Supporting Information

Mass Efficiency of Alkene Syntheses with Tri- and Tetrasubstituted Double Bonds

http://dx.doi.org/10.1021/acssuschemeng.7b02479

Authors: Marco Eissen^[a], Dieter Lenoir^[b]

^[a] Gymnasium Ganderkesee, Am Steinacker 12, 27777 Ganderkesee, Germany. marco.eissen@web.de, Fax: +49 4222 808868.

^[b] Helmholtz Zentrum München, Postfach 1129, 85758 Neuherberg, Germany. lenoir@helmholtz-muenchen.de; Fax: +49 535 8931873371.

Total number of pages: 45 Total number of figures: 1 Total number of tables: 11

Table S 1 Method specific auxiliary materials of syntheses according to Table 1. For a full presentation of all synthetic steps and reaction details see ESI Table S 7 and Table S 8	S2
Table S 2 Overview of trisubstituted (one R=H) and tetrasubstituted (R≠H) alkenes and stilbenes. (Commentary:	
although not all entries in this table were noted completely during its preparation, the information we collected should still be made available.)	. S5
Table S 3 Data related to Figure 1	
Table S 4 Data related to Figure S 1b (see this ESI)	
Table S 5 Supporting information for Figure 1: neat substances and their amounts [kg / kg product] in aqueous	
solutions. No water amounts are indicated here!	514
Table S 6 Data related to Figure 2	514
Table S 7 Selected methods for the preparation of alkens with tri- and tetrasubstituted double bond: yields, atom	1
economies and reaction conditions. Detail information related to Table 1 and Table 2	S15
Table S 8 Methods for the preparation of geminal dihalogenids: yields, atom economies and reaction conditions.	
Detail information related to Table 1 and Table 2	527
Table S 9 Solvent utilization (Note: four decimal places are probably not necessary, but they were given by the	
software ⁶⁹ and simply noted here.)	528
Table S 10 Assumptions that were made for the examination of alkene syntheses (Figure 1, Figure 2).	541
Table S 11 Work-up procedures of syntheses in Table 1 which are not considered in a quantitative way	543

No.	Method	Lite- ra- ture	Substrates	important / characteristic auxiliary materials	Product(s)
1	ß-Elimination (Tschugaeff)	19	H H $B^1 B^2 B^3 B^4$	CS ₂	$\begin{array}{ccc} R^{1} & H & H \\ & & & \\ R^{2} & R^{3} & R^{4} & R^{1} & R^{2} & R^{3} \end{array}$
2a	Wittig Reaction	20	B^{1} B^{2} B^{3} H Hal	P(Ph) ₃ , Base	$R^3 H$ $R^1 R^2$
2b	Wittig Reaction (catalytic)	21	$R^2 \rightarrow Br \qquad O = R^3$	Phospholane oxide (10%), Diphenylsilane	$ \begin{array}{ccc} R^2 & R^3 \\ \searrow = & & \\ R^1 \end{array} $
3	Carbene Dimerisation.	22	$B^1 \xrightarrow{O} B^2$	PBr ₃ , Zn	$R^1_{uv}R^2$ $B^1_{B^2}$
4a	Barton-Kellogg's extrusion process	23	$R^1 \xrightarrow{O} R^2$	N_2H_4 , S-source, oxidant	$R^1 R^2$ $R^1_{uvr} R^2$ $R^1 R^2$
4b	Barton-Kellogg's extrusion process (asymmetric variant)	24	$\mathbf{R}^{1} \qquad \mathbf{R}^{2}$ and \mathbf{Q}^{2}	N_2H_4 , S-source ^[c] , oxidant	R^3
5a-g	McMurry Coupling	25-29 30 31	$R^{3} \xrightarrow{\mu} R^{4}$ O $R^{1} \xrightarrow{\mu} R^{2}$	TiCl _n or Ti reductant (e.g. Li)	$R^{1}_{u_{u_{u_{v}}}}R^{2}$ $R^{1} R^{2}$
6	Claisen rearrangement	32	$R^{1} \stackrel{\text{Cl}}{\longrightarrow} R^{2} \stackrel{R^{3}}{\longrightarrow} O \stackrel{\text{Cl}}{\longrightarrow} O$	R ³ _{R³} Mg oʻ→	O R ³
7	Alkylation – elimination process	33 34	$\begin{array}{ccc} R^{1}-Li & R^{2} \\ R^{1}-Li & O \rightleftharpoons & \\ HOD & R^{3} \end{array}$	Lithium amide, MnCl ₂	$ \begin{array}{ccc} R^1 & R^2 \\ R^1 & R^2 \\ \searrow = & \swarrow \\ R^1 & R^3 \end{array} $
8	Suzuki-Miyaura (Zhou, Larock)	35	$\begin{array}{c} HCBr_3 \\ R^1 \\ Br & Br \\ \end{array} \begin{array}{c} R^1 \\ R^2 \end{array} = \begin{array}{c} R^1 \\ R^2 \end{array}$	$-R^3$ Mg, B(OX) ₃ , Pd(OAc) ₂ , mol. sieves	$R^1 = R^1$ $R^2 = R^3$
9	Hydroarylation ^[n]	36	R ¹ Br R ²	$-R^3$ Mg, B(OX) ₃ , Pd(OAc) ₂ , mol. sieves CuOAc	R^1 R^1 R^2 R^3
10	Arylzincation	37	Ar ² ^{Br} R ¹ (+ E (Ele		$ \begin{array}{c} R^{1} \\ \searrow \\ Ar^{2} \\ \end{pmatrix} $
				Zn, LiCl	$ \begin{pmatrix} H' & H' \\ Ar^2 & E \end{pmatrix} $

Table S 1 Method specific auxiliary materials of syntheses according to Table 1. For a full presentation of all synthetic steps and reaction detailssee ESI Table S 7 and Table S 8.

