crude material was

purified using flash column chromatography, with a gradient from 95:5 hexanes/EtOAc to 85:15 hexanes/EtOAc. Yellow solid (8.53 g, 25.7 mmol, 73%), mp 89-90 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.01-7.99 (m, 2H), 7.68 (s, 1H), 7.65-7.62 (m, 1H), 7.53-7.51 (m, 2H), 1.57 (s, 9H), 1.49 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 189.6, 163.7, 162.2, 138.9, 136.3, 134.0, 133.2, 128.9, 128.9, 83.3, 83.0, 27.9, 27.8. **IR** (thin film) v 2979, 1724, 1673, 1450, 1369, 1278, 1257, 1156, 1069, 866 cm⁻¹. **HRMS** (ESI): Calcd. For C₁₉H₂₄NaO₅⁺ ([M+Na⁺]): 355.1516, found 355.1509. **TLC** (10:90 EtOAc/hexanes): *R_f* = 0.32.

Di-tert-butyl 2-(2-(4-fluorophenyl)-2-oxoethylidene)malonate (1b): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 95:5 hexanes/EtOAc. Yellow oil (544.0 mg, 1.55 mmol, 1.5

69%); ¹**H** NMR (600 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.64 (s, 1H), 7.20-7.18 (m, 2H), 1.56 (s, 9H), 1.50 (s, 9H); ¹³**C** NMR (151 MHz, CDCl₃) δ 188.0, 166.3 (d, J = 256.8 Hz), 163.6, 162.1, 139.1, 132.9, 132.8 (d, J = 3.0 Hz), 131.6 (d, J = 9.4 Hz), 116.1 (d, J = 22.1 Hz), 83.4, 83.1, 27.9, 27.8; ¹⁹**F** NMR (565 MHz, CDCl₃) δ -103.18. **IR** (thin film) v 3437, 2980, 1724, 1673, 1598, 1541, 1369, 1279, 1155, 1070 cm⁻¹. **HRMS** (ESI): Calcd. For C₁₉H₂₃FNaO₅⁺ ([M+Na⁺]): 373.1422, found 373.1413. **TLC** (10:90 EtOAc/hexanes): $R_f = 0.34$.

Di-*tert*-**butyl 2-(2-(4-chlorophenyl)-2-oxoethylidene)malonate (1c):** The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 95:5 hexanes/EtOAc. Yellow solid (528.0 mg,

1.44 mmol, 64%), mp 63-64 °C; ¹**H NMR** (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.6 Hz, 2H), 7.63 (s, 1H), 7.49 (d, *J* = 8.6 Hz, 2H), 1.56 (s, 9H), 1.50 (s, 9H); ¹³**C NMR** (151 MHz, CDCl₃) δ 188.3, 163.6, 162.1, 140.6,

139.4, 134.7, 132.5, 130.2, 129.2, 83.5, 83.2, 27.9, 27.8. **IR** (thin film) v 2979, 2934, 1725, 1673, 1589, 1369, 1258, 1158, 1092, 847 cm⁻¹. **HRMS** (ESI): Calcd. For $C_{19}H_{23}CINaO_5^+$ ([M+Na⁺]): 389.1126, found 389.1119. **TLC** (10:90 EtOAc/hexanes): $R_f = 0.34$.

Di-*tert*-butyl **2-(2-(4-bromophenyl)-2-oxoethylidene)malonate** (1d): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 95:5 hexanes/EtOAc. Light yellow solid

(626.6 mg, 1.52 mmol, 68%), mp 73-74 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.5 Hz, 1H), 7.62 (s, 1H), 1.56 (s, 9H), 1.50 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 188.5, 163.6, 162.0, 139.5, 135.1, 132.4, 132.2, 130.3, 129.4, 83.5, 83.2, 27.9, 27.8. IR (thin film) v 2979, 2933, 1725, 1672, 1586, 1569, 1369, 1278, 1159, 1071 cm⁻¹. HRMS (ESI): Calcd. For C₁₉H₂₃BrNaO₅⁺ ([M+Na⁺]): 433.0621, found 433.0611. TLC (10:90 EtOAc/hexanes): $R_f = 0.38$.

Di*-tert*-butyl **2-(2-(4-cyanophenyl)-2-oxoethylidene)malonate** (1e): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 90:10 hexanes/EtOAc. Yellow solid (407.2

mg, 1.14 mmol, 51%), mp 72-73 °C; ¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (d, *J* = 8.3 Hz, 2H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.62 (s, 1H), 1.56 (s, 9H), 1.51 (s, 9H); ¹³**C NMR** (151 MHz, CDCl₃) δ 188.3, 163.3, 161.8, 140.4, 139.2, 132.7, 131.6, 129.2, 117.8, 117.1, 83.7, 83.5, 27.9, 27.8. **IR** (thin film) v 2980, 2935, 2232, 1725, 1677, 1370, 1279, 1158, 1071, 847 cm⁻¹. **HRMS** (ESI): Calcd. For C₂₀H₂₃NNaO₅⁺ ([M+Na⁺]): 380.1468, found 380.1463. **TLC** (10:90 EtOAc/hexanes): $R_f = 0.14$.

Di-*tert*-butyl 2-(2-(4-nitrophenyl)-2-oxoethylidene)malonate (1f): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 85:15 hexanes/EtOAc. Yellow solid (598.1

mg, 1.58 mmol, 70%), mp 77-78 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, *J* = 8.9 Hz, 2H), 8.16 (d, *J* = 8.9 Hz, 2H), 7.65 (s, 1H), 1.57 (s, 9H), 1.52 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 188.0, 163.3, 161.8, 150.7, 140.7, 140.5, 131.5, 129.8, 124.1, 83.8, 83.5, 27.9, 27.8. IR (thin film) v 2980, 2360, 1725, 1678, 1530, 1370, 1347, 1278, 1157, 847 cm⁻¹. HRMS (ESI): Calcd. For C₁₉H₂₃NNaO₇⁺ ([M+Na⁺]): 400.1367, found 400.1358. TLC (10:90 EtOAc/hexanes): $R_f = 0.28$.

Di-tert-butyl

2-(2-oxo-2-(4-

(trifluoromethyl)phenyl)ethylidene)malonate (1g): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure

hexanes to 90:10 hexanes/EtOAc. Yellow oil (550.6 mg, 1.38 mmol, 61%); ¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.66 (s, 1H), 1.60 (s, 9H), 1.51 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 188.6, 163.4, 161.9, 140.0, 139.0, 135.1 (q, J = 32.8 Hz), 132.0, 129.1, 125.9 (q, J = 3.7 Hz), 123.4 (q, J = 273.0 Hz), 83.6, 83.3, 27.9, 27.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -63.19. IR (thin film) v 2981, 1726, 1678, 1370, 1326, 1279, 1258, 1161, 1067, 1032 cm⁻¹. HRMS (ESI): Calcd. For $C_{20}H_{23}F_3NaO_5^+$ ([M+Na⁺]): 423.1390, found 423.1383. TLC (10:90 EtOAc/hexanes): $R_f = 0.34$.

