Silver-Catalyzed Minisci Reactions Using Selectfluor as a Mild Oxidant

Jordan D. Galloway, Duy N. Mai and Ryan D. Baxter*
Department of Chemistry and Chemical Biology, University of California, Merced 5200 North Lake Road Merced, CA 95348

Supporting Information

Experimental procedures, characterization data for new compounds, and copies of NMR spectra

Table of Contents

General Considerations and Reaction Procedures S2
ReactIR Reaction Progress Data S3
Experimental Procedures and Characterization Data S7
References S27
Spectroscopic Data for New Compounds S28

General Considerations

Reagents and solvents were purchased at the highest commercial quality and used without purification. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR) homogenous material, unless otherwise noted. Reactions were monitored by GCMS (Agilent Technologies 5975 Series MSD GCMS) and thin-layer chromatography using 0.25 mm E. Merck silica gel plates (60F-254) using UV light. NMR spectra were recorded on a Varian-INOVA 400 MHz or 500 MHz spectrometer and calibrated using residual undeuterated solvent as an internal reference ($\mathrm{CDCl}_{3}-{ }^{1} \mathrm{H}$ NMR $7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR 77.16 ppm). The following abbreviations were used to explain multiplicities (s - singlet, d - doublet, t - triplet, q - quartet, m - multiplet).

General Reaction Procedures

(A) General Procedure for the Functionalization of Heterocycles

The threads of a 3 mL borosilicate scintillation vial were thoroughly taped with Teflon tape. To this vial containing a stir bar was added heterocycle ($0.2 \mathrm{mmol}, 1$ equiv), radical precursor ($0.4 \mathrm{mmol}, 2$ equiv), Selectfluor ($142 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) and trifluoroacetic acid ($16 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1$ equiv). Dichloroethane (1 mL) and $\mathrm{H}_{2} \mathrm{O}(0.9 \mathrm{~mL})$ were then added and stirred for approximately 1 minute at room temperature. A solution of $\mathrm{AgNO}_{3}\left(0.1 \mathrm{~mL}\right.$ of a 0.4 M solution in $\mathrm{H}_{2} \mathrm{O}, 0.04 \mathrm{mmol}$) was added in one portion. The reaction was capped with a teflon screw cap and rubber septum (24/40). The reaction was heated to $50^{\circ} \mathrm{C}$ until reaction was completed as judged by GCMS (up to 24 hours).

Upon completion, the reaction was diluted with ethyl acetate (1 mL) and transferred to a test tube containing $2 \mathrm{M} \mathrm{NaOH}(3 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($3 \times 3 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4}, filtered and carefully concentrated in vacuo. The crude material was purified by silica gel chromatography to yield the desired product.
(B) General Procedure for the Functionalization of Quinones

The threads of a 3 mL borosilicate scintillation vial were thoroughly taped with Teflon tape. To this vial containing a stir bar was added quinone ($0.2 \mathrm{mmol}, 1$ equiv), radical precursor ($0.4 \mathrm{mmol}, 2$ equiv) and Selectfluor ($142 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv). Dichloroethane (1 mL) and $\mathrm{H}_{2} \mathrm{O}(0.9 \mathrm{~mL})$ were then added and stirred for approximately 1 minute at room temperature. A solution of $\mathrm{AgNO}_{3}\left(0.1 \mathrm{~mL}\right.$ of a 0.4 M solution in $\mathrm{H}_{2} \mathrm{O}, 0.04$ mmol) was added in one portion. The reaction was capped and stirred overnight at room temperature (up to 24 hours).

Upon completion, the reaction was diluted with ethyl acetate (1 mL) and transferred to a test tube containing saturated $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($3 \times 3 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4}, filtered and carefully concentrated in vacuo. The crude material was purified by silica gel chromatography to yield the desired product.

ReactIR Reaction Progress Data

Experimental Procedure-Manuscript Scheme 2 (experiment with no pyridine additive)
In a 3 mL borosilicate scintillation vial containing a stir bar, Selectfluor ($354 \mathrm{mg}, 1.0$ mmol), and p-tolyl acetate ($29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) were combined with $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{~mL})$. The resulting mixture was stirred for approximately 1 minute at room temperature. A bored-through 14/20 rubber septum was fitted firmly over the opening of the vial. The ReactIR probe was inserted through the opening of the septum. The reaction was heated to $35{ }^{\circ} \mathrm{C}$ and stirred at 600 rpm . Data acquisition was initiated. After approximately 5 minutes, isobutyric acid ($91 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added via gas-tight syringe and allowed to thermally equilibrate while stirring. After an additional 5 minutes, AgNO_{3} was added as an aqueous solution ($100 \mu \mathrm{~L}$ of a 0.4 M solution, 0.04 mmol). Data were collected for more than 3 hours, during which time no appreciable reaction was observed. Data were acquired using a Mettler Toledo ReactIR 15 instrument, and analyzed with the Mettler Toledo iC IR 7.0 software package. Graphical analysis was performed using Excel.

ReactIR Parameters

Detector: MCT
Apodization: HappGenzel
Probe: DiComp (Diamond)
Interface: $\mathrm{AgX} 6 \mathrm{~mm} x 1.5 \mathrm{~m}$ fiber (Silver Halide)
Sampling: 3000 to $650 \mathrm{~cm}^{-1}$
Resolution: 8
Scan Option: AutoSelect
Gain: 1x
Time Interval: Data collected every 2 minutes
Spectrum Math: Second Derivative Baseline: Two-point baseline

ReactIR Trend Plot for Peak at $\sim 1010 \mathrm{~cm}^{-1}$ (Selectfluor)

Experimental Procedure-Manuscript Scheme 2 (experiment with 4-cyanopyridine additive)

In a 3 mL borosilicate scintillation vial containing a stir bar, Selectfluor ($354 \mathrm{mg}, 1.0$ mmol), and p-tolyl acetate ($29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) were combined with $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{~mL})$. The resulting mixture was stirred for approximately 1 minute at room temperature. A bored-through 14/20 rubber septum was fitted firmly over the opening of the vial. The ReactIR probe was inserted through the opening of the septum. The reaction was heated to $35{ }^{\circ} \mathrm{C}$ and stirred at 600 rpm . Data acquisition was initiated. After approximately 5 minutes, isobutyric acid ($91 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added via gas-tight syringe and allowed to thermally equilibrate while stirring. After an additional 5 minutes, AgNO_{3} was added as an aqueous solution ($100 \mu \mathrm{~L}$ of a 0.4 M solution, 0.04 mmol). Data were acquired for 10 minutes, during which time no appreciable reaction was observed. Data acquisition was paused, and 4-cyanopyridine ($21 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added as a solid. Data acquisition was resumed and the consumption of Selectfluor was monitored over the course of an additional 3 hours.