			Ar ³ ^{Br}	R ¹	`	$ \begin{array}{c} R^{1} \\ Ar^{3} \\ \begin{pmatrix} R^{1} \\ Ar^{3} \\ Ar^{3} \\ E \end{array} $	$ \begin{array}{c} R^{1} \\ Ar^{3} \\ \begin{pmatrix} R^{1} \\ E \\ E \\ Ar^{3} \end{pmatrix} $
11	Method of Coupling by Negishi	38	R¹∖ Br R² ^{.Br}	$o \stackrel{R^3}{\prec}_{H}$	CCl ₄ , N ₂ H ₅ OH, Zn, Mg	$ \begin{array}{c} R^1 & R^3 \\ $, , , , , , , , , , , , , , , , , , ,
12	Shapiro ^[p]	39	$ \begin{array}{c} $	Alk ³ Br	2,4,6-Triisopropylbenzene- sulfonylhydrazide, sec BuLi	R^{1}	
13	Peterson ^[q]	40	$R^1 \rightarrow 0 \qquad Q = R^3$ $R^2 \qquad CI$	Li R ⁴	PhMe ₂ SiCl, CCl ₄ , PPh ₃ , Mg, CuBr·Me ₂ S, p-TsOH	$R^1 \xrightarrow{R^3} R^3$ $R^2 \xrightarrow{R^4}$	
14	Julia-Lythgoe	41	$ \begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ O = \begin{pmatrix} R^{3} \\ R^{4} \end{pmatrix} $		LDA, BzCl, N,N- dimethylaminopropanol, SmI ₂ , HMPA	$ \begin{array}{c} R^1 & R^3 \\ \searrow & R^2 \\ R^2 & R^4 \end{array} $	
15	Thiolester conversion	42		$O = \overset{R^3}{\underset{R^4}{\leftarrow}}$	Pyridine, BuLi, Diisopropylamine, silica gel	$\begin{array}{c} R^1 \\ \searrow \\ R^2 \\ R^4 \end{array}$	
16	Heck	43	Cl Ar	$R^2 R^3$	$Pd(\overline{P(t-Bu)_3})_2, Cy_2NMe$	$Ar R^2 R^3$	
17	Heck	44	$\begin{array}{ccc} Ar^2 & Ar^3 \\ I & I & Ar^3 \\ Ar^1 & Br & Ar^4 \end{array}$	Br	2xMg (Grignard), Mercaptopyrimidine, TsCN, Pd(PPh ₃) ₄ , DDQ, Pd ₂ (dba) ₃	$Ar^2 \rightarrow Ar^3$ $Ar^1 \rightarrow Ar^4$	
18	Arylmagnesiation of Aryl(alkyl)acetylenes	45	I_Ar ² Ar ³ _Br	R ¹ -==	Mg (Grignard), Pd(PPh ₃) ₄ , Et ₃ N, Fe(acac) ₃	R^1 Ar^2 Ar^2	
19a	Coupling of Vinylbromides (Suzuki)	46,47	Ar ¹ Ar ²	(HO) ₂ B _{Ar³}	Br ₂ , Base		
19b	Coupling of Vinylbromides (Suzuki)	46-48	Ar ¹ Hal $O > Ar^2$ Stilbene intermediate via e.g. ²⁰ or ⁵⁶	Hal _{\Ar³}	P(OEt)3, Br ₂ , Base, Mg, B(OX) ₃ ^[d]	Ar^{2} Ar^{1} Ar^{2} Ar^{3}	
19c	Coupling of Vinylbromides (Suzuki)	46-49	Ar ¹ Hal $O > Ar^2$ Stilbene intermediate via e.g. ²⁰ or ⁵⁶	Hal _{Ar³}	P(OEt)3, HBr, Base, Mg, B(OX) ₃	$\operatorname{Ar}^{1}_{\operatorname{Ar}^{2}}_{\operatorname{Ar}^{3}}$	

20	Coupling of Vinylbromides (Negishi)	46,47	Ar^{1} Hal $O_{>>}Ar^{2}$ Stilbene intermediate via e.g. 20 or 56	Hal _N R	Br ₂ , Base, ZnCl ₂ , Pd-cat	Ar ¹	
21	Ynolate conversion (Shindo)	50	R^{1} C R^{2} Hal	O≓ R ³	Br + Br c c , two Li-comp. ^{[e][f]}		
22	Opening of cyclopropenes (Wang)	9 [g] (⁵¹⁻⁵⁴)	$R^{1} \longrightarrow EWG$ R^{2}	$3 ^{\text{Hal}_{R^3}}$	Al	R^{1} O EWG R^{2} R^{3}	
23	Allylation of Alkenylalanes	55	R ¹ R ² R ^{2-AI} .R ²	$(R^3 = allyl)$	$(\eta^5-C_5H_5)_2ZrCl_2, Pd(Ph_3P)_4$	$[1] \\ R^{1} \xrightarrow{R^{3}} R^{2}$	
24	Organozinc reagents and carbonyl compounds (Wang)	56	Ar ¹ Br	O≓ ⟨	Zn; Me ₃ SiCl ^[h]	Ar ¹	
25	Cross-coupling of alkenylcarboxylates with Grignard reagents	57	$R^1 = R^2$ mostly	R ³ CIMg	NaH, Pivalic acid, FeCl ₂ , 1,3-bis(2,4,6- trimethylphenyl)imidazolinium chloride	$[0]$ R^{3} R^{1} R^{2}	
26	Three component reaction (Li)	58	cyclic H^{1} R^{1} R^{2} R^{2} R^{2}	Ar ² H	AgNO ₃ , FeCl ₃ , Tf ₂ O	$\begin{array}{c} Ar^2 \\ Ar^1 \\ Ar^1 \\ R^1 \end{array} \\ R^2$	$\begin{array}{c} Ar^1 \\ Ar^2 \\ Ar^2 \\ R^1 \end{array} \\ R^2 \\ R^1 \\ R^2 \\ $
27	Alkylative or Arylative Carboxylation of Alkynes	59,60	R ¹ CO ₂	Hal _{\R²}	Zn, Ni(COD) ₂ ^[j] , DBU ^[k]	R ¹ R ² CO ₂ H	
28	Olefin Metathesis ^[b]	61	$R^1 R^2$ $R^3 R^4$	R ⁵ R ⁶ R ⁷ R ⁸	e.g. Grubbs catalyst	$ \begin{array}{c} \mathbf{R}^{1} \mathbf{R}^{6} \\ \searrow = \mathbf{\xi}^{2} \\ \mathbf{R}^{2} \mathbf{R}^{5} \\ \mathbf{R}^{3} \mathbf{R}^{7} \\ \searrow = \mathbf{\xi}^{2} \\ \swarrow = \mathbf{\xi}^{2} \\ \blacksquare \\ \blacksquare$	$ \begin{array}{c} R^{1} \qquad R^{7} \\ \searrow = \xi \\ R^{2} \qquad R^{8} \\ R^{3} \qquad R^{5} \\ \searrow = \xi \\ & & & & \\ \end{array} $
29a-d	Geminal dihalides	62-65	Ar—(R	CX ₄ (X = halogen)	Hydrazinium hydroxide or PPh ₃	$ \begin{array}{cccc} R^4 & R^8 \\ X & & \\ Ar & & \\ R & & \\ R \end{array} $	R ⁴ R ⁶

^[a] Yield and atom economy^{79,80} in chosen examples (for details see ESI Table S 7 and Table S 8)
 ^[b] Usually substrates are chosen so that one product is obtained. For an *Organic Syntheses* protocol for a ring-closing metathesis see the literature. ^{175,176}
 ^[c] Lawesson's reagent^{177,178}
 ^[d] For a review of such compounds see the literature. ^{179,180}
 ^[e] Lithiumorganyles such as butyllithium can be omitted in the synthesis of lithium diisopropylamide.¹⁸¹

^[f] Instead of tert.-butyllithium a catalytic procedure using lithium naphthalenide can be used for larger scale.¹⁸² ^[g] Malonic acid esters undergo decarbalkoxylations ^{183,184} so that trisubstituted β , γ – unsaturated acid derivatives should be producible. ^[h] They used quite a large amount of Me₃SiCl as a catalyst. Recently Peng et al. applied AlCl₃ producing 17% less yield. ¹⁸⁵

^[i] At least one of R^1 and R^2 is an aryl compound.