Di-*tert*-butyl 2-(2-(4-methoxyphenyl)-2-oxoethylidene)malonate (1h): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 90:10 hexanes/EtOAc. White solid

(612.8 mg, 1.69 mmol, 75%), mp 93-94 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.8 Hz, 2H), 7.67 (s, 1H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.91 (s, 3H), 1.56 (s, 9H), 1.50 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 187.9, 164.3, 163.9, 162.4, 138.3, 133.5, 131.3, 129.5, 114.1, 83.2, 82.8, 55.6, 27.9, 27.8. **IR** (thin film) v 2979, 1724, 1666, 1599, 1512, 1369, 1281, 1257, 1161, 847 cm⁻¹. **HRMS** (ESI): Calcd. For C₂₀H₂₆NaO₆⁺ ([M+Na⁺]): 385.1622, found 385.1613. **TLC** (10:90 EtOAc/hexanes): *R*_f = 0.14.

Di-*tert*-butyl **2-(2-(3-methoxyphenyl)-2-oxoethylidene)malonate (1i):** The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 90:10 hexanes/EtOAc. Yellow oil (617.3 mg, 1.70 mmol, 76%); ¹H NMR (600 MHz, CDCl₃) δ 7.66 (s, 1H), 7.58-7.56 (m, 1H), 7.52-7.51 (m, 1H),

7.42 (t, J = 8.0 Hz, 1H), 7.19-7.17 (m, 1H), 3.88 (s, 3H), 1.56 (s, 9H), 1.50 (s, 9H); ¹³**C** NMR (151 MHz, CDCl₃) δ 189.3, 163.7, 162.2, 160.0, 139.0, 137.7, 133.1, 129.8, 121.8, 121.0, 112.4, 83.3, 83.0, 55.5, 27.9, 27.8. **IR** (thin film) v 2979, 1724, 1672, 1597, 1456, 1369, 1278, 1157, 1032, 848 cm⁻¹. **HRMS** (ESI): Calcd. For C₂₀H₂₆NaO₆⁺ ([M+Na⁺]): 385.1622, found 385.1612. **TLC** (10:90 EtOAc/hexanes): $R_f = 0.25$.

Di-tert-butyl 2-(2-(benzo[d][1,3]dioxol-5-yl)-2-oxoethylidene)malonate

(1j): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 80:20 hexanes/EtOAc. Yellow solid (506.0 mg, 1.34 mmol, 60%), mp 55-56 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.62 (s, 1H), 7.59 (d, J = 8.2, 1H), 7.48 (s, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.09 (s, 2H), 1.56 (s, 9H), 1.51 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 187.5, 163.8, 162.3, 152.7, 148.6, 138.5, 133.4, 131.3, 126.0, 108.1, 108.1, 102.1, 83.2, 82.9, 27.9, 27.8. IR (thin film) v 2979, 2933, 1723, 1664, 1603, 1505, 1446, 1369, 1259, 1161 cm⁻¹. HRMS (ESI): Calcd. For C₂₀H₂₄NaO₇⁺ ([M+Na⁺]): 399.1414, found 399.1405. TLC (10:90 EtOAc/hexanes): $R_f = 0.21$.

Di-*tert*-butyl **2-(2-(furan-2-yl)-2-oxoethylidene)malonate** (1k): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 80:20 hexanes/EtOAc. White solid (389.0 mg, 1.21 mmol, 54%),

mp 67-68 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.69 (m, 1H), 7.58 (s, 1H), 7.36 (d, J = 3.7 Hz, 1H), 6.62 (dd, J = 3.6 Hz, 1.6 Hz, 1H), 1.59 (s, 9H), 1.55 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.8, 163.9, 162.0, 152.7, 147.9, 140.0, 129.8, 119.6, 113.0, 83.4, 83.1, 27.9, 27.9. IR (thin film) v 2979, 1732, 1669, 1558, 1465, 1370, 1258, 1158, 1071, 846 cm⁻¹. HRMS (ESI): Calcd. For C₁₇H₂₂NaO₆⁺ ([M+Na⁺]): 345.1309, found 345.1302. TLC (10:90 EtOAc/hexanes): R_f = 0.17.

Di-tert-butyl 2-(2-oxo-2-(thiophen-2-yl)ethylidene)malonate (1I): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 90:10 hexanes/EtOAc. Off-white solid (485.8 mg, 1.44 mmol, 1.44 mmol, 1.44 mmol).

64%), mp 84-85 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.83 (dd, J = 3.9, 1.0 Hz, 1H), 7.76 (dd, J = 4.9, 1.0 Hz, 1H), 7.58 (s, 1H), 7.19 (dd, J = 4.9, 3.8 Hz, 1H), 1.56 (s, 18H); ¹³C NMR (151 MHz, CDCl₃) δ 180.7, 163.7, 162.1, 144.2, 139.4, 135.8, 133.7, 131.2, 128.6, 83.4, 83.1, 27.9, 27.9. IR (thin film) v 2979, 1726, 1656, 1516, 1415, 1369, 1282, 1257, 1156, 1066 cm⁻¹. HRMS (ESI): Calcd. For C₁₇H₂₂NaO₅S⁺ ([M+Na⁺]): 361.1080, found 361.1073. TLC (10:90 EtOAc/hexanes): $R_f = 0.18$.

Di-*tert*-butyl 2-(2-oxo-2-(pyridin-4-yl)ethylidene)malonate (1m): The title compound was prepared according to the general procedure, but better results were obtained on larger scale. Di-*tert*-butyl 2-diazomalonate (3.00 g, 12.4 mmol) was used and all components of the general procedure were scaled

appropriately. The crude material was purified using flash column chromatography, with a gradient from 95:5 hexanes/EtOAc to 40:60 hexanes/EtOAc. Low-melting red-brown solid (2.23 g, 6.70 mmol, 54%); ¹H NMR (600 MHz, CDCl₃) δ 8.87 (br s, 2H), 7.78 (br s, 2H), 7.61 (s, 1H), 1.57 (s, 9H), 1.52 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 188.8, 163.3, 161.8, 151.2, 142.1, 140.7, 130.9, 121.4, 83.8, 83.5, 27.9, 27.8. IR (thin film) v 2979, 1725, 1682, 1370, 1279, 1223, 1158, 1072, 1032, 847 cm⁻¹. HRMS (ESI): Calcd. For C₁₈H₂₃NNaO₅⁺ ([M+Na⁺]): 356.1468, found 356.1452. TLC (40:60 EtOAc/hexanes): *R_f* = 0.35. Me CO₂^tBu

Di-tert-butyl 2-(2-oxopropylidene)malonate (1n): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 95:5

hexanes/EtOAc. Clear oil (282.4 mg, 1.04 mmol, 46%); ¹**H NMR** (600 MHz, CDCl₃) δ 6.97 (s, 1H), 2.35 (s, 3H), 1.58 (s, 9H), 1.52 (s, 9H); ¹³**C NMR** (151 MHz, CDCl₃) δ 196.4, 163.9, 162.0, 138.1, 133.5, 83.4, 83.1, 30.8, 27.9 (2C). **IR** (thin film) v 2980, 2935, 1730, 1703, 1369, 1274, 1254, 1159, 1075, 848 cm⁻¹. **HRMS** (ESI): Calcd. For C₁₄H₂₂NaO₅⁺ ([M+Na⁺]): 293.1359, found 293.1356. **TLC** (10:90 EtOAc/hexanes): $R_f = 0.24$.