Upon completion, the reaction was diluted with ethyl acetate (1 mL) and transferred to a test tube containing $2 \mathrm{M} \mathrm{NaOH}(3 \mathrm{~mL}) .1,3,5$-Trimethoxybenzene ($16.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added to the crude mixture for ${ }^{1} \mathrm{H}$ NMR analysis. The aqueous phase was extracted with ethyl acetate ($3 \times 3 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4},
filtered and carefully concentrated in vacuo. The crude material was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}$ NMR yielding 70\% conversion to fluorinated p-tolyl acetate, and 37% conversion to 2-isopropylisonicotinitrile.

ReactIR Trend Plot for Peak at $\sim 1010 \mathrm{~cm}^{-1}$ (Selectfluor, Early Reaction)

ReactIR Trend Plot for Peak at $\sim 1010 \mathrm{~cm}^{-1}$ (Selectfluor, Full Reaction)

Experimental Procedures and Characterization Data

Scheme 3 Compounds (2-17)

2

2a

2-isopropylisonicotinotrile (2) and 2,6-diisopropylisonicotinonitrile (2a). General procedure A was employed using 4-cyanopyridine ($21 \mathrm{mg}, 0.2 \mathrm{mmol}$) and isobutyric acid ($37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction afforded 2 ($13.5 \mathrm{mg}, 53 \%$ yield) and $\mathbf{2 a}$ ($1.6 \mathrm{mg}, 4 \%$ yield) as pale yellow oils separated by silica gel (5 to 20% EtOAc in hexanes). The data matches those previously reported. ${ }^{1}$ For 1 mmol scale, General Procedure A was followed on 4cyanopyridine ($104 \mathrm{mg}, 1.0 \mathrm{mmol}$), with isobutyric acid $(182 \mu \mathrm{~L}, 2.0 \mathrm{mmol})$, selectfluor ($709 \mathrm{mg}, 2.0 \mathrm{mmol}$), trifluoroacetic acid ($77 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), and silver(I)nitrate (34.0 mg , 0.2 mmol) in DCE: $\mathrm{H}_{2} \mathrm{O}$ ($5 \mathrm{~mL}: 5 \mathrm{~mL}$). The reaction afforded 2 ($67.9 \mathrm{mg}, 46 \%$ yield) and $\mathbf{2 a}$ ($9.8 \mathrm{mg}, 5 \%$ yield) as pale yellow oils separated by silica gel ($20 \% \mathrm{EtOAc}$ in hexanes).

3
ethyl 2-pentylisonicotinate (3). General procedure A was modified using ethyl isonicotinate ($30 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and hexanoic acid ($125 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5$ equiv). The reaction afforded 3 ($18.0 \mathrm{mg}, 41 \%$ yield) as a pale yellow oil separated by silica gel (20% EtOAc in hexanes).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.66(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=5.1,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.7, 163.8, 150.1, 138.1, 122.0, 120.2, 61.8, 38.5, 31.7, 29.7, 22.7, 14.4, 14.2

HRMS (ESI-TOF): calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 221.1494$ found 222.1485

4-(tert-butyl)-2-cyclobutylpyridine (4). General procedure \mathbf{A} was employed using 4-tertbutylpyridine ($30 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and cyclobutane carboxylic acid ($39 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction afforded $4(20.0 \mathrm{mg}, 53 \%$ yield) as a pale yellow oil separated by silica gel (10 to 20% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.46(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=5.3,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{td}, J=8.9,5.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H})$, 1.30 (s, 9H)
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 164.5, 160.2, 149.2, 118.3, 118.0, 42.4, 34.8, 30.7, 28.7, 18.4
HRMS (ESI-TOF): calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}$ [M+H]+ 190.1590 found 190.1574

5
methyl 5-bromo-6-cyclobutylnicotinate (5). General procedure A was employed using methyl 5-bromonicotinate ($43.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclobutanecarboxylic acid ($39 \mu \mathrm{~L}, 0.4$ mmol). The reaction afforded 5 ($14.7 \mathrm{mg}, 27 \%$ yield) as a colorless oil separated by silica gel (10% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.09(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.00(\mathrm{~m}$, 1H), 3.94 ($\mathrm{s}, 3 \mathrm{H}$), 2.49-2.37 (m, 4H), 2.14-2.00 (m, 1H), 1.94-1.85 (m, 1H)
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.5, 165.0, 148.7, 140.7, 125.0, 120.5, 52.7, 41.5, 27.3, 18.0
HRMS (ESI-TOF): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]+270.0124$ found 270.0117

6-C6

6-C4
ethyl 6-cyclohexyl-2-methylnicotinate (6-C6) and ethyl 4-cyclohexyl-2methylnicotinate (6-C4). General procedure A was employed using ethyl 2methylnicotinate ($31 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and cyclohexanecarboxylic acid ($51 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C6:C4 was determined to be 1.3:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded 6-C6 ($14.5 \mathrm{mg}, 29 \%$ yield) and 6-C4 (4.5 mg , 9% yield) as a pale yellow oils separated by silica gel (20 to 50\% EtOAc in hexanes). The data for 6-C6 matches those previously reported. ${ }^{1}$

Data for 6-C4

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.43(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.1$ Hz, 2H), 2.55-2.48(m, 4H), 1.88-1.81 (m, 4H), 1.45-1.28(m, 9H).
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 169.2, 154.6, 153.6, 149.7, 129.31, 118.7, 61.6, 41.8, 33.6, 26.7, 26.0, 22.9, 14.4.

HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 248.1645$ found 248.1622

7

2-(tetrahydro-2H-pyran-4-yl)-4-(trifluoromethyl)pyridine (7). General procedure A was employed using 4-(trifluoromethyl)pyridine ($23 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and tetrahydropyran4 -yl-carboxylic acid ($52 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 7 ($19.0 \mathrm{mg}, 41 \%$ yield) as a yellow oil separated by silica gel (20\% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.73(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 2 \mathrm{H})$, 3.56 (td, $J=11.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $166.1,150.4,139.0(\mathrm{q}, J=33.7 \mathrm{~Hz}), 123.1(\mathrm{q}, J=273.1 \mathrm{~Hz}$), 117.3 (q, $J=3.4 \mathrm{~Hz}$), 116.7 ($\mathrm{q}, J=3.5 \mathrm{~Hz}$), 68.1, 43.6, 37.3
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -64.79
HRMS (ESI-TOF): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO} \quad[\mathrm{M}+\mathrm{H}]^{+} \quad 232.0944$ found 232.0924

8
ethyl 2-(tert-butyl)isonicotinate (8). General procedure A was employed using ethyl isonicotinate ($30 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and pivalic acid ($41 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded $\mathbf{8}$ ($11.2 \mathrm{mg}, 27 \%$ yield) as a pale yellow oil separated by silica gel (10 to 20% EtOAc in hexanes). The data matches those previously reported. ${ }^{1}$

9-C2

9-C4

2-pentylquinoline (9-C2) and 4-pentylquinoline (9-C4). General procedure A was modified using quinoline ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and hexanoic acid ($125 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5$ equiv). The regioisomeric ratio of C2:C4 was determined to be 1.3:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded 9-C2 ($12.1 \mathrm{mg}, 30 \%$ yield) and $9-\mathbf{C 4}$ ($9.7 \mathrm{mg}, 24 \%$ yield) as colorless oils separated by silica gel (10 to 30% EtOAc in hexanes). The data matches those previously reported. ${ }^{2 a-b}$

10
tert-butyl (isoquinolin-1-ylmethyl)carbamate (10). General procedure \mathbf{A} was modified using isoquinoline ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and N-Boc glycine ($70 \mathrm{mg}, 0.4 \mathrm{mmol}$) with acetone (1 mL) substituted for dichloroethane (1 mL). The reaction afforded $\mathbf{1 0}$ ($22 \mathrm{mg}, 43 \%$ yield) as a yellow oil separated by silica gel (40% EtOAc in hexanes). The data matches those previously reported. ${ }^{3}$

11
1-(isoquinolin-1-yl)ethan-1-one (11). General procedure A was employed using isoquinoline ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and pyruvic acid ($28 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction afforded 11 (30.2 mg , 88\% yield) as a colorless oil separated by silica gel (10% EtOAc in hexanes). The data matches those previously reported. ${ }^{4}$

12
3-chloro-4-cyclobutyl-6-methylpyridazine (12). General procedure A was employed using 3-chloro-6-methylpyridazine ($26 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclobutanecarboxylic acid (39 $\mu \mathrm{L}, 0.4 \mathrm{mmol})$. The reaction afforded $12(21.0 \mathrm{mg}, 57 \%$ yield) as a pale yellow oil separated by silica gel (20\% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.19(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.18-2.06 (m, 3H), 1.93-1.84 (m, 1H)
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 159.7, 155.3, 143.9, 126.1, 36.8, 27.5, 21.8, 18.3
HRMS (ESI-TOF): calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]+183.0684$ found 183.0665

13

3,6-dichloro-4-cyclopropylpyridazine (13). General procedure A was employed using 3,6 -dichloropyridazine ($30 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclopropanecarboxylic acid ($32 \mu \mathrm{~L}, 0.4$ mmol). The reaction afforded $13(8.7 \mathrm{mg}, 23 \%$ yield) as a colorless oil separated by silica gel (10% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl 3): 6.93 (s, 1H), 2.24-2.16 (m, 1H), 1.33-1.23 (m, 2H), 0.90-0.83 (m, 2H)
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 157.5, 155.9, 146.9, 124.3, 12.6, 10.8
HRMS (ESI-TOF): calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]+188.9981$ found 188.9962

14

2-(3,3,3-trifluoropropyl)quinoxaline (14). General procedure A was modified using quinoxaline ($26 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4,4,4-trifluorobutyric acid ($109 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). The reaction afforded 14 ($16.4 \mathrm{mg}, 36 \%$ yield) as a yellow oil separated by silica gel (30\% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.76 (s, 1H), 8.12-8.08 (m, 1H), 8.06-8.03 (m, 1H), 7.80-7.72 (m, 2H), 3.32-3.27 (m, 2H), 2.84-2.73(m, 2H)
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 153.7, 145.5, 142.2, 141.7, 130.4, 129.7, 129.4, 129.1, 32.3 (q, J $=29.3 \mathrm{~Hz}), 30.5,28.4(\mathrm{q}, J=3.1 \mathrm{~Hz})$
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-66.40(\mathrm{t}, \mathrm{J}=10.7 \mathrm{~Hz})$
HRMS (ESI-TOF): calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]+227.0791$ found 227.0767

15

2-cyclohexylquinoxaline (15). General procedure A was employed using quinoxaline (26 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclohexanecarboxylic acid ($51 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 15 ($27.7 \mathrm{mg}, 65 \%$ yield) as a colorless oil separated by silica gel (10 to 20% EtOAc in hexanes). The data matches those previously reported. ${ }^{5}$

16

2-(4,4-difluorocyclohexyl)quinoxaline (16). General procedure A was employed using quinoxaline ($26 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4,4-difluorocyclohexanecarboxylic acid ($66 \mathrm{mg}, 0.4$ mmol). The reaction afforded 16 ($33.2 \mathrm{mg}, 67 \%$ yield) as a pale yellow oil separated by silica gel (10% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.80(\mathrm{~s}, 1 \mathrm{H}), 8.11-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.04$ $(\mathrm{m}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.87(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 158.8, 158.8, $144.6,142.2,141.7,130.2,129.5,129.3$ (d, $J=7.3$
Hz), $123.0(\mathrm{dd}, J=242.3,240.0 \mathrm{~Hz}), 42.6(\mathrm{~d}, J=0.6 \mathrm{~Hz}), 33.7(\mathrm{dd}, J=25.5,23.3 \mathrm{~Hz}), 28.4(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-92.29(\mathrm{~d}, J=237.1 \mathrm{~Hz}),-101.36(\mathrm{~d}, J=233.2 \mathrm{~Hz})$
HRMS (ESI-TOF): calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]+249.1198$ found 249.1176

17
2-isopropylquinazoline (17). General procedure A was employed using quinazoline (26 $\mathrm{mg}, 0.2 \mathrm{mmol})$ and isobutyric acid ($37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction afforded $\mathbf{1 7}$ (11.5 mg , 33% yield) as a white solid separated by silica gel (30% EtOAc in hexanes). The data matches those previously reported. ${ }^{6}$

Scheme 4 Compounds (18-39)

18-C2

18-C3

2-phenylisonicotinonitrile (18-C2) and 3-phenylisonicotinotrile (18-C3). General procedure A was employed using 4-cyanopyridine ($21 \mathrm{mg}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C3 was determined to be $2: 1$ by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded afforded $\mathbf{1 8 - C 2}$ ($18.6 \mathrm{mg}, 52 \%$ yield) and 18-C3 (12.4 $\mathrm{mg}, 34 \%$ yield) as yellow solids separated by silica gel (10 to 20% EtOAc in hexanes).