^[j] For further applications of nickel in alkene synthesis see the literature. ^{186,187}

^[k] For a review concerning bicyclic amidines as reagents in organic syntheses see the literature. ¹⁸⁸

^[1] If desired, decarboxylation is possible. Internal alkynes deliver alkenes with tetrasubstituted double bond. However, asymmetric internal alkynes result in the formation of regioisomers. For another α -diazoester utilization see the literature.¹⁸⁹

^[m] Rounded values. The underlying data are given in ESI Table S 3 and ESI Table S 4.

^[n] Considered yield is 77%. However, yield of other reactions is up to 94%. ^[o] According to another protocol¹⁹⁰ R³ can be a carboxylic substituent.

^[p] The application of hydrazones can also be found in other methodologies. ^{191-194 195 196,197}

^[q] Four *Organic Syntheses* protocols: a) other copper complex applications consider an alkyne as substrate¹⁹⁸, deliver alkenols¹⁹⁹ and enable a stereoselective isoprenoid chain extension.²⁰⁰ b) Current applications using silicon compounds use e.g. organosilanols.^{201,202}

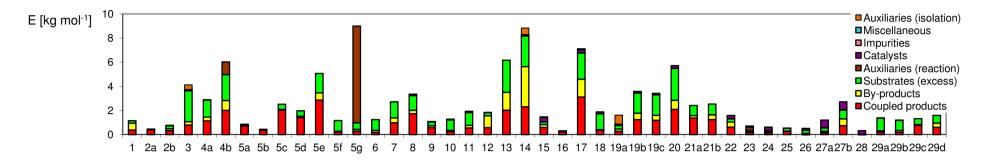
Table S 2 Overview of trisubstituted (one R=H) and tetrasubstituted ($R \neq H$) alkenes and stilbenes. (Commentary: although not all entries in this table were noted completely during its preparation, the information we collected should still be made available.)

Design of rests R^1 to R^4 according to	according to	R= H	R≠ H	entry or refe- rence	Yield [%]		Stereo- selec- tivity	Regio- selec- tivity	Constraints / Commentary
Scheme 1	(a common numbering (see Table 2))					kind of alkene i.e. of rests		E/Z	Group R^1 can be any alkyl-, cycloalkyl- or aryl group but $R^1 = C(CH_3)_3$ cannot be prepared by any method
$ \begin{array}{c} R^{1} = R^{2} = R^{3} = R^{4} \\ R^{1} \\ R^{1} \\ R^{1} \\ R^{1} \end{array} $				5a-g	80	any alkyl or aryl	-	-	McMurry reaction
			х	3	52	adamantylidene- adamantane	-	-	Carbene dimensiation ^[d]
			Х	4a	50	adamantylidene- adamantane	-	-	Another type of Barton-Kellogg reaction in entry 4b
					25	Tetramesityl- ethylene			Carbene dimerization starting from dimesitylcarbene

R ¹ =R ² =R ³	$R^1 \rightarrow R^1$ $R^1 \rightarrow R^2$		-	x	101 203 204	84 80	aryl R1=CH ₃ , R2= aryl R1=C(CH ₃) ₃ , R2=CH ₃	- good moderate to good	- E only E only	Other McMurry reactions in entries 5a-e Coupling of vinyl bromides with "Tedicyp", Elimination of water from alcohols or hydrogen halides from alkyl halides
$R^1 = R^2$ $R^3 \neq R^4$	$ \begin{array}{ccc} \mathbf{R}^{1} & \mathbf{R}^{3} \\ & \searrow = \xi \\ \mathbf{R}^{1} & \mathbf{R}^{4} \end{array} $	$\langle \cdot \rangle = \xi^{1}$		х	7		alkyl			
			/ x		101	20	aryl	cross-	-	Other McMurry reactions in entries 5a-e
			х		205	51-91	R1=aryl, R2=vinyl, R3=	coupling moderate		Coupling via iodide template
			х		206	50-70	subst. vinyl R1=COOR, R2=alky, R3= aryl	good		Coupling by a modified Knoevennagel condensation
$R^{1}=R^{2}$ $R^{3}=R^{4}$ [a]	$ \begin{array}{c} $			-						
			x	-	28		cycloalkyl	n.s.	trans preferr ed	
			х		207	71-80	R1=alkyl,	very		Horner-Wadsworth-Emmons Reaction
				х	4b	32	R2=aryl Aryl	good		Another Barton-Kellogg reaction in entry 4a

$R^{1}=R^{3} \text{ or } =R^{4}$ $R^{2}\neq R^{3} \text{ or } \neq R^{4}$	R^1 $\geq R^2$	R ¹ ={ 8 R ^{3/4}	$\begin{pmatrix} R^1 & R \\ \end{pmatrix} = \begin{cases} R^2 & R \end{cases}$	1 ×	x x	208		aryl	-	1:2.3	Other Negishi-Coupling see 20
				×	X [^[C]	8 10		aryl aryl, alkyl	- regioiso- mers (position of R ² and R ⁴), e.g. 55:45 or 99:1	cis	
					х		28-88	Alkyl- and carbomethoxy, R1=CH3	<i>))</i> .1	99.5/0. 5	Carbocupration of alkynoates
				X	(210	52-89	Alkyl and carbomethoxy, R1=CH3		4/6	Organocuprate addition acetylenic esters.
				×			31-65	R1=phenyl,R2= COOR, R3=alkyl	high	Z-only	Carbozirconation of acetylene derivatives
				×		212	62-73 64-72	2 phenyls (E), special aryls, ethyl, Tamoxifen-type alkenes R1=CH3, R2=vinyl, R3=phenylethyl	high	95/5	Carbolithiation of diphenylacetylene Peterson olefination, only for special cases
$R^{1}=R^{3} \text{ or } =R^{4}$ $R^{2}=R^{4} \text{ or } =R^{3}$ $[a]$		R¹ ≕ર્ડ R²		х	(214	90	R1=alkyl, R2=aryl	good	Z iso- mers only	
	11			×	(66	60-80	R1=alkyl1, R2=alkyl2		mix- tures	McMurry coupling of asymmetric ketones