Di-tert-butyl 2-(2-cyclopropyl-2-oxoethylidene)malonate (10): The title compound was prepared according to the general procedure. The crude material was purified using flash column chromatography, with a gradient from pure hexanes to 95:5 hexanes/EtOAc. Clear oil (342.4 mg, 1.16 mmol, 51%); ¹H NMR (600 MHz, CDCl₃) δ 7.11 (s, 1H), 2.14-2.09 (m, 1H), 1.56 (s, 9H), 1.53 (s, 9H), 1.22-1.19 (m, 2H), 1.07-1.04 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 198.7, 164.0, 162.2, 137.4, 133.6, 83.2, 82.9, 27.9, 27.9, 22.2, 12.6. IR (thin film) v 2979, 1729, 1686, 1391, 1369, 1256, 1159, 1087, 1062, 917 cm⁻¹. HRMS (ESI): Calcd. For C₁₆H₂₄NaO₅⁺ ([M+Na⁺]): 319.1516, found 319.1510. TLC (10:90 EtOAc/hexanes): *R_f* = 0.29.

Optimization of asymmetric conjugate addition of nitroalkanes:

General procedure: A test tube was charged with enone diester (0.1 mmol, 1.0 equiv), nitroalkane (amount listed in table), 1,3,5-trimethoxybenzene (0.1 mmol, 1.0 equiv; internal standard), and solvent (listed in table). The reaction was cooled to -60 °C and catalyst (amount listed in table) was added. The reaction was stirred for the listed amount of time and then quenched with 50 μ L of a 0.5 M TFA/toluene solution before flowing it through a short plug of SiO₂ with diethyl ether. The filtrate was concentrated *in vacuo* to provide the crude product mixture, which was purified *via* flash column chromatography.

Observations: We quickly discovered that we were only able to obtain any reasonable enantioselectivity in the conjugate addition of nitroalkanes using chiral triaryliminophosphorane catalysts (cinchona alkaloid thiourea organocatalysts only gave low levels of enantioselectivity (~10% ee)). Using catalyst **C1** we observed poor reactivity at cryogenic temperatures (and even at room temperature; entries 1-2). We were able to achieve a promising er of 13:87 with **C2** at -60 °C. We were able to improve the yield and enantioselectivity by switching to **C3** (entry 3). A solvent screen (entries 4-8) allowed us to identify diethyl ether as the optimal solvent for the reaction. It was necessary to use 20 mol % catalyst to obtain full conversion. Finding that a large excess of the nitroalkane was required to obtain reasonable conversion, we chose to focus our scope on cheap and commercial nitroalkanes. Switching the diester of the substrate to ^tBu (entry 9) and using nitroethane (entry 10) allowed us into achieve our highest yields and stereoselectivities.

entry

Yield^a

1	H (10.0)	Et	THF	C1 (0.10)	21	n.a.	n.a.	trace	
2 ^b	H (10.0)	Et	THF	C1 (0.10)	19	n.d.	n.d.	(30)	
3	H (10.0)	Et	THF	C2 (0.10)	21	n.a.	13:87	(41)	
4	H (10.0)	Et	THF	C3 (0.10)	21	n.a.	88:12	(62)	
5	H (10.0)	Et	EtOAc	C3 (0.10)	21	n.a.	85.5:14.5	(45)	
6	H (10.0)	Et	CH ₂ Cl ₂	C3 (0.10)	21	n.a.	78:22	(46)	
7	H (10.0)	Et	PhH	C3 (0.10)	21	n.a.	81:19	(48)	
8	H (10.0)	Et	Et ₂ O	C3 (0.10)	21	n.a.	89:11	(54)	
9	H (10.0)	^t Bu	Et ₂ O	C3 (0.10)	22	n.a.	93.5:6.5	(47)	
10 ^c	Me (20.0)	^t Bu	Et ₂ O	C3 (0.20)	24	>20:1	97:3	88	

^a Yields in parentheses represent ¹H NMR yields determined using 1,3,5-trimethoxybenzene as an internal standard. ^b Reaction was run at room temperature ^cThe dr, er, and yield values for this entry are an average of two trials. n.a. = not applicable, n.d. = not determined.

General procedure for asymmetric conjugate addition of nitroalkanes:

A flame-dried test tube was charged sequentially with enone diester (0.1 mmol, 1.0 equiv), Et_2O (1.0 mL), and nitroethane (2.1 mmol, 21.0 equiv). The reaction was stirred at -60 °C in a cryogenic cooling apparatus for 15 min, then triaryliminophosphorane catalyst **C1** (0.02 mmol, 0.20 equiv) was added. The reaction was then stirred at -60 °C for 24 h. After this period, the reaction was quenched with a TFA

solution in toluene (50 μ L, 0.5 M solution) at the same temperature. Additional Et₂O was used to flush the reaction through a short plug of silica and the filtrate was concentrated *in vacuo*. The crude material thusly obtained was purified using flash column chromatography with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc unless otherwise noted.

Gram scale asymmetric conjugate addition reaction:

A flame-dried 100 mL round-bottomed flask was charged sequentially with enone diester **1a** (1.00 g, 3.01 mmol, 1.0 equiv), Et₂O (30.0 mL), and nitroethane (4.50 mL, 62.6 mmol, 20.8 equiv). The reaction was stirred at -60 °C in a cryogenic cooling apparatus for 15 min, then triaryliminophosphorane catalyst **C1** (401.7 mg, 0.60 mmol, 0.20 equiv) was added. The reaction was then stirred at -60 °C for 24 h. After this period, the reaction was quenched with a TFA solution in toluene (1.5 mL, 0.5M solution) at the same temperature. Additional Et₂O was used to flush the reaction through a short plug of silica and the filtrate was concentrated *in vacuo*. The crude material thusly obtained was purified using flash column chromatography with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc, yielding 1.05 g (86%) **2a** as a white solid in >20:1 dr and >99.5:0.5 er.

Characterization data for conjugate addition products:

Di-*tert*-butyl **2**-((2*S*,3*R*)-3-nitro-1-oxo-1-phenylbutan-2-yl)malonate (2a): The title compound was prepared according to the general procedure. No minor diastereomer was observed in the ¹H NMR spectrum of the unpurified product. White solid (34.7 mg, 0.085 mmol, 85%), mp 93-94 °C (decomp); ¹H NMR (600

MHz, CDCl₃) δ 7.99 (d, *J* = 7.4 Hz, 2H), 7.61 (t, 7.4 Hz, 1H), 7.5 (t, *J* = 7.8 Hz, 2H), 4.92-4.86 (m, 2H), 3.87 (d, *J* = 9.8 Hz, 1H), 1.52 (s, 9H), 1.47 (d, 6.7 Hz, 3H), 1.35 (s, 9H); ¹³**C** NMR (151 MHz, CDCl₃) δ 197.3, 166.8, 166.2, 137.1, 133.9, 128.8, 128.6, 83.2, 83.0, 82.4, 55.0, 46.5, 27.8, 27.7, 15.3. **IR** (thin film) v 2979, 1729, 1682, 1557, 1370, 1257, 1143, 842, 734, 692 cm⁻¹. **HRMS** (ESI): Calcd. For $C_{21}H_{29}NNaO_7^+$ ([M+Na⁺]): 430.1842, found 430.1831. **HPLC** Derivatized to **4a** for determination of enantiopurity. **TLC** (10:90 EtOAc/hexanes): $R_f = 0.25$. **[α]**_P = +80.2 (c = 1.5, CHCl₃).