With phenylboronic acid pinacol ester ($82 \mathrm{mg}, 0.4 \mathrm{mmol}$), the regioisomeric ratio of C2:C3 was determined to be 1.5:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded $\mathbf{1 8 - C 2}$ ($12.5 \mathrm{mg}, 30 \%$ yield) and 18-C3 ($8.3 \mathrm{mg}, 20 \%$ yield).

With potassium phenyltrifluoroborate ($74 \mathrm{mg}, 0.4 \mathrm{mmol}$), the regioisomeric ratio of C2:C3 was determined to be 2.5:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded $\mathbf{1 8 - C 2}(15.7 \mathrm{mg}, 37 \%$ yield) and 18-C3 ($7.1 \mathrm{mg}, 17 \%$ yield). The data matches those previously reported. ${ }^{7}$

19-C2

19-C3

2-phenyl-4-(trifluoromethyl)pyridine (19-C2) and 3-phenyl-4(trifluromethyl)pyridine (19-C3). General procedure A was employed using 4(trifluoromethyl)pyridine ($23 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C3 was determined to be $4: 1$ by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded afforded $\mathbf{1 9 - C 2}$ ($24.0 \mathrm{mg}, 54 \%$ yield) and 19-C3 ($2.0 \mathrm{mg}, 4 \%$ yield) as pale yellow oils separated by silica gel (5\% EtOAc in hexanes). The data matches those previously reported. ${ }^{7}$

20-C2

20-C3

4-methyl-2-phenylpyridine (20-C2) and 4-methyl-3-phenylpyridine (20-C3). General procedure A was employed using 4-methylpyridine ($20 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of $\mathrm{C} 2: \mathrm{C} 3$ was determined to be $3.5: 1$ by
crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded $\mathbf{2 0 - C 2}$ ($17.1 \mathrm{mg}, 50 \%$ yield) and $\mathbf{2 0 - C 3}$ ($4.8 \mathrm{mg}, 14 \%$ yield) as pale yellow oils separated by silica gel (5 to 10% EtOAc in hexanes). The data matches those previously reported. ${ }^{8}$

21
4-(tert-butyl)-2-phenylpyridine (21). General procedure \mathbf{A} was employed using 4-tertpyrdinde ($21 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded afforded 21 ($21.9 \mathrm{mg}, 52 \%$ yield) as a pale yellow oil separated by silica gel (5% EtOAc in hexanes). The data matches those previously reported. ${ }^{7}$

22

2-phenyl-4-(methoxy)pyridine (22). General procedure A was employed using 4(methoxy)pyridine ($22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded afforded 22 ($14.4 \mathrm{mg}, 39 \%$ yield) as a pale yellow oil separated by silica gel (5 to 20% EtOAc in hexanes). The data matches those previously reported. ${ }^{9}$

3-bromo-2-phenylpyridine (23-C2) and 3-bromo-4-phenylpyridine (23-C4), 5-bromo-2-phenylpyridine (23). General procedure A was employed using 3bromopyridine ($19.3 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C4:C6 was determined to be 1:1:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded afforded 23 ($12.8 \mathrm{mg}, 27 \%$ yield) as a pale yellow oil. 23-C2 and 23-C4 were isolated as a $1: 1$ mixture ($31.6 \mathrm{mg}, 68 \%$ yield) as pale yellow oils. The mixtures were separated by silica gel (5 to 20% EtOAc in hexanes) The data matches those previously reported. ${ }^{7}$

24-C6

24-C4
phenyl(6-phenylpyiridin-3-yl)methanone (24-C6) and phenyl(4-phenylpyridin-3yl)methanone (24-C4). General procedure A was employed using 3-benzoylpyridine (37 $\mathrm{mng}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C4 was determined to be 3.5:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded afforded 24-C6 ($14.0 \mathrm{mg}, 27 \%$ yield) and $\mathbf{2 4 - C 4}$ ($14.5 \mathrm{mg}, 28 \%$ yield) as pale yellow oils separated by silica gel (20% EtOAc in hexanes). The data matches those previously reported. ${ }^{10 \mathrm{a}-\mathrm{b}}$

25-C6

25-C4
ethyl 2-methyl-6-phenylnicotinate (25-C6) and ethyl 2-methyl-4-phenylnicotinate (25-C4). General procedure A was employed using ethyl-2-methylnicotinate ($31 \mu \mathrm{~L}, 0.2$ mmol) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C6:C4 was determined to be 1.3:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded afforded 25-C6 (21.6 mg , 45% yield) and 25-C4 ($16.5 \mathrm{mg}, 34 \%$ yield) as pale yellow oils separated by silica gel (5 to 20% EtOAc in hexanes). The data matches those previously reported. ${ }^{11 a-b}$

26

3,6-dichloro-4-phenylpyridazine (26). General procedure A was employed using 1,3dichloropyrazine ($30 \mathrm{mg}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded afforded 26 ($15.5 \mathrm{mg}, 34 \%$ yield) as a colorless solid separated by silica gel (10% EtOAc in hexanes). The data matches those previously reported. ${ }^{7}$

27-C5

27-C6

27-C3

5-phenylpyrazine-2-carbonitrile (27-C5), 6-phenylpyrazine-2-carbonitrile (27-C6), and 3-phenylpyrazine-2-carbonitrile (27-C3). General procedure A was employed using 2-cyanopyrazine ($18 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C5:C6:C3 was determined to be 1:1.5:1.5 by crude ${ }^{1} \mathrm{H}$ NMR. The
reaction afforded 27-C5 (6.0 mg, 17\%), 27-C6 ($9.6 \mathrm{mg}, 26 \%$), and 27-C3 ($8.7 \mathrm{mg}, 24 \%$ yield) as pale yellow solids separated by silica gel (5 to 15% EtOAc in hexanes). The data matches those previously reported. ${ }^{12}$