$1 \text{ rests are} \qquad \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$	R ³	х	1	36	alkly	regioisom ers		
R ²	R^4	х	2	86	aryl, alkyl		n.s.	
	-	X	101		aryl	cross- coupling	n.s.	Other McMurry reactions in entries 5a-e
	Х	-	28	99	cycloalkyl	n.s.	trans	
	Х	-	11	67	aryl, alkyl		E>98%	
	Х	х	14	22			97:3	
	Х	х	17	29	aryl	Full selectivit y control	>93%	
	Х	[b]	18	91	aryl, alkyl	1% regio- isomer	89:11	
	X	[c]	10	82	aryl, alkyl	regioisom ers (position of R^2 and R^4), e.g. 55:45 or 99:1		
	Х		2b	77	aryl, alkyl		83:17	
	Х		19	42-68	Aryl		Ζ	
		Х	21	64-69	Alkyl, Carboxyl	normally R^1 will be R^3	99:1	
	X		22	42, 52- 92	Alkyl or aryl	5:1 to 10:1 regio- meric ratio	E	
	Х		24	76	2xAryl, alkyl		Е	
	Х		26	82	2xAryl, alkyl		>93:7	
	X		27	79	alkyl, carboxyl		E or Z	
	X		6	60.7	Alkyl, ester		Е	
	X		16	95	Aryl, alkyl, (carboxyl)		E:Z>20: 1	


х		9	77-97	Aryl, alkyl, ester		syn	
х		12	38.7	Alkyl	mixtures	mixtur es	
х		23	83	Allyl, Alkenyl	High to mixtures	Partly >98%	
х		25	94	Alkyl	High	2000	
х	х	15	68	Alkyl	Medium to High (by- products identified)		
х	Х	13	32	Alkyl	high		
х	Х	215		Aryl, fluor		Up to 97/3	
х		216	78-92	R1= aryl, R2=CH3, R3=COOR,	low	mixtur es	One-pot route from alkynes
х	х	217 210	80	,			Carbocupranation of alkynyl acetals
(x)	X	218 219 220 221 222	ca. 60	n-Alkyl,aryl			Addition of borontrialkyls to alkynes
х		223	52-95	n-alkyl, phenyl, NHR-group			Addition of imines and organoboranes, (Ni- catalysis)
х	х	224	36-73	n-alkyl, phenyl	high		Addition of acylstannanes to alkynes
X		225 226	86-92	Alkyl, 2- hydroxalky, aryl	high		Carbomagnesation of proparggylic alkynes
		227	82-91	Phenyl, n-alkyl, -COR, CHOHa	High	Varies, Z is pre- ferred	Carbozincation of alkynes by Cu[i] catalysis
		228	Ca. 85	Various substituents	high	leneu	Alkylative carboxylation of alkynes, (Ni-catalysis), tamoxifen 36% in 8 steps
		229	66-97	R1and R2, five- and six membered rings	Low, mixtur		Trans-selective addition of organoboron reagents to alkynes (Pd-cat.); 1 step
		230	81	R1=CH3, R"=aryl, R3=COOR,	low		Hydropalladation-transmetallation of allenes; 4 steps
		231	ca. 72	R4=n-alkyl 3 different aryls, R4=ethyl,Tamo xifen	Very high		three component coupling of aryl iodides, alkynes and aryl boronic acids
							00

	232-236	15-69	5-membered	high		
	237	60-67	cyclic enones 5-membered lactones			Coupling of cyclic dichloroenones,
Х	238	26-92	R1=alkyl, R2=aryl1, R3=aryl2, R4=aryl3		good	Coupling of gem-dibromoalkenes
	239 240	80-85	R4=ary 13 R1=ethyl, R2=ary 11 ,R3=ar y 12 , R4=ary 14		good	Coupling of gem dibromo alkenes via gem boron compounds,
	241	43-61	R1=alkyl, R2=aryl1,R3=ar yl2, R4=COOR		Moder ate, mixtur	Coupling of 2,3-dibromoalkenoates; side products
	242 243	75-95	R1=CF3, R2=alkyl, R3=1- hydroxyalkyl, R4=aryl		good	Carbolithiation of trifluoromethylenolethers
	244	21-72	four different aryl groups		good	Carbomagnesation of alkynyl(2pyridyl)silanes

^[a] Consider also those entries that have been allocated to the alkene derivative not showing 2 + 2 but only 2 different rests. It should also be possible to apply these methods here.

^[b] Instead of quenching with water, the intermediate alkenyl magnesium reagent may also be versatile to produce alkenes with tetrasubstituted double bond. ^[c] Instead of quenching with water, with $Pd_2(dba)_3$ (2.5mol%) PPh₃ (10mol%) and ArI (4equiv) alkenes with tetrasubstituted double bond can be synthesized.

^[d] Carbene-Dimerization does only work if there are no hydrogen atoms in gamma postion! Otherwise, the carbene prefers C-H insertions to give the cyclopropyl derivative. Dimesityl carbene, formed from the photolysis of the diazo compound give tetramesitylethylene ²⁴⁵

Figure S 1b Environmental factor related to 1 mol of product of some alkene syntheses (Table 2), determined⁷² according to the literature. Its relation to 1 kg can be found in Figure 1. The underlying data are given in ESI Table S 3 and ESI Table S 4. Quantities of solvents, salts, acids and bases are not shown in the columns, but as numbers in the table below Figure 1. Auxiliary materials such as salts (e.g. brine), acids and bases (e.g. hydrochloric acid) are also detailed listed separately (see ESI Table S 5). The solvent applications are given in ESI Table S 9. Assumptions made are presented in ESI Table S 10. Work-up procedures, which were not described quantitatively in literature and had to be omitted, are listed in ESI Table S 11. Reaction equations and conditions are shown in ESI Table S 7 and Table S 8.

Table S 3 Data related to Figure 1

Entry: Category:	1	2a	2b	3	4a	4b	5a	5b	5c	5d	5e	5f	5g	6	7	8
Coupled products	2.7315	2.0008	1.8966	2.9381	4.2515	5.8401	2.6867	1.3546	7.6221	5.297	17.4401	0.7329	0.8672	1.0206	4.3625	5.5669
By-products	4.1639	0.3515	0.8652	1.0668	1.1876	2.3824	0.229	0.229	0.1283	0.4098	3.6581	0.1106	0.4668	0.7763	1.8705	0.8785
Substrates (excess)	1.4917		1.422	9.57	5.2315	6.2214	0.313	0.0416	1.6281	1.6494	9.7754	2.6477	1.6347	4.5264	5.9046	3.919
Auxiliaries (reaction)	0	0	0	0	0	3.0524	0	0	0	0	0	0	24.4402	0	0	0
Catalysts			0.1431	0.3651	0.0007											0.4045
Impurities																
Miscellaneous	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auxiliaries (isolation)	0	0	0	1.4298	0	0	0	0	0	0	0	0	0	0	0	0
E-factor	8.3871	2.3523	4.3269	15.3698	10.6713	17.4963	3.2287	1.6252	9.3785	7.3562	30.8736	3.4912	27.4089	6.3233	12.1376	10.7689