Di-*tert*-butyl **2-((2S,3R)-1-(4-fluorophenyl)-3-nitro-1-oxobutan-2yl)malonate (2b):** The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture by comparison of the

resonances at δ 3.92 (minor diastereomer) and δ 3.86 (major diastereomer). The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 95:5

hexanes/EtOAc. White solid (34.9 mg, 0.082 mmol, 82%), mp 89-90 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 8.02 (dd, J = 8.8, 5.3 Hz, 2H), 7.17 (t, J = 8.6 Hz, 2H), 4.88-4.83 (m, 2H), 3.87 (d, J = 9.9 Hz, 1H), 1.53 (s, 9H), 1.48 (d, J = 6 Hz, 3H), 1.36 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 195.7, 166.7, 166.2, 166.2 (d, J = 256.7 Hz), 133.6, 131.3 (d, J = 9.1 Hz), 116.0 (d, J = 21.14 Hz), 83.3, 83.1, 82.4, 54.9, 46.4, 27.8, 27.8, 15.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -103.8. IR (thin film) v 2980, 1729, 1683, 1599, 1557, 1394, 1370, 1257, 1158, 848 cm⁻¹. HRMS (ESI): Calcd. For C₂₁H₂₈FNNaO₇⁺ ([M+Na⁺]): 448.1748, found 448.1729. HPLC Chiralpak AD column, Hex/[/]PrOH = 98:2, flow rate = 1.0 mL/min, λ = 210 nm, 9.0 min (minor isomer), 16.4 min (major isomer). TLC (10:90 EtOAc/hexanes): R_f = 0.16. [α]_D = +75.2 (c = 1.5, CHCl₃).

Di-*tert*-butyl **2-((2S,3R)-1-(4-chlorophenyl)-3-nitro-1-oxobutan-2yl)malonate (2c):** The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture by comparison of the

resonances at δ 3.92 (minor diastereomer) and δ 3.87 (major diastereomer). The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 95:5 hexanes/EtOAc. White solid (39.0 mg, 0.088 mmol, 88%), mp 83-84 °C (decomp); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.46 (d, *J* = 8.6 Hz, 2H), 4.89-4.81 (m, 2H), 3.86 (d, *J* = 9.9 Hz, 1H), 1.52 (s, 9H), 1.47 (d, *J* = 6.6 Hz, 3H), 1.36 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 196.1, 166.6, 166.2, 140.4, 135.5, 130.0, 129.1, 83.3, 83.1, 82.4, 55.0, 46.4, 27.8, 27.7, 15.1. IR (thin film) v 2980, 1728, 1683, 1557, 1370, 1258, 1163, 1093, 846, 736 cm⁻¹. HRMS (ESI): Calcd. For C₂₁H₂₈ClNNaO₇⁺ ([M+Na⁺]): 464.1452, found 464.1435. HPLC Chiralpak AD column, Hex/[/]PrOH = 98:2, flow rate = 1.0 mL/min, λ = 210 nm, 9.1 min (minor isomer), 21.8 min (major isomer). TLC (10:90 EtOAc/hexanes): *R*_f = 0.28. [α]_p = +68.6 (c = 1.5, CHCl₃).

Di-*tert*-butyl **2**-((2*S*,3*R*)-1-(4-bromophenyl)-3-nitro-1-oxobutan-2yl)malonate (2d): The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture by comparison of the

resonances at δ 3.92 (minor diastereomer) and δ 3.86 (major diastereomer). Some residual minor diastereomer was still present in the isolated material. The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 95:5 hexanes/EtOAc. White solid (41.1 mg, 0.085 mmol, 85%), mp 80-81 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 8.5 Hz, 2H), 4.88-4.81 (m, 2H), 3.86 (d, *J* = 10.1 Hz, 1H), 1.52 (s, 9H), 1.48 (d, *J* = 6.7 Hz, 3H), 1.36 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 196.4, 166.6, 166.2, 135.9, 132.1, 130.1, 129.3, 83.3, 83.1, 82.4, 55.0, 46.4, 27.8, 27.7, 15.1. IR (thin film) v 2979, 1728, 1683, 1557, 1370, 1258, 1144,

1072, 845, 738 cm⁻¹. **HRMS** (ESI): Calcd. For C₂₁H₂₈BrNNaO₇⁺ ([M+Na⁺]): 508.0947, found 508.0928. **HPLC** Chiralpak AD column, Hex/^{*i*}PrOH = 98:2, flow rate = 1.0 mL/min, λ = 210 nm, 12.9 min (minor isomer), 32.9 min (major isomer). **TLC** (10:90 EtOAc/hexanes): R_f = 0.31. [α]_D = +61.4 (c = 1.5, CHCl₃).

Di-*tert*-butyl **2**-((2*S*,3*R*)-1-(4-cyanophenyl)-3-nitro-1-oxobutan-2yl)malonate (2e): The title compound was prepared according to the general procedure. No minor diastereomer was observed in the ¹H NMR spectrum of the unpurified product. The crude material was purified using

flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. White solid (41.3 mg, 0.95 mmol, 95%), mp 116-117 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 4.86-4.81 (m, 2H), 3.89 (d, J = 10.1 Hz, 1H), 1.54 (s, 9H), 1.50 (d, J = 6.7 Hz, 3H), 1.37 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 196.5, 166.4, 166.3, 140.1, 132.6, 128.9, 117.9, 116.8, 83.6, 83.4, 82.3, 55.1, 46.4, 27.8, 27.7, 14.8. IR (thin film) v 2980, 2360, 1727, 1688, 1557, 1370, 1294, 1257, 1143, 848 cm⁻¹. HRMS (ESI): Calcd. For C₂₂H₂₈N₂NaO₇⁺ ([M+Na⁺]): 455.1794, found 455.1782. HPLC Chiralpak IC column, Hex/^{*i*}PrOH = 99:1, flow rate = 1.0 mL/min, λ = 254 nm, 41.1 min (minor isomer), 43.2 min (major isomer). TLC (10:90 EtOAc/hexanes): R_f = 0.11. [α]_D = +47.5 (c = 1.5, CHCl₃).