28

2-phenylquinazoline (28). General procedure \mathbf{A} was employed using quinoxaline (26 mg , 0.2 mmol) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded afforded 28 ($26.3 \mathrm{mg}, 64 \%$ yield) as a yellow solid separated by silica gel (20% EtOAc in hexanes). The data matches those previously reported. ${ }^{7}$

29-C2

29-C4

2-phenylquinoline (29-C2) and 4-phenylquinoline (29-C4). General procedure A was employed using quinoline ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C4 was determined to be 1:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded afforded 29-C2 (15 mg, 37\% yield) as an off-white solid and 29-C4 (15 mg, 37\% yield) as a pale yellow oil separated by silica gel (20% EtOAc in hexanes). The data matches those previously reported. ${ }^{7}$

30

4-bromo-2-phenylquinoline (30). General procedure A was employed using 4bromoquinoline ($41.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded afforded 30 ($19.3 \mathrm{mg}, 34 \%$ yield) as a white solid separated by silica gel (2.5 to 10\% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.21-8.12 (m, 5H), 7.80-7.74(m, 1H), 7.66-7.59 (m, 1H), 7.577.46 (m, 3H)
${ }^{13}$ C NMR (100 MHz, CDCl_{3}): 157.4, 148.9, 138.5, 134.8, 130.7, 130.3, 129.9, 129.1, 127.7, 127.6, 126.8, 126.7, 123.1

HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+} 284.0069$ found 284.0054

31-C2

31-C4

6-methoxy-2-phenylquinoline (31-C2) and 6-methoxy-3-phenylquinoline (31-C4). General procedure A was employed using 6-methoxyquinoline ($26 \mathrm{mg}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C4 was determined to be 1:1.5 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded afforded $\mathbf{3 1 - C 2}$ ($16.8 \mathrm{mg}, 36 \%$ yield) as a yellow solid and 31-C4 (23.9 mg , 51% yield) as a dark yellow oil separated by silica gel (5 to 30% EtOAc in hexanes). The data matches those previously reported. ${ }^{13}$

32-C2

32-C3

2-(2-fluorophenyl)isonicotinonitrile
(32-C2) and
3-(2fluorophenyl)isonicotinonitrile (32-C3). General procedure A was employed using 4cyanopyridine ($21 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-fluorophenylboronic acid ($56 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C3 was determined to be $2: 1$ by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded 32-C2 (10.4 mg, 26\%) and 32-C3 (11.6 mg, 29\%) as pale yellow oils separated by silica gel (10 to 20% EtOAc in hexanes).

Data for 32-C2

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.90 (dd, $J=4.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.07-8.01 (m, 2H), 7.49-7.43 (m, 2 H), 7.30 (td, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.23-7.17$ (m, 1H)
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 160.7 (d, $J=250.9 \mathrm{~Hz}$), $154.8(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 150.7,131.9(\mathrm{~d}, J=$ 8.8 Hz), $131.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 125.0(\mathrm{~d}, J=3.6$ $\mathrm{Hz}), 123.7,121.1,116.8,116.6(\mathrm{~d}, J=22.9 \mathrm{~Hz})$
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -116.76 (m)
HRMS (ESI-TOF): calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]+199.0666$ found 199.0648
Data for 32-C3
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.85(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.54-7.49 (m, 1H), 7.47-7.42 (m, 1H), 7.33 (td, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 159.7 (d, $J=249.6 \mathrm{~Hz}$), 151.8 (d, $J=2.2 \mathrm{~Hz}$), 149.5, 132.0 (d, $J=$ 8.2 Hz), 131.3 (d, $J=2.3 \mathrm{~Hz}$), 125.9, 125.0 (d, $J=3.8 \mathrm{~Hz}$), 122.5, 122.4, 120.7, 116.6 (d, $J=$ $21.7 \mathrm{~Hz}), 115.9$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-114.84(\mathrm{~m})$.
HRMS (ESI-TOF): calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]+199.0666$ found 199.0650

33-C3
ethyl 2-(2,4-difluorophenyl)isonicotinate (33-C2) and ethyl 3-(2,4difluorophenyl)isonicotinate (33-C3). General procedure A was employed using ethyl isonicotinate ($30 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and 2,4-difluorophenylboronic acid ($64 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C3 was determined to be 1.2:1 by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded 33-C2 ($8.0 \mathrm{mg}, 15 \%$) and $\mathbf{3 3 - C 3}$ ($7.3 \mathrm{mg}, 14 \%$) as a white solid and pale yellow oil separated by silica gel (10 to 20% EtOAc in hexanes).

Data for 33-C2

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.85(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{td}, J=8.8,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.82 (dd, $J=5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.2, 163.6 (dd, $J=251.7,12.0 \mathrm{~Hz}$), 160.8 (dd, $J=253.3,12.0$ Hz), 153.8 ($\mathrm{d}, ~ J=2.4 \mathrm{~Hz}$), 150.6, 138.6, 132.3 (dd, $J=9.7,4.3 \mathrm{~Hz}$), 123.5 (d, $J=9.6 \mathrm{~Hz}$), 121.7, $112.3(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 112.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 104.7(\mathrm{dd}, J=26.7,25.5 \mathrm{~Hz}), 62.1,14.4$
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -108.40 (m), -112.48(m)
HRMS (ESI-TOF): calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+264.0831$ found 264.0805

Data for 33-C3

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.77 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.63 ($\mathrm{s}, 1 \mathrm{H}$), 7.81-7.78 (m, 1H), 7.34$7.27(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.90$ (ddd, $J=10.0,8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $165.9,163.2$ (dd, $J=250.3,11.9 \mathrm{~Hz}$), 160.1 (dd, $J=249.4,12.0$ Hz), 152.6, 150.1, 138.2, 131.3 (dd, $J=9.6,4.6 \mathrm{~Hz}$), 129.8, 123.2, 111.7, (d, $J=3.8 \mathrm{~Hz}$), 111.5 (d, $J=3.8 \mathrm{~Hz}$), $104.0(\mathrm{t}, J=25.7 \mathrm{~Hz}), 61.9,13.9$
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -109.50 (m), -111.30 (m)
HRMS (ESI-TOF): calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+264.0805$ found 264.0805

34-C2

34-C3
methyl 3-(4-cyanopyridin-2-yl)benzoate (34-C2) and methyl 3-(4-cyanopyridin-3yl)benzoate (34-C3). General procedure A was employed using 4-cyanopyridine (21 mg ,
0.2 mmol and 3-methoxycarbonylphenyl boronic acid (76 mg, 0.4 mmol). The regioisomeric ratio of C2:C3 was determined to be $2: 1$ by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded 34-C2 (16 mg, 34\%) and 34-C3 ($8.0 \mathrm{mg}, 17 \%$) as off-white solids separated by silica gel (10 to 45% EtOAc in hexanes).