Continu	ied:														
9	10	11	12	13	14	15	16	17	18	19a	19b	19c	20	21a	21b
2.1967	1.0297	2.4381	2.9941	11.1398	12.8103	3.0122	1.0619	7.8969	1.4001	1.0454	4.592	4.3901	10.0849	8.0078	7.246
0.5827	0.4456	0.8696	5.1527	8.0672	18.5063	1.2596	0.1085	3.7631	0.1439	0.647	1.9646	1.5229	3.6317	1.1415	2.2953
1.1678	3.5027	4.648	1.329	14.6563	14.0481	1.1401	0.1722	5.4928	5.0054	1.0929	6.2199	6.2896	12.6834	4.8348	5.164
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.1183	0.31245	0.4589			0.6273	1.8712	0.0738	0.6727	0.5114	0.4515	0.4953	0.4504	1.0832		
0	0	0	0	0	0	0	0	0.2066	0	0	0	0	0	0	0
0	0	0	0.199	0	3.0576	0.2705	0	0	0	2.7702	0	0	0	0	0
4.0655	5.29045	8.4146	9.6748	33.8633	49.0496	7.5536	1.4164	18.0321	7.0608	6.007	13.2718	12.653	27.4832	13.9841	14.7053

Continu	ied:										
22	23	24	25	26	27a	27b	28	29a	29b	29c	29d
2.2494	0.8095	0.7791	1.2145	0.0464	0.5476	2.4923	0.1116	0.9613	1.1965	2.9728	3.2687
1.5432	0.3706	0.5345	0.1088	0.2297	0.3997	1.9548	0.0112	0.449	0.7718	0.2292	1.8295
0.9642	0.6564	0.2358	1.1502	0.6663	0.9139	2.4451		4.7514	4.8494	1.8414	3.4126
0	1.1823	0.0345	0	0	0.0388	0.0388	0	0	0	0	0
1.0207	0.4817	1.4237	0.0393	0.3876	2.1727	2.2423	1.0729	0.052	0.1546		
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
5.7775	3.5005	3.0076	2.5128	1.33	4.0727	9.1733	1.1957	6.2137	6.9723	5.0434	8.5108

Table S 4 Data related to Figure S 1b (see this ESI)

Entry: Category:	1	2a	2b	3	4a	4b	5a	5b	5c	5d	5e	5f	5g	6	7	8
Coupled products	0.377	0.389	0.334	0.789	1.141	2.012	0.721	0.364	2.046	1.422	2.865	0.244	0.285	0.200	0.979	1.739
By-products	0.575	0.068	0.152	0.286	0.319	0.821	0.061	0.061	0.034	0.110	0.601	0.037	0.153	0.152	0.420	0.274
Substrates (excess)	0.206		0.251	2.569	1.404	2.143	0.084	0.011	0.437	0.443	1.606	0.880	0.537	0.888	1.325	1.224
Auxiliaries (reaction)						1.051							8.026			
Catalysts			0.025	0.098	0.000											0.126
Impurities																
Miscellaneous Auxiliaries (isolation)				0.384												
Sum:	1.159	0.457	0.762	4.126	2.865	6.027	0.867	0.436	2.518	1.975	5.072	1.161	9.001	1.240	2.724	3.365
Continued:																
0 10	4	4	10	10	14	15	1/	1.5	4	0	10	101	10	20	A1	

9	10	11	12	13	14	15	16	17	18	19a	19b	19c	20	21a	21b
0.585	0.252	0.562	0.576	2.031	2.310	0.592	0.232	3.115	0.373	0.283	1.242	1.187	2.101	1.380	1.248
0.155	0.109	0.200	0.991	1.471	3.337	0.247	0.024	1.484	0.038	0.175	0.531	0.412	0.756	0.197	0.395
0.311	0.856	1.071	0.256	2.673	2.533	0.224	0.038	2.167	1.333	0.295	1.682	1.701	2.642	0.833	0.890
0.032	0.076	0.106			0.113	0.367	0.016	0.265	0.136	0.122	0.134	0.122	0.226		
								0.081							
			0.038		0.551	0.053				0.749					
1.083	1.293	1.939	1.861	6.175	8.845	1.483	0.309	7.113	1.881	1.624	3.588	3.421	5.725	2.409	2.534

Continu	Continued:														
22	23	24	25	26	27a	27b	28	29a	29b	29c	29d	•			
0.622	0.165	0.162	0.260	0.018	0.162	0.739	0.031	0.213	0.207	0.779	0.611	-			
0.426	0.076	0.111	0.023	0.089	0.118	0.579	0.003	0.099	0.134	0.060	0.342				
0.266	0.134	0.049	0.247	0.259	0.271	0.725		1.052	0.839	0.482	0.638				
	0.242	0.007			0.011	0.011									
0.282	0.098	0.297	0.008	0.151	0.644	0.664	0.300	0.012	0.027						

1.596 0.715 0.626 0.539 0.517 1.207 2.718 0.334 1.376 1.206 1.321 1.592

Addi	Additional information: Molecular weights of the products in [g mol ⁻¹]															
	1	2a	2b	3	4a	4b	5a	5b	5c	5d	5e	5f	5g	6	7	8
Entry: MW	138.14	194.27	176.21	268.44	268.44	344.45	268.44	268.44	268.44	268.44	164.29	332.44	328.41	196.15	224.43	312.45
Entry:	9	10	11	12	13	14	15	16	17	18	19a	19b	19c	20	21a	21b
MW	266.339	244.41	230.39	192.34	182.35	180.33	196.3752	218.13	394.48	266.38	270.37	270.37	270.37	208.3	172.3	172.3
Entry:	22	23	24	25	26	27a	27b	28	29a	29b	29c	29d	-			
MW	276.33	204.35	208.3	214.35	388.54	296.32	296.32	279.4	221.51	173.041	261.94	187.07				

Molecular weight (MW) of the product is the factor between Figure S 1b and Figure 1, i.e. Figure S $1b = Figure 1 \cdot MW(product)$.

Example: the coupled product mass of entry 1 in Table S 3 is $2.7315 \text{ kg kg}^{-1}$. The multiplication with the molecular mass....

$$2.7315 \text{ kg kg}^{-1} \cdot 138.14 \frac{\text{g}}{\text{mol}} \text{ means } \frac{2.7315 \text{ kg coupled product}}{1 \text{ kg product}} \cdot 138.14 \frac{\text{g}}{\text{mol}} = \frac{2.7315 \text{ kg coupled product}}{1000 \text{ g product}} \cdot \frac{138.14 \text{ g}}{\text{mol}} = \frac{2.7315 \text{ kg coupled product}}{1000 \text{ g product}} \cdot \frac{138.14 \text{ g}}{\text{mol}} = \frac{0.377 \text{ kg coupled product}}{\text{mol product}} = 0.377 \text{ kg mol}^{-1}$$

... results in the value given in Table S 4.