Di-tert-butyl 2-((2*S*,3*R*)-3-nitro-1-(4-nitrophenyl)-1-oxobutan-2yl)malonate (2f): The title compound was prepared according to the general procedure. No minor diastereomer was observed in the ¹H NMR spectrum of the unpurified product. The crude material was purified using

flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. White solid (42.1 mg, 0.093 mmol, 93%), mp 109-110 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, *J* = 8.8 Hz, 2H), 8.14 (d, *J* = 8.7 Hz, 2H), 4.86 (d, *J* = 8.8 Hz, 2H), 3.90 (d, *J* = 10.1 Hz, 1H), 1.54 (s, 9H), 1.52 (d, *J* = 6.7 Hz, 3H), 1.38 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 196.4, 166.4, 166.3, 150.5, 141.6, 129.6, 123.9, 83.6, 83.5, 82.3, 55.1, 46.7, 27.8, 27.7, 14.8. IR (thin film) v 2980, 2936, 2349, 1727, 1530, 1346, 1258, 1144, 850, 734 cm⁻¹. HRMS (ESI): Calcd. For C₂₁H₂₈N₂NaO₉⁺ ([M+Na⁺]): 475.1693, found 475.1681. HPLC Chiralpak OD-H column, Hex/^{*i*}PrOH = 99:1, flow rate = 1.0 mL/min, λ = 254 nm, 11.8 min (major isomer), 13.9 min (major isomer). TLC (10:90 EtOAc/hexanes): *R_f* = 0.28. [α]_D = +47.2 (c = 1.5, CHCl₃).

Di-tert-butyl

2-((2S,3R)-3-nitro-1-oxo-1-(4-

(trifluoromethyl)phenyl)butan-2-yl)malonate (2g): The title compound was prepared according to the general procedure. No minor diastereomer was observed in the ¹H NMR spectrum of the unpurified product. The

crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. Yellow solid (46.0 mg, 0.097 mmol, 97%), mp 68-69 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 8.16 Hz, 2H), 4.87 (d, *J* = 7.7 Hz, 2H), 3.89 (d, 9.8 Hz, 1H), 1.53 (s, 9H), 1.50 (d, *J* = 6.1 Hz, 3H), 1.37 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 196.7, 166.5, 166.3, 139.8, 134.8 (q, *J* = 33.2 Hz), 128.9, 125.8 (q, *J* = 3 Hz), 123.5 (q, *J* = 273.3 Hz), 83.4, 83.3, 82.3, 55.0, 46.6, 27.8, 27.7, 15.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -63.2. IR (thin film) v 2981, 2937, 1728, 1689, 1558, 1371, 1325, 1169, 1067, 850 cm⁻¹. HRMS (ESI): Calcd. For $C_{22}H_{28}F_3NNaO_7^+$ ([M+Na⁺]): 498.1716, found 498.1696. HPLC Chiralpak AD column, Hex/^{*i*}PrOH = 98:2, flow rate = 1.0 mL/min, λ = 215 nm, 6.5 min (minor isomer), 20.0 min (major isomer). TLC (10:90 EtOAc/hexanes): R_f = 0.29. [α]_D = +67.1 (c = 1.5, CHCl₃).

Di-*tert*-butyl **2-((2S,3R)-1-(4-methoxyphenyl)-3-nitro-1-oxobutan-2yl)malonate (2h):** The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture by comparison of

the resonances at δ 5.05-4.99 (minor diastereomer) and δ 4.90-4.83 (major diastereomer). Some residual minor diastereomer was still present in the isolated material. The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. White solid (37.6 mg, 0.086 mmol, 86%), mp 63-64 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 4.89-4.84 (m, 2H), 3.89 (s, 3H), 3.86 (d, *J* = 9.7 Hz, 1H), 1.52 (s, 9H), 1.47 (d, *J* = 6.5 Hz, 3H), 1.34 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 195.3, 166.9, 166.2, 164.2, 131.0, 130.1, 114.0, 83.1, 82.8, 82.6, 55.5, 54.9, 46.3, 27.8, 27.7, 15.2. IR (thin film) v 2979, 2360, 1729, 1672, 1601, 1556, 1263, 1168, 1030, 846 cm⁻¹. HRMS (ESI): Calcd. For C₂₂H₃₁NNaO₈⁺ ([M+Na⁺]): 460.1948, found 460.1926. HPLC Chiralpak AD column, Hex//PrOH = 98:2, flow rate = 1.0 mL/min, λ = 210 nm, 20.3 min (minor isomer), 29.0 min (major isomer). TLC (10:90 EtOAc/hexanes): $R_f = 0.17$. [α]_D = +77.9 (c = 1.5, CHCl₃).

Di-*tert*-butyl **2**-((**2***S*,**3***R*)-**1**-(**3**-methoxyphenyl)-**3**-nitro-**1**-oxobutan-**2yl**)malonate (**2i**): The title compound was prepared according to the general procedure. No minor diastereomer was observed in the ¹H NMR spectrum of the unpurified product. The crude material was purified using

flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. White solid (37.1 mg, 0.085 mmol, 85%), mp 80-81 °C (decomp); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.8 Hz, 1H), 7.49 (s, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.15 (dd, J = 8.2, 2.0 Hz, 1H), 4.91-4.84 (m, 2H), 3.88 (s, 3H), 3.85 (d, signal overlap prevents J value calculation, 1H), 1.52 (s, 9H), 1.47 (d, J = 6.6 Hz, 3H), 1.35 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 196.9, 166.8, 166.2, 159.8, 138.3, 129.8, 121.4, 120.6,

112.5, 83.2, 83.0, 82.4, 55.5, 55.0, 46.7, 27.8, 27.7, 15.4. **IR** (thin film) v 2979, 2937, 1729, 1683, 1557, 1456, 1370, 1270, 1144, 840 cm⁻¹. **HRMS** (ESI): Calcd. For C₂₂H₃₁NNaO₈⁺ ([M+Na⁺]): 460.1948, found 460.1926. **HPLC** Chiralpak OD-H column, Hex/^{*i*}PrOH = 95:5, flow rate = 1.0 mL/min, λ = 205 nm, 25.3 min (major isomer), 50.5 min (minor isomer). **TLC** (10:90 EtOAc/hexanes): R_f = 0.17. [α]_D = +38.3 (c = 1.5, CHCl₃).

Di-tert-butyl 2-((2S,3R)-1-(benzo[d][1,3]dioxol-5-yl)-3-nitro-1oxobutan-2-yl)malonate (2j): The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction

mixture by comparison of the resonances at δ 3.93 (minor diastereomer) and δ 3.85 (major diastereomer). The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. White solid (35.8 mg, 0.079 mmol, 79%), mp 91-92 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (dd, J = 8.3, 1.7 Hz, 1H), 7.45 (d, J = 1.6 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.08 (s, 2H), 4.88-4.83 (m, 1H), 4.79 (dd, J = 10.2, 5.3 Hz, 1H), 3.85 (d, J = 10.2 Hz), 1.52 (s, 9H), 1.47 (d, J = 6.8 Hz, 3H), 1.37 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 194.9, 166.8, 166.2, 152.6, 148.4, 131.9, 125.4, 108.2, 108.1, 102.1, 83.2, 82.9, 82.5, 55.0, 46.4, 27.8, 27.7, 15.2. IR (thin film) v 3443, 2937, 2349, 1728, 1673, 1556, 1444, 1260, 1144, 1038 cm⁻¹. HRMS (ESI): Calcd. For C₂₂H₂₉NNaO₉⁺ ([M+Na⁺]): 474.1740, found 474.1717. HPLC Chiralpak AD column, Hex/[/]PrOH = 96:4, flow rate = 1.0 mL/min, $\lambda = 205$ nm, 13.9 min (minor isomer), 18.5 min (major isomer). TLC (10:90 EtOAc/hexanes): $R_f = 0.22$. [α]_D = +77.5 (c = 1.5, CHCl₃).