Data for 34-C2

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.89(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.66-8.64(\mathrm{~m}, 1 \mathrm{H}), 8.26-8.22(\mathrm{~m}$, $1 \mathrm{H}), 8.18-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.02-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=4.9,1.4 \mathrm{~Hz}$, 1H), 3.97 (s, 3H)
${ }^{13}$ C NMR (125 MHz, CDCl_{3}): 166.7, 157.8, 150.9, 137.8, 131.4, 131.3, 131.2, 129.4, 128.2, 123.8, 122.2, 121.6, 116.7, 52.5

HRMS (ESI-TOF): calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+239.0815$ found 239.0790

Data for 34-C3

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.89(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.80(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.4, 151.0, 149.4, 137.9, 134.9, 133.2, 131.4, 130.8, 130.1, 129.5, 126.2, 119.2, 116.1, 52.5

HRMS (ESI-TOF): calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+239.0815$ found 239.0791

35-C2

35-C3
ethyl 2-[4-(trifluoromethyl)phenyl]isonicotinate (35-C2) and ethyl 3-[4(trifluoromethyl)phenyl]isonicotinate (35-C3). General procedure A was employed using ethyl isonicotinate ($30 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and 4-trifluoromethylphenylbornic acid (76 mg , 0.4 mmol). The regioisomeric ratio of C2:C3 was determined to be $4: 1$ by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded $\mathbf{3 5 - C} \mathbf{~ (~} 13.9 \mathrm{mg}, \mathbf{2 4 \%}$) and $\mathbf{3 5 - C}$ ($4.9 \mathrm{mg}, 8 \%$) as off-white solids separated by silica gel (10 to 40\% EtOAc in hexanes).

Data for 35-C2

${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl_{3}): 8.87 ($\mathrm{d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.33(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (dd, $J=5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H)
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $165.2,157.0,150.8,142.0,139.0,131.4(\mathrm{q}, J=32.5 \mathrm{~Hz}), 127.5$, $126.0,124.2(\mathrm{q}, J=272.1 \mathrm{~Hz}), 122.2,120.2,62.2,14.4$
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -62.66
HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+296.0898$ found 296.0860

Data for 35-C3

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.77(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.4, 151.3, 149.9, 141.4, 138.0, 135.1, 130.4 ($\mathrm{q}, J=32.6 \mathrm{~Hz}$), $129.3,125.6(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.3(\mathrm{q}, J=272.1 \mathrm{~Hz}), 123.0,62.0,13.8$
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -62.59
HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+296.0898$ found 296.0866

36
methyl 3-[4-(tert-butyl)pyridin-2-yl]benzoate (36). General procedure A was employed using 4-tert-butylpyridine ($30 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and 3-methoxycarbonylphenyl boronic acid ($72 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded $36(25.4 \mathrm{mg}, 47 \%$) as a colorless oil separated by silica gel (10% EtOAc in hexanes).
${ }^{1}{ }^{\mathbf{H}}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.60(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.73 ($\mathrm{s}, 1 \mathrm{H}$), $7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13}$ C NMR (100 MHz, CDCl_{3}): 167.2, 161.1, 156.6, 149.8, 140.5, 131.7, 130.8, 129.9, 129.0, 128.2, 119.9, 117.9, 52.3, 35.1, 30.8

HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+270.1489$ found 270.1460

37

4-(tert-butyl)-2-[3-(trifluoromethyl)phenyl]pyridine (37): General procedure A was employed using 4-tert-butylpyridine (30 $\mu \mathrm{L}, \quad 0.2 \quad \mathrm{mmol})$ and 3trifluoromethylphenylboronic acid ($76 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 37 (13.8 mg , 25%) as a colorless oil separated by silica gel (20% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.62 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.25 (s, 1H), 8.16 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=5.3,1.8 \mathrm{~Hz}$, 1H), 1.39 ($\mathrm{s}, 9 \mathrm{H}$)
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.3, 156.1, 149.9, 140.9, 131.3 ($\mathrm{q}, J=32.2 \mathrm{~Hz}$), 131.0, 130.4, $129.3,125.5(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.1(\mathrm{q}, J=3.9 \mathrm{~Hz}), 120.2,117.9,35.1,30.8$
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -62.55
HRMS (ESI-TOF): calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}$ [M+H]+ 280.1308 found 280.1283

38-C2

38-C3

2-(\boldsymbol{p}-tolyl)isonicotinonitrile (38-C2) and 3-(\boldsymbol{p}-tolyl)isonicotinonitrile (38-C3). General procedure A was employed using 4-cyanopyridine ($21 \mathrm{mg}, 0.2 \mathrm{mmol}$) and p-tolylboronic acid ($54 \mathrm{mg}, 0.4 \mathrm{mmol}$). The regioisomeric ratio of C2:C3 was determined to be $2: 1$ by crude ${ }^{1} \mathrm{H}$ NMR. The reaction afforded $\mathbf{3 8 - C 2}$ ($14.4 \mathrm{mg}, 37 \%$) and $\mathbf{3 8 - C}$ ($8.5 \mathrm{mg}, 22 \%$) as yellow and white solids separated by silica gel (5 to 15\% EtOAc in hexanes). The data matches those previously reported. ${ }^{6}$

39

4-(tert-butyl)-2-(4-methoxyphenyl)pyridine (39). General procedure A was employed using 4-tert-butylpyridine ($30 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and 4-methoxyphenylboronic acid ($61 \mathrm{mg}, 0.4$ $\mathrm{mmol})$. The reaction afforded 39 ($7.1 \mathrm{mg}, 15 \%$) as a yellow oil separated by silica gel (20% EtOAc in hexanes). The data matches those previously reported. ${ }^{14}$

Scheme 5 Compounds (44-55)

44
2-isopropylcyclohexa-2,5-diene-1,4-dione (44). General procedure B was employed using 1,4 -benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and isobutyric acid ($37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction afforded 44 ($16.1 \mathrm{mg}, 54 \%$) as a yellow oil separated by silica gel (5\% EtOAc in hexanes). The data matches those previously reported. ${ }^{15}$
When ammonium persulfate ($91 \mathrm{mg}, 0.4 \mathrm{mmol}$) was used, the reaction afforded $44(9.9 \mathrm{mg}$, 33%) as a yellow oil.