Table S 5 Supporting information for Figure 1: neat substances and their amounts [kg / kg product] in aqueous solutions. No water amounts are indicated here!

entry	1- 4a		4b		6a	5b	C	5d	5e	5f 5	g	6		7	8	
Substance	S	(5.1451 Ammon chloride	ium (aq,	carbona), Potassium te (10%)	1 -			Copper sulfate		(aq, cor chloride	ic acid (0.0) ic.) (0.2692 (aq, conc.)), Sodium (0.8085),		Molecula (4 A) (3.2 Sodium o	2005), chlorid
naterial)	-	conc.) (14.2494)	(1.8407))		Florisil	(4.8055)	(0.9623)		Hydroch	nloric acid (5%) (0.197	78) -	(84.1981)
9		10	1	1	12	Ammo	13 nium chlor	ide (6.8195	5 Hydro	chloric ac	14 id (aq, 1 M)	(7.1393), 5	Sodium	Hydroch	15 loric acid (1	.0061
lydrochlor cid (5%) 0.1046)	ic Amm chlori (7.61		Hydroch acid (aq (7.2741)	, 1 M)	Hydrochlori acid (1M) (0.199)	carbo	045), Sodiu nate (7.002 de (6.9636+	5), Sodium	en chlorio 1 conc.)	de (50.305 (87.5776	55), Ammon), Sodium tl e (aq, conc.)	ium chlorid niosulfate (3	e (aq,		chloride 2.3724), So te (2.7053)	dium
16		17	(1 5000)	18	19a			19b		(0.1) D		19c			20	
odium 1loride I.0273)	Ammoni iodide (0	um chlorid a (3.0988)).5284), Sc le (0.3963)	, Copper dium	_	Sodium chle (10.2424), 5 hydroxide (1.5572)	Sodium S	Potassium H Sodium chlo Sodium chlo nydroxide (1	oride (brine oride (10.24) (2.3278)	, So um So	otassium hy odium chlori odium chlori odroxide (1.5	de (brine) (de (10.242	2.3278),	(10%)	sium hydro (0.6062), 3 de (brine) 93)	
		21a			21b						22	23		24 25		
odium chi odium hy	oride (2.90 droxide (1	bonate (ac)81), Magn M) (1.4419	esium sulfa), Sodium	ate (0.4422 chloride (a	Sodiur 2), Sodiur q, Sodiur	n chloride n hydroxid	n carbonate (2.9081), N e (1 M) (0.7	lagnesium 7209), Sodi	sulfate (0. ium chloric	4422),	Rochelle salt (aq)	Hydrochl ric acid	chlori	o- So (0.5 de chl	dium hydro 5207),Sodiu oride	ım
onc.) (4.7	419), Magr	nesium sult	ate (0.600	8)	conc.)	(4.7419),	Magnesium	sulfate (0.	6008)		(42.2198)	(1.1823)	(1.409	94) (2.6	6091+2.557	")
'a 271	b	28	29a			29b		29c	29d							
Su	furic acid nc.) (0.01)			loric acid	(2.7034),		loric acid (a	ıq, 1	0 0							
ahle	S 6 De	ata relat	ted to F	igure 2												
				U												
	1	2a	2b	3	4a	4b	5a	5b	5c	5d	5e	5f	5g	6	7	
				U	4a 2.156	4b 5.8021	5a 2.912	5b 1.5182	5c 9.1486	5d 6.8835	5e 12.5814	5f 4.4912	5g 3.9686	6 1.9231	7 3.5269	10
ep 1	1	2a	2b	3			2.912									
ep 1 ep 2	1	2a 2.2351	2b 0.1431	3 8.149	2.156	5.8021	2.912	1.5182	9.1486	6.8835	12.5814			1.9231	3.5269	0.
ep 1 ep 2 ep 3	1	2a 2.2351 0.13	2b 0.1431	3 8.149	2.156 0.1921	5.8021 3.2111	2.912	1.5182	9.1486	6.8835	12.5814 18.0605			1.9231	3.5269 4.5827	0.
ep 1 ep 2 ep 3 ep 4	1	2a 2.2351 0.13	2b 0.1431	3 8.149	2.156 0.1921 6.2243	5.8021 3.2111 3.6106	2.912	1.5182	9.1486	6.8835	12.5814 18.0605			1.9231	3.5269 4.5827	0.
ер 1 ер 2 ер 3 ер 4 ер 5	1	2a 2.2351 0.13	2b 0.1431	3 8.149	2.156 0.1921 6.2243	5.8021 3.2111 3.6106 [a]	2.912	1.5182	9.1486	6.8835	12.5814 18.0605			1.9231	3.5269 4.5827	0.
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6	1	2a 2.2351 0.13	2b 0.1431	3 8.149	2.156 0.1921 6.2243	5.8021 3.2111 3.6106 [a]	2.912	1.5182 1.3167	9.1486	6.8835	12.5814 18.0605			1.9231 5.4003	3.5269 4.5827	0.
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6 m :	1 9.387 9.387	2a 2.2351 0.13 0.9873	2b 0.1431 5.1839	3 8.149 6.4259	2.156 0.1921 6.2243 3.0981	5.8021 3.2111 3.6106 [a] 2.8202	2.912 1.3167	1.5182 1.3167	9.1486 1.2299	6.8835 1.4726	12.5814 18.0605 1.2317	4.4912	3.9686	1.9231 5.4003	3.5269 4.5827 5.028	0.
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6 m :	1 9.387 9.387	2a 2.2351 0.13 0.9873	2b 0.1431 5.1839	3 8.149 6.4259	2.156 0.1921 6.2243 3.0981	5.8021 3.2111 3.6106 [a] 2.8202	2.912 1.3167	1.5182 1.3167	9.1486 1.2299	6.8835 1.4726	12.5814 18.0605 1.2317	4.4912	3.9686	1.9231 5.4003	3.5269 4.5827 5.028	0.
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6 m: m: ntinued	1 9.387 9.387 9.387 1:	2a 2.2351 0.13 0.9873 3.3524	2b 0.1431 5.1839 5.327	3 8.149 6.4259 14.5749	2.156 0.1921 6.2243 3.0981 11.6705	5.8021 3.2111 3.6106 [a] 2.8202 15.444	2.912 1.3167 4.2287	1.5182 1.3167 2.8349	9.1486 1.2299 10.3785	6.8835 1.4726 8.3561	12.5814 18.0605 1.2317 31.8736	4.4912 4.4912	3.9686 3.9686	1.9231 5.4003 7.3234	3.5269 4.5827 5.028 13.1376	0.
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6 m: attinued 9 9416	1 9.387 9.387 9.387 1: 10	2a 2.2351 0.13 0.9873 3.3524 11	2b 0.1431 5.1839 5.327 12	3 8.149 6.4259 14.5749	2.156 0.1921 6.2243 3.0981 11.6705	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15	2.912 1.3167 4.2287 16	1.5182 1.3167 2.8349 17	9.1486 1.2299 10.3785 18	6.8835 1.4726 8.3561 19a	12.5814 18.0605 1.2317 31.8736 19b	4.4912 4.4912 19c	3.9686 3.9686 20	1.9231 5.4003 7.3234 21a	3.5269 4.5827 5.028 13.1376 21b	0.
ep 1 ep 2 ep 3 ep 4 ep 5 <u>ep 6</u> m : ntinued 9 .9416	1 9.387 9.387 9.387 1: 1: 5.0584	2a 2.2351 0.13 0.9873 3.3524 11 6.6571	2b 0.1431 5.1839 5.327 5.327 12 7.045	3 8.149 6.4259 14.5749 13 6.1524	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757	2.912 1.3167 4.2287 16	1.5182 1.3167 2.8349 17 3.1471	9.1486 1.2299 10.3785 18 5.7316	6.8835 1.4726 8.3561 19a 1.9272	12.5814 18.0605 1.2317 31.8736 19b 3.0716	4.4912 4.4912 4.4912 19c 2.6189	3.9686 3.9686 20 4.2085	1.9231 5.4003 7.3234 21a 2.0019	3.5269 4.5827 5.028 13.1376 21b 2.0019	0.