O CO2^tBu CO2^tBu Me^v, NO2 **Di**-*tert*-butyl **2-((2S,3R)-1-(furan-2-yl)-3-nitro-1-oxobutan-2-yl)malonate** (**2k**): The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture by comparison of the resonances at δ 3.93 (minor

diastereomer) and δ 3.81 (major diastereomer). The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. White solid (38.0 mg, 0.096 mmol, 96%), mp 88-89 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 7.65 (app s, 1H), 7.31 (d, *J* = 3.6 Hz, 1H), 6.59 (dd, *J* = 3.5, 2.7 Hz, 1H), 4.91-4.86 (m, 1H), 4.62 (dd, *J* = 10.4, 5.1 Hz, 1H), 3.82 (d, *J* = 10.4 Hz, 1H), 1.52 (d, signal overlap prevents *J* value calculation, 3H), 1.51 (s, 9H), 1.37 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 184.6, 166.5, 166.0, 152.5, 147.6, 118.9, 112.9, 83.2, 83.0, 82.3, 54.2, 47.6, 27.8, 27.7, 15.0. IR (thin film) v 2980, 2359, 1730, 1674, 1558, 1466, 1296, 1144, 842, 768 cm⁻¹. HRMS (ESI): Calcd. For C₁₉H₂₇NNaO₈⁺ ([M+Na⁺]): 420.1635, found 420.1623. HPLC Chiralpak AD column, Hex/[/]PrOH = 96:4, flow rate = 1.0 mL/min, λ = 210 nm, 10.4 min (minor isomer), 11.8 min (major isomer). TLC (10:90 EtOAc/hexanes): *R*_f = 0.15. [α]_P = +65.2 (c = 1.5, CHCl₃).

Di-tert-butyl 2-((2S,3R)-3-nitro-1-oxo-1-(thiophen-2-yl)butan-2-yl)malonate

(2I): The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture by comparison of the resonances at δ 3.93 (minor

diastereomer) and δ 3.83 (major diastereomer). The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. White solid (39.4 mg, 0.095 mmol, 95%), mp 100-101 °C (decomp); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 3.8, 0.8 Hz, 1H), 7.72 (dd, *J* = 4.9, 0.9 Hz, 1H), 7.16 (dd, *J* = 4.8, 4.0 Hz, 1H), 4.94-4.87 (m, 1H), 4.66 (dd, *J* = 10.2, 5.3 Hz, 1H), 3.82 (d, *J* = 10.2 Hz, 1H), 1.53 (d, *J* = 7.2 Hz, 3H), 1.51 (s, 9H), 1.35 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 189.0, 166.6, 165.9, 144.4 135.7, 133.5, 128.6, 83.3, 83.0, 82.5, 54.6, 48.6, 27.8, 27.6, 15.2. IR (thin film) v 2980, 1730, 1660, 1557, 1415, 1370, 1256, 1144, 838, 733 cm⁻¹. HRMS (ESI): Calcd. For C₁₉H₂₇NNaO₇S⁺ ([M+Na⁺]): 436.1406, found 436.1394. HPLC Chiralpak AD column, Hex/^{*i*}PrOH = 98:2, flow rate = 1.0 mL/min, λ = 215 nm, 14.1 min (minor isomer), 22.6 min (major isomer). TLC (10:90 EtOAc/hexanes): *R*_f = 0.23. [α]_D = +80.6 (c = 1.5, CHCl₃).

Di-*tert*-butyl 2-((2*S*,3*R*)-3-nitro-1-oxo-1-(pyridin-4-yl)butan-2-yl)malonate (2m): The title compound was prepared according to the general procedure. No minor diastereomer was observed in the ¹H NMR spectrum of the unpurified product. The crude material was purified using flash column

chromatography with a gradient from 90:10 hexanes/EtOAc to 60:40 hexanes/EtOAc. White solid (35.3 mg, 0.086 mmol, 86%), mp 95-96 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 8.84 (d, *J* = 4.6 Hz, 2H), 7.76 (d, *J* = 4.6 Hz, 2H), 4.88-4.84 (m, 1H), 4.79 (dd, *J* = 10.3, 5.0 Hz, 1H), 3.88 (d, *J* = 10.4 Hz, 1H), 1.53 (s, 9H), 1.51 (d, *J* = 6.9 Hz, 3H), 1.37 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 197.3, 166.4, 166.2, 151.0, 143.0, 121.3, 83.5 (2C), 82.3, 55.1, 46.4, 27.8, 27.7, 15.1. IR (thin film) v 3438, 2980, 2935, 1727, 1696, 1557, 1370, 1257, 1144, 845 cm⁻¹. HRMS (ESI): Calcd. For C₂₀H₂₉N₂O₇⁺ ([M+H⁺]): 409.1974, found 409.1958. HPLC Chiralpak IC column, Hex/[/]PrOH = 95:5, flow rate = 1.0 mL/min, λ = 225 nm, 12.1 min (minor isomer), 18.3 min (major isomer). TLC (20:80 EtOAc/hexanes): R_f = 0.19. [α]_D = +55.5 (c = 1.5, CHCl₃).

Di*tert*-butyl 2-((2*R*,3*S*)-2-nitro-4-oxopentan-3-yl)malonate (2n): The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture by comparison of the resonances at δ 3.66 (minor diastereomer) and δ

3.60 (major diastereomer). The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 95:5 hexanes/EtOAc. Low-melting white solid (26.3 mg, 0.076

mmol, 76%); ¹H NMR (600 MHz, CDCl₃) δ 4.73-4.69 (m, 1H), 4.02 (dd, J = 10.3, 4.7 Hz, 1H), 3.62 (d, J = 10.4 Hz, 1H), 2.30 (s, 3H), 1.50 (s, 12H), 1.45 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 205.5, 166.6, 166.4, 83.2, 83.0, 82.0, 54.6, 52.0, 32.5, 27.8 (2C), 14.7. IR (thin film) v 2980, 1724, 1557, 1477, 1458, 1395, 1316, 1144, 1256, 847 cm⁻¹. HRMS (ESI): Calcd. For C₁₆H₂₇NNaO₇⁺ ([M+Na⁺]): 368.1685, found 368.1671. HPLC Chiralpak AD column, Hex/^{*i*}PrOH = 99:1, flow rate = 1.0 mL/min, $\lambda = 210$ nm, 6.3 min (minor isomer), 10.2 min (major isomer). TLC (10:90 EtOAc/hexanes): *R*_f = 0.34. [α]_D = +30.8 (c = 1.5, CHCl₃).