45
2-cyclobutylcyclohexa-2,5-diene-1,4-dione (45). General procedure B was employed using 1,4 -benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclobutane carboxylic acid ($39 \mu \mathrm{~L}, 0.4$ $\mathrm{mmol})$. The reaction afforded $45(15.7 \mathrm{mg}, 48 \%)$ as a yellow oil separated by silica gel (5% EtOAc in hexanes). The data matches those previously reported. ${ }^{16}$

46
[1,1'-bi(cyclohexane)]-3,6-diene-2,5-dione (46). General procedure B was employed using 1,4-benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclohexanoic acid acid ($51 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 46 ($17.9 \mathrm{mg}, 47 \%$) as a yellow oil separated by silica gel (5\% EtOAc in hexanes). The data matches those previously reported. ${ }^{16}$

47

4',4'-difluoro-[1,1'-bi(cyclohexane)]-3,6-diene-2,5-dione (47). General procedure B was employed using 1,4-benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4,4-difluorocyclohexane carboxylic acid ($66 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 47 ($20.2 \mathrm{mg}, 45 \%$) as a yellow solid separated by silica gel (10% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 6.81-6.72 (m, 2H), $6.55(\mathrm{dd}, J=2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 187.7, 186.8, 151.7 ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}$), 137.1, 136.3, 131.3, 122.7
(dd, $J=239.3,234.1 \mathrm{~Hz}$), 34.5 (d, $J=1.6 \mathrm{~Hz}$), 33.8 (dd, $J=32.3,25.7 \mathrm{~Hz}$), $28.0(\mathrm{~d}, J=10.3 \mathrm{~Hz}$)
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -92.02 (d, $J=237.5 \mathrm{~Hz}$), -102.3 (m), -102.8 (m)
HRMS (ESI-TOF): calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+227.0884$ found 227.0903

48
2-(tert-butyl)cyclohexa-2,5-diene-1,4-dione (48). General procedure B was employed using 1,4-benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and pivalic acid ($41 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 48 ($8.8 \mathrm{mg}, 27 \%$) as a yellow oil separated by silica gel (10% EtOAc in hexanes). The data matches those previously reported. ${ }^{17}$

49
2-pentylcyclohexa-2,5-diene-1,4-dione (49). General procedure B was employed using 1,4-benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and hexanoic acid ($50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction afforded 49 ($4.5 \mathrm{mg}, 13 \%$) as a yellow oil separated by silica gel (5% EtOAc in hexanes). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.75(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (dd, $J=10.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.58-6.55$ $(\mathrm{m}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 188.0, 187.7, 149.9, 137.0, 136.4, 132.5, 31.6, 29.1, 27.6, 22.5, 14.1.

HRMS (ESI-TOF): calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+179.1067$ found 179.1068

50
2-(tetrahydro-2H-pyran-4-yl)naphthalene-1,4-dione (50). General procedure B was employed using 1,4-naphthoquinone ($32 \mathrm{mg}, 0.2 \mathrm{mmol}$) and tetrahydropyran-4-ylcarboxylic acid ($52 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded $50(14.5 \mathrm{mg}, 30 \%$) as a yellow oil separated by silica gel (20\% EtOAc in hexanes).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.13-8.03 (m, 2H), 7.77-7.71 (m, 2H), 6.75 (s, 1H), 4.08 (dd, $J=$ $11.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{td}, J=11.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{tt}, J=11.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}$, $2 \mathrm{H}), 1.63$ (qd, $J=12.4,4.3 \mathrm{~Hz}, 2 \mathrm{H})$ ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 185.4, 184.7, 154.2, 133.9, 133.9, 133.6, 132.5, 132.0, 126.9, 126.2, 68.0, 34.4, 31.8.

HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+243.1016$ found 243.1014

51-C5

51-C6

51-C3

2-isopropyl-5-methylcyclohexa-2,5-diene-1,4-dione
(51-C5), 2-isopropyl-6-methylcyclohexa-2,5-diene-1,4-dione (51-C6), 2-isopropyl-3-methylcyclohexa-2,5-diene-1,4-dione (51-C3). General procedure B was employed using 2-methyl-1,4benzoquinone ($29 \mathrm{mg}, 0.4 \mathrm{mmol}$) and isobutyric acid ($37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction afforded 51-C5, ${ }^{18 \mathrm{a}}$ 51-C6, ${ }^{18 \mathrm{~b}}$ and 51-C3 (28.6 mg, 81\%) as a mixture (1.1:1.5:1) of yellow oils. The data is for the mixture separated by silica gel (50% DCM in hexanes).

Data for 51-C5 ${ }^{18 a}$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.58(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 188.8, 187.6, 155.1, 145.3, 134.0, 130.4, 26.7, 21.6, 15.5
Data for 51-C6 ${ }^{18 \mathrm{~b}}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.55(\mathrm{dq}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=2.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-$ $2.97(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 188.4, 187.7, 152.2, 146.3, 133.0, 130.5, 27.0, 21.6, 16.3

Data for 51-C3

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.68(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.10(\mathrm{~m}$, $1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 188.2, 187.7, 149.0, 140.3, 137.4, 135.6, 28.9, 20.1, 11.9
HRMS (ESI-TOF): calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+165.0916$ found 165.0909

52
[1,1'-biphenyl]-2,5-dione (52). General procedure B was employed using 1,4benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 52 ($24.8 \mathrm{mg}, 67 \%$) as a yellow solid separated by silica gel ($10 \% \mathrm{EtOAc}$ in hexanes). With potassium phenyltrifluoroborate ($74 \mathrm{mg}, 0.4 \mathrm{mmol}$), the reaction afforded 52 ($22.6 \mathrm{mg}, 61 \%$) as a yellow solid. With phenylboronic acid pinacol ester ($82 \mathrm{mg}, 0.4$ mmol), the reaction afforded 52 ($23.1 \mathrm{mg}, 63 \%$) as a yellow solid. The data matches those previously reported. ${ }^{19}$