ep 1 ep 2 ep 3 ep 4 ep 5 <u>ep 6</u> m : ntinued 9 .9416	1 9.387 9.387 9.387 1: 1: 5.0584	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266	2b 0.1431 5.1839 5.327 5.327 12 7.045	3 8.149 6.4259 14.5749 13 6.1524 11.3285	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733	2.912 1.3167 4.2287 16	1.5182 1.3167 2.8349 17 3.1471 1.1147	9.1486 1.2299 10.3785 18 5.7316 1.7436	6.8835 1.4726 8.3561 1.9272 1.2229	12.5814 18.0605 1.2317 31.8736 19b 3.0716 5.5846	4.4912 4.4912 19c 2.6189 4.7616	3.9686 3.9686 20 4.2085 7.6514	1.9231 5.4003 7.3234 21a 2.0019 2.0544	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544	0.
ep 1 ep 2 ep 3 ep 4 ep 5 <u>ep 6</u> m : ntinued 9 .9416	1 9.387 9.387 9.387 1: 1: 5.0584	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266	2b 0.1431 5.1839 5.327 5.327 12 7.045	3 8.149 6.4259 14.5749 13 6.1524 11.3285	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733	2.912 1.3167 4.2287 16	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216	9.1486 1.2299 10.3785 18 5.7316 1.7436	6.8835 1.4726 8.3561 1.9272 1.2229	12.5814 18.0605 1.2317 31.8736 39b 3.0716 5.5846 0.9427	4.4912 4.4912 4.4912 19c 2.6189 4.7616 1.6445	3.9686 3.9686 20 4.2085 7.6514 1.2916	1.9231 5.4003 7.3234 21a 2.0019 2.0544 3.9596	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596	0.
ep 1 ep 2 ep 3 ep 4 ep 5 <u>ep 6</u> ntinued 9 .9416	1 9.387 9.387 9.387 1: 1: 5.0584	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266	2b 0.1431 5.1839 5.327 5.327 12 7.045	3 8.149 6.4259 14.5749 13 6.1524 11.3285	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733	2.912 1.3167 4.2287 16	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304	9.1486 1.2299 10.3785 18 5.7316 1.7436	6.8835 1.4726 8.3561 1.9272 1.2229	12.5814 18.0605 1.2317 31.8736 39. 0716 5.5846 0.9427 1.2229	4.4912 4.4912 4.4912 2.6189 4.7616 1.6445 1.2229	3.9686 3.9686 20 4.2085 7.6514 1.2916 1.6755	1.9231 5.4003 7.3234 21a 2.0019 2.0544 3.9596 2.5843	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596	0. ⁻
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6 m : m : ntinued 9 .9416 .0056	1 9.387 9.387 9.387 1: 1: 5.0584	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266	2b 0.1431 5.1839 5.327 5.327 12 7.045	3 8.149 6.4259 14.5749 13 6.1524 11.3285	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705 4.0319	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733	2.912 1.3167 4.2287 16	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304	9.1486 1.2299 10.3785 18 5.7316 1.7436	6.8835 1.4726 8.3561 1.9272 1.2229	12.5814 18.0605 1.2317 31.8736 31.8736 19b 3.0716 5.5846 0.9427 1.2229 2.3493	4.4912 4.4912 4.4912 2.6189 4.7616 1.6445 1.2229 2.3493	3.9686 3.9686 20 4.2085 7.6514 1.2916 1.6755 5.7458	1.9231 5.4003 7.3234 2.0019 2.0544 3.9596 2.5843 0.9777	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596 7.6893	0.
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6 m: ntinueo 9 9416 .0056	1 9.387 9.387 1: 5.0584 0.9197 5.9781	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266 0.7922	2b 0.1431 5.1839 5.327 7.045 3.4308	3 8.149 6.4259 14.5749 13 6.1524 11.3285 18.7901	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705 4.0319 27.0495	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733 0	2.912 1.3167 4.2287 16 2.3426	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304 3.9388	9.1486 1.2299 10.3785 18 5.7316 1.7436 0.0743	6.8835 1.4726 8.3561 19a 1.9272 1.2229 0.6352	12.5814 18.0605 1.2317 31.8736 31.8736 3.0716 5.5846 0.9427 1.2229 2.3493 0.1683	4.4912 4.4912 2.6189 4.7616 1.6445 1.2229 2.3493 0.1683	3.9686 3.9686 4.2085 7.6514 1.2916 1.6755 5.7458 6.8272	1.9231 5.4003 7.3234 21a 2.0019 2.0544 3.9596 2.5843 0.9777 3.4064	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596 7.6893	0.
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6 	1 9.387 9.387 1: 5.0584 0.9197 5.9781	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266 0.7922	2b 0.1431 5.1839 5.327 5.327 7.045 3.4308 10.4758	3 8.149 6.4259 14.5749 13 6.1524 11.3285 18.7901	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705 4.0319 27.0495	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733 0	2.912 1.3167 4.2287 16 2.3426	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304 3.9388	9.1486 1.2299 10.3785 18 5.7316 1.7436 0.0743 7.5495	6.8835 1.4726 8.3561 19a 1.9272 1.2229 0.6352	12.5814 18.0605 1.2317 31.8736 31.8736 3.0716 5.5846 0.9427 1.2229 2.3493 0.1683	4.4912 4.4912 2.6189 4.7616 1.6445 1.2229 2.3493 0.1683	3.9686 3.9686 4.2085 7.6514 1.2916 1.6755 5.7458 6.8272	1.9231 5.4003 7.3234 21a 2.0019 2.0544 3.9596 2.5843 0.9777 3.4064 14.9843	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596 7.6893	0.