Di-*tert*-butyl 2-((2S,3*R*)-1-cyclopropyl-3-nitro-1-oxobutan-2-yl)malonate

CO₂^tBu

(2o): The title compound was prepared according to the general procedure. The diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the

Me^X ^{NO}₂ crude reaction mixture by comparison of the resonances at δ 3.77 (minor diastereomer) and δ 3.62 (major diastereomer). The crude material was purified using flash column chromatography, with a gradient from 97.5:2.5 hexanes/EtOAc to 95:5 hexanes/EtOAc. White solid (33.3 mg, 0.090 mmol, 90%), mp 64-65 °C (decomp); ¹H NMR (600 MHz, CDCl₃) δ 4.76-4.72 (m, 1H), 4.32 (dd, *J* = 10.6, 4.7 Hz, 1H), 3.64 (d, *J* = 10.7 Hz, 1H), 2.02-1.98 (m, 1H), 1.50 (s, 9H), 1.48 (d, *J* = 6.9 Hz, 3H), 1.44 (s, 9H), 1.17-1.12 (m, 1H), 1.05-1.01 (m, 2H), 0.98-0.95 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 207.2 166.7, 166.3, 83.1, 82.7, 81.7, 54.2, 53.3, 27.8 (2C), 22.7, 14.6, 13.3, 12.9. **IR** (thin film) v 2980, 2359, 1730, 1556, 1393, 1370, 1294, 1256, 1146, 843 cm⁻¹. **HRMS** (ESI): Calcd. For $C_{18}H_{29}NNaO_7^+$ ([M+Na⁺]): 394.1842, found 394.1826. **HPLC** Chiralpak AD column, Hex/^{*i*}PrOH = 99:1, flow rate = 1.0 mL/min, λ = 210 nm, 7.9 min (minor isomer), 30.1 min (major isomer). **TLC** (10:90 EtOAc/hexanes): $R_f = 0.36$. **[α]**_D = +36.5 (c = 1.5, CHCl₃).

CO2^tBu CO2^tBu Et^w NO2 **Di**-*tert*-butyl 2-((2*S*,3*R*)-3-nitro-1-oxo-1-phenylpentan-2-yl)malonate (2p): The title compound was prepared according to the general procedure. No minor diastereomer was observed in the ¹H NMR spectrum of the unpurified product. The crude material was purified using flash column chromatography, with a

gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc. White solid (41.7 mg, 0.099 mmol, 99%), mp 99-100 °C (decomp); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.4 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 4.79 (dd, *J* = 9.4, 6.0 Hz, 1H), 4.73-4.68 (m, 1H), 3.87 (d, *J* = 9.4 Hz, 1H), 1.94-1.82 (m, 1H), 1.78-1.68 (m, 1H), 1.51 (s, 9H), 1.35 (s, 9H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.3, 166.7, 166.2, 137.2, 133.8, 128.8, 128.6, 89.9, 83.1, 83.0, 55.2, 46.4, 27.8, 27.7, 23.5, 10.8. **IR** (thin film) v 2979, 1741, 1683, 1556, 1370, 1258, 1144, 845, 735, 692 cm⁻¹. **HRMS** (ESI): Calcd. For C₂₂H₃₁NNaO₇⁺ ([M+Na⁺]): 444.1999, found 444.1981. **HPLC** Chiralpak AD column, Hex/[/]PrOH = 98:2, flow rate = 1.0 mL/min, λ = 210 nm, 11.1 min (minor isomer), 14.1 min (major isomer). **TLC** (10:90 EtOAc/hexanes): *R*_f = 0.27. **[** α **]**_D = +78.3 (c = 1.5, CHCl₃).

Procedure for transesterification of 2a:

A one dram vial with a stir bar was charged with di-*tert*-butyl ester **2a** (0.058 mmol, 1.0 equiv) and trifluoroacetic acid (0.5 mL). The reaction was stirred for 30 min, then placed under a stream of nitrogen to evaporate volatiles. The residue was dissolved in 3:2 toluene:MeOH (1 mL, 0.06 M) and cooled in an ice bath. A solution of TMSCHN₂ (2.0 M in Et₂O) was added dropwise until a yellow color persisted. The reaction was stirred for 30 min at room temperature then quenched dropwise with glacial acetic acid; the acid was added until the yellow color disappeared. After stirring for 30 min, ethyl acetate was used to dilute the crude reaction and the organic layer was washed with an aqueous saturated sodium bicarbonate solution. The aqueous layer was extracted twice with ethyl acetate and the combined organic layers were dried with sodium sulfate, filtered, and concentrated *in vacuo*. The crude material thusly obtained was purified using flash column chromatography with a gradient from 97.5:2.5 hexanes/EtOAc to 90:10 hexanes/EtOAc.

Dimethyl 2-((2S,3R)-3-nitro-1-oxo-1-phenylbutan-2-yl)malonate (4a): The diastereomeric ratio of the isolated material was determined by ¹H NMR spectroscopic analysis by comparison of the resonances at δ 4.22 (minor diastereomer) and δ 4.08 (major diastereomer). Clear oil (16.4 mg, 0.051 mmol,

87%); ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, *J* = 7.3 Hz, 2H), 7.65-7.63 (m, 1H), 7.54-7.51 (m, 2H), 4.98 (dd, *J* = 9.2, 6.5 Hz, 1H), 4.96-4.91 (m, 1H), 4.08 (d, *J* = 9.2 Hz, 1H), 3.80 (s, 3H), 3.69 (s, 3H), 1.47 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.3, 167.8, 167.7, 136.8, 134.1, 128.9, 128.7, 82.3, 53.3, 53.2, 52.6, 46.7, 16.5. IR (thin film) v 2956, 1738, 1682, 1596, 1579, 1437, 1281, 1198, 968, 698 cm⁻¹. HRMS (ESI): Calcd. For C₁₅H₁₇NNaO₇⁺ ([M+Na⁺]): 346.0897, found 346.0893. HPLC Chiralpak IC column, Hex/^{*i*}PrOH = 97:3, flow rate = 1.0 mL/min, λ = 210 nm, 27.3 min (major isomer), 44.1 min (minor isomer). TLC (10:90 EtOAc/hexanes): *R*_f = 0.07. [α]_D = +58.8 (c = 0.5, CHCl₃).

Local desymmetrization sequence for transesterification/lactamization of 2a:

A scintillation vial with a stir bar was charged with di-*tert*-butyl ester **2a** (0.25 mmol, 1.0 equiv) and cooled in an ice bath. Trifluoroacetic acid (1.25 mL) was added slowly and the reaction was stirred for 30 min in the ice bath. The reaction was then placed under a stream of nitrogen to evaporate volatiles. The residue was dissolved in 3:2 toluene:MeOH (2.5 mL, 0.1 M) and cooled in an ice bath. A solution of TMSCHN₂ (2.0 M in Et₂O) was added dropwise until a yellow color persisted. The reaction was stirred for 30 min at room temperature and then cooled in an ice bath while it was quenched dropwise with glacial acetic acid; the acid was added until the yellow color disappeared. The reaction was allowed to return to room temperature and stir for 30 min. Ethyl acetate was used to dilute the crude reaction and the organic layer was washed with an aqueous saturated sodium bicarbonate solution. The aqueous layer was extracted twice with ethyl acetate and the combined organic layers were dried with sodium sulfate, filtered, and concentrated *in vacuo*. ¹H NMR analysis of this crude material indicated that it was >20:1 dr. The material was concentrated into a scintillation vial, where it was dissolved in EtOH (2.0 mL) and treated with Raney®-Nickel 2800 slurry in H₂O (250 mg). The reaction was placed in a high pressure Parr reactor under H₂ (60 psi); the vessel was filled and purged three times before finally refilling and allowing the reaction to stir under H₂ (60 psi) for 24 h at room temperature. The crude reaction was filtered through a Celite[®] plug with EtOH and concentrated *in vacuo*. The diastereomeric ratio could not be determined from the ¹H NMR spectrum of the unpurified product. The crude material was purified using flash column chromatography, with a gradient from 60:40 hexanes/EtOAc to 40:60 hexanes/EtOAc to obtain the lactam product.