53
2-[4-(trifluoromethyl)phenyl]naphthalene-1,4-dione (53). General procedure was employed using 1,4-naphthoquinone ($41 \mathrm{mg}, 0.4 \mathrm{mmol}$) and 4trifluoromethylphenylbornic acid ($76 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 53 (24.0 mg , 40%) as a yellow solid separated by silica gel (10% DCM in hexanes). The data matches those previously reported. ${ }^{20}$

54
methyl 2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-3-carboxylate (54). General procedure \mathbf{B} was employed using 1,4-benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 3-
methoxycarbonylphenyl boronic acid ($72 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 54 (27.5 $\mathrm{mg}, 51 \%$) as a yellow solid separated by silica gel (5 to 10\% EtOAc in hexanes).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.15-8.10 (m, 2H), 7.70-7.65 (m, 1H), 7.56-7.50 (m, 1H), 6.91 $(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 6.83(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.2 \mathrm{H})$, 3.93 ($\mathrm{s}, .3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 187.4, 186.3, 166.5, 145.2, 137.1, 136.5, 133.7, 133.3, 133.0, 131.2, 130.8, 130.4, 128.8, 52.5.

HRMS (ESI-TOF): calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+243.0652$ found 243.0656

55
3'-bromo-[1,1'-biphenyl]-2,5-dione (55). General procedure \mathbf{B} was employed using 1,4benzoquinone ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 3-bromophenyl boronic acid ($56 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction afforded 55 (18.8 mg , 36\% yield) as a yellow solid separated by silica gel (40% DCM in hexanes). The data matches those previously reported. ${ }^{19}$

References

[1] Mai, D. N.; Baxter, R. D. Org. Lett. 2016, 18, 3738-3741.
[2] a) Zhang, G.; Wu J.; Zeng, H.; Zhang, S.; Yin, Z.; Zheng, S. Org. Lett. 2017, 19, 1080-1083.
b) Kokatla, H. P.; Sil, D.; Tanji, H.; Ohto, U.; Malladi, S. S.; Fox, L. M.; Shimizu, T.; David, S. A. Chem. Med. Chem. 2014, 9, 719-723.
[3] Molander, G. A.; Shin, I. Org. Lett. 2011, 13, 3956-3959.
[4] Khusnutdinov, R. I.; Baiguzina, A. R.; Mukminov, R. R. Russ. J. Organ. Chem. 2010, 46, 1399-1402.
[5] Tang, R. -J.; Kang, L.; Yang, L. Adv. Synth. Catal. 2015, 357, 2055 -2060.
[6] Liu, Q.; Zhao, Y.; Fu, H. Cheng, C. Synlett 2013, 24, 2089-2094.
[7] Wang, J.; Wang, S.; Wang, G.; Zhang, J.; Yu, X. -Q. Chem. Commun., 2012, 48, 1176911771.
[8] McLoughlin, P. T. F.; Clyne M. A.; Aldabbagh F. Tetrahedron, 2004, 60, 8065-8071.
[9] Andersson, H.; Banchelin, T. S. L.; Das, S.; Olsson, R.; Almqvist, F. Chem. Commun., 2010, 46, 3384-3386.
[10] a) Aulakh, V. S.; Ciufolin, M. A. J. Org. Chem. 2009, 74, 5750-5753. b) Comins, D. L.; Stroud, E. D. Heterocycles 1986, 24, 3199-3201.
[11] a) Jiang, Y.; Park, C; Loh, T. Org. Lett., 2014, 16, 3432-3435. b) Raja, V. P. A.; Tenti, G.; Perumalb, S.; Menéndez, J. C. Chem. Commun., 2014, 50, 12270-12272.
[12] Komeyama, K.; Nagao, Y.; Abe, M.; Takaki, K. Bull. Chem. Soc. Jpn. 2014, 87, 301-313.
[13] Wang, Z.; Chen, G.; Zhang, X.; Fan, X. Org. Chem. Front. 2017, 4, 612-616.
[14] Seiple, I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.; Baran, P. S. J. Am. Chem. Soc. 2010, 132, 13194-13196.
[15] Murahashi, S.-I.; Miyaguchi, N.; Noda, S.; Naota, T.; Fujii, A.; Inubushi, Y.; Komiya, N. Eur. J. Org. Chem. 2011, 5355-5365.
[16] Walker, S. E.; Jordan-Hore, J. A.; Johnson, D. G.; Macgregor S. A.; Lee, A.-L. Angew. Chem. Int. Ed. 2014, 53, 13876-13879.
[17] Miyamura, H.; Shiramizu, M.; Matsubara, R.; Kobayashi, S. Angew. Chem. Int. Ed. 2008, 47, 8093-8095.
[18] a) Uliana, M. P.; Vieira, Y. W.; Donatoni, M. C.; Correa, A. G.; Brocksom, U.; Brocksom, T. J. J. Braz. Chem. Soc. 2008, 19, 1484-1489. b) Murahashi, S.-I.; Miyaguchi, N.; Noda, S.; Naota, T.; Fujii, A.; Inubushi, Y. Komiya, N. Eur. J. Org. Chem. 2011, 5355-5365.
[19] Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Bel, M. D.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 3292-3295.
[20] Molina, M. T.; Navarro, C.; Moreno, A.; Csaky A. G. Org. Lett. 2009, 11, 4938-4941.

$\stackrel{\stackrel{\rightharpoonup}{\text { F }}}{\substack{\text { I }}}$
$\begin{aligned} & 96<2 \mathrm{II} \\ & 6 Z^{\circ} \mathrm{BII}\end{aligned}>$

4

$\mathrm{MeO}_{2} \mathrm{C}$

i

in in

12

-12.62
10.83

	1		1		1		1		1			1		1	1	1	1	1	1	1	1	
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\stackrel{n}{n}$ $\underbrace{\text { fin }}$
(

16

17

26

28

Cons
29-C2

30

30

オんんへへのか

$\xrightarrow{+}$

32-C3

32-C3

 $\underbrace{\infty} \infty \infty$

O응웅우웅

33-C3

or
-52.53

34-C2

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

35-C2

35-C3

37

[^0]

47
 ~~~~~~~~~N








50






| , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | $120$ | $110$ ppm) | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |


$\underbrace{\text { N }}$



53







[^0]:    