Me^w N

Methyl (3*S***,4***S***,5***R***)-4-benzoyl-5-methyl-2-oxopyrrolidine-3-carboxylate (5a): The title compound was prepared according to the above procedure. The diastereoselectivity could not be determined from the ¹H NMR spectrum of the unpurified product. Once isolated, the product was found to be 9.1:1 dr, which**

was determined by comparing the signals in the ¹H NMR spectrum at δ 1.38 (major) and δ 1.34 (minor). Clear oil (29.3 mg, 0.11 mmol, 45%); ¹H NMR (600 MHz, CD₃OD) δ 8.01 (d, *J* = 7.6 Hz, 2H), 7.70-7.67 (m, 1H), 7.58-5.55 (m, 2H), 4.38 (dd, *J* = 7.4, 6.0 Hz, 1H), 3.89 (d, *J* = 7.5 Hz, 1H), 3.88-3.85 (m, 1H), 3.75 (s, 3H), 1.38 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 197.8, 171.1, 169.8, 135.9, 133.7, 128.7, 128.4, 52.0, 51.9, 51.7, 51.7, 20.3. IR (thin film) v 3231, 2954, 2359, 1705, 1596, 1448, 1381, 1264, 1219, 697 cm⁻¹. HRMS (ESI): Calcd. For C₁₄H₁₅NNaO₄⁺ ([M+Na⁺]): 284.0893, found 284.0895. HPLC Chiralpak IA column, Hex/[/]PrOH = 92:8, flow rate = 1.0 mL/min, λ = 210 nm, 16.8 min (minor isomer), 22.7 min (major isomer). TLC (50:50 EtOAc/hexanes): *R*_f = 0.19. [α]_D = +3.15 (c = 1.25, CHCl₃).

References:

1. Matviitsuk, A.; Taylor, J. E.; Cordes, D. B.; Slawin, A. M. Z.; Smith, A. D. *Chem. Eur. J.* **2016**, *22*, 11748.

- 2. Núñez, M. G.; Farley, A. J. M.; Dixon, D. J. J. Am. Chem. Soc. 2013, 135, 16348.
- 3. Stachel, H.-D.; Schorp, M.; Zoukas, T. Liebigs Ann. Chem. 1992, 1992, 1039-1044.
- 4. Okuro, K.; Alper, H. J. Org. Chem. 2012, 77, 4420-4424.
- 5. Chany, A.-C.; Marx, L. B.; Burton, J. W. Org. Biomol. Chem. 2015, 13, 9190-9193.

HPLC traces:

	Retention Time (min)	Peak Area	% Area
Racemic	27.1	41426094.8	50.2
	43.1	41062455.7	49.8
Asymmetric	27.3	47660372.2	97.2
	44.1	1378617.0	2.8

	Retention Time (min)	Peak Area	% Area
Racemic	9.0	45030634.0	48.6
	16.0	47684827.9	51.4
Asymmetric	9.0	763945.3	0.8
	16.4	91684019.2	99.2

	Retention Time (min)	Peak Area	% Area
Racemic	8.8	5683251.8	50.4
	21.6	5600924.3	49.6
Asymmetric	9.1	181195.5	1.3
	21.8	13309637.1	98.7

	Retention Time (min)	Peak Area	% Area
Racemic	13.0	9687260.1	49.2
	32.9	10000650.1	50.8
Asymmetric	12.9	228774.1	0.6
	32.9	37377993.4	99.3

	Retention Time (min)	Peak Area	% Area
Racemic	43.8	23418578.5	48.2
	47.3	25165207.2	51.8
Asymmetric	41.1	528693.0	2.8
	43.2	18496911.8	97.2

	Retention Time (min)	Peak Area	% Area
Racemic	12.0	21609139.8	50.6
	13.8	21137114.3	49.4
Asymmetric	11.8	63975142.0	98.1
	13.9	1220289.6	1.9

	Retention Time (min)	Peak Area	% Area
Racemic	7.1	7557428.6	50.5
	20.4	7415113.6	49.5
Asymmetric	6.5	401910.7	1.4
	20.0	29251640.2	98.6

	Retention Time (min)	Peak Area	% Area
Racemic	19.7	6249220.4	52.7
	28.8	5602087.7	47.3
Asymmetric	20.3	2916203.6	4.5
	29.0	62271509.9	95.5

	Retention Time (min)	Peak Area	% Area
Racemic	28.7	59689929.7	49.0
	52.2	61892733.5	51.0
Asymmetric	25.3	121702769.4	98.5
	50.5	1821839.7	1.5

	Retention Time (min)	Peak Area	% Area
Racemic	13.9	58063205.6	48.7
	18.6	61265914.6	51.3
Asymmetric	13.9	1234021.9	1.8
	18.5	67650046.2	98.2

	Retention Time (min)	Peak Area	% Area
Racemic	9.9	8545601.7	46.9
	11.3	9673235.1	53.1
Asymmetric	10.4	317256.8	0.9
	11.8	33172675.5	99.1

	Retention Time (min)	Peak Area	% Area
Racemic	14.1	9272413.3	50.7
	22.6	9001265.3	49.3
Asymmetric	(minor not observed)	N/A	N/A
	23.4	16603142.7	>99

	Retention Time (min)	Peak Area	% Area
Racemic	12.1	50045253.9	49.4
	18.3	51295890.7	50.6
Asymmetric	(minor not observed)	N/A	N/A
	17.8	54985709.1	>99

	Retention Time (min)	Peak Area	% Area
Racemic	6.2	7773174.1	50.4
	10.1	7640193.8	49.6
Asymmetric	6.3	886800.9	2.7
	10.2	32208671.8	97.3

	Retention Time (min)	Peak Area	% Area
Racemic	7.9	14361728.7	48.5
	30.8	15256095.2	51.5
Asymmetric	7.9	388824.8	1.0
	30.1	39377889.1	99.0

	Retention Time (min)	Peak Area	% Area
Racemic	10.9	31534207.7	49.3
	13.9	32483250.2	50.7
Asymmetric	11.1	2221179.1	3.0
	14.1	70689759.1	97.0

	Retention Time (min)	Peak Area	% Area
Racemic	16.7	77410170.3	50.0
	22.6	77326501.3	50.0
Asymmetric	16.8	73153327.6	98.9
	22.7	813768.5	1.1

Crude ¹H NMR spectra for the asymmetric reaction:

S36

¹H and ¹³C NMR spectra of new compounds:

S112

S114

S117