ep 1 ep 2 ep 3 ep 4 ep 5 e <u>p 6</u> 9 9 	1 9.387 9.387 1: 10 5.0584 0.9197 5.9781 1:	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266 0.7922 8.9759 24	2b 0.1431 5.1839 5.327 7.045 3.4308 10.4758	3 8.149 6.4259 14.5749 13 6.1524 11.3285 18.7901 36.271	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705 4.0319 27.0495 46.3647	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733 0 6.449	2.912 1.3167 4.2287 16 2.3426 2.3426	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304 3.9388 18.1526 28	9.1486 1.2299 10.3785 18 5.7316 1.7436 0.0743 7.5495	6.8835 1.4726 8.3561 19a 1.9272 1.2229 0.6352 3.7853	12.5814 18.0605 1.2317 31.8736 31.8736 3.0716 5.5846 0.9427 1.2229 2.3493 0.1683 13.3394	4.4912 4.4912 19c 2.6189 4.7616 1.6445 1.2229 2.3493 0.1683 12.7655	3.9686 3.9686 20 4.2085 7.6514 1.2916 1.6755 5.7458 6.8272 27.4	1.9231 5.4003 7.3234 2.0019 2.0544 3.9596 2.5843 0.9777 3.4064 14.9843	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596 7.6893	10. 0.: 0.!
ep 1 ep 2 ep 3 ep 4 ep 5 <u>ep 6</u> 9 3.9416 .0056 9 9 3.9416 9 9 3.9472 ntinueco 22 2.3258	1 9.387 9.387 1: 5.0584 0.9197 5.9781 1: 23	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266 0.7922 8.9759 24 2.54	2b 0.1431 5.1839 5.327 7.045 3.4308 10.4758 94 1.	3 8.149 6.4259 14.5749 13 6.1524 11.3285 18.7901 36.271 25	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705 4.0319 27.0495 46.3647	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733 0 0 6.449	2.912 1.3167 4.2287 16 2.3426 2.3426 2.3426	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304 3.9388 18.1526 288 280 1.12	9.1486 1.2299 10.3785 18 5.7316 1.7436 0.0743 7.5495 3 28 1.	6.8835 1.4726 8.3561 1.9272 1.2229 0.6352 3.7853 29a	12.5814 18.0605 1.2317 31.8736 30.716 5.5846 0.9427 1.2229 2.3493 0.1683 13.3394	4.4912 4.4912 2.6189 4.7616 1.6445 1.2229 2.3493 0.1683 12.7655 29c	3.9686 3.9686 20 4.2085 7.6514 1.2916 1.6755 5.7458 6.8272 27.4 29d	1.9231 5.4003 7.3234 2.0019 2.0544 3.9596 2.5843 0.9777 3.4064 14.9843	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596 7.6893	10. 0.: 0.!
ep 1 ep 2 ep 3 ep 4 ep 5 ep 6 	1 9.387 9.387 1: 10 5.0584 0.9197 5.9781 1: 23 1.3884	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266 0.7922 8.9759 24 2.54	2b 0.1431 5.1839 5.327 7.045 3.4308 10.4758 94 1.	3 8.149 6.4259 14.5749 13 6.1524 11.3285 18.7901 36.271 36.271 25 8003	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705 4.0319 27.0495 46.3647	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733 0 6.449 6.449 27a 2.1937	2.912 1.3167 4.2287 16 2.3426 2.3426 2.3426 2.3426 5.4229	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304 3.9388 18.1526 28 1.12	9.1486 1.2299 10.3785 18 5.7316 1.7436 0.0743 7.5495 3 28 1.	6.8835 1.4726 8.3561 1.9272 1.2229 0.6352 3.7853 29a 5369	12.5814 18.0605 1.2317 31.8736 30.716 5.5846 0.9427 1.2229 2.3493 0.1683 13.3394	4.4912 4.4912 19c 2.6189 4.7616 1.6445 1.2229 2.3493 0.1683 12.7655 29c 5.0386	3.9686 3.9686 20 4.2085 7.6514 1.2916 1.6755 5.7458 6.8272 27.4 29d	1.9231 5.4003 7.3234 2.0019 2.0544 3.9596 2.5843 0.9777 3.4064 14.9843	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596 7.6893	10. 0.: 0.!
ep 1 ep 2 ep 3 ep 4 ep 5 <u>ep 6</u> 	1 9.387 9.387 1: 10 5.0584 0.9197 5.9781 1: 23 1.3884	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266 0.7922 8.9759 24 2.54	2b 0.1431 5.1839 5.327 7.045 3.4308 10.4758 94 1.	3 8.149 6.4259 14.5749 13 6.1524 11.3285 18.7901 36.271 36.271 25 8003	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705 4.0319 27.0495 46.3647	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733 0 6.449 6.449 27a 2.1937	2.912 1.3167 4.2287 16 2.3426 2.3426 2.3426 5.4229 1.7809	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304 3.9388 18.1526 28 1.12	9.1486 1.2299 10.3785 18 5.7316 1.7436 0.0743 7.5495 3 28 1.	6.8835 1.4726 8.3561 1.9272 1.2229 0.6352 3.7853 29a 5369	12.5814 18.0605 1.2317 31.8736 30.716 5.5846 0.9427 1.2229 2.3493 0.1683 13.3394	4.4912 4.4912 19c 2.6189 4.7616 1.6445 1.2229 2.3493 0.1683 12.7655 29c 5.0386 0.5547	3.9686 3.9686 20 4.2085 7.6514 1.2916 1.6755 5.7458 6.8272 27.4 29d	1.9231 5.4003 7.3234 2.0019 2.0544 3.9596 2.5843 0.9777 3.4064 14.9843	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596 7.6893	10. 0.7 0.5
ep 1 ep 2 ep 3 ep 4 ep 5 <u>ep 6</u> 	1 9.387 9.387 1: 10 5.0584 0.9197 5.9781 1: 23 1.3884	2a 2.2351 0.13 0.9873 3.3524 11 6.6571 1.5266 0.7922 8.9759 24 2.54	2b 0.1431 5.1839 5.327 7.045 3.4308 10.4758 94 1.	3 8.149 6.4259 14.5749 13 6.1524 11.3285 18.7901 36.271 36.271 25 8003	2.156 0.1921 6.2243 3.0981 11.6705 14 5.504 3.8248 3.484 2.4705 4.0319 27.0495 46.3647	5.8021 3.2111 3.6106 [a] 2.8202 15.444 15 2.9757 3.4733 0 6.449 6.449 27a 2.1937	2.912 1.3167 4.2287 16 2.3426 2.3426 2.3426 2.3426 5.4229 1.7809 2.1937	1.5182 1.3167 2.8349 17 3.1471 1.1147 5.2216 4.7304 3.9388 18.1526 28 1.12	9.1486 1.2299 10.3785 18 5.7316 1.7436 0.0743 7.5495 3 28 1.	6.8835 1.4726 8.3561 1.9272 1.2229 0.6352 3.7853 299 5369	12.5814 18.0605 1.2317 31.8736 30.716 5.5846 0.9427 1.2229 2.3493 0.1683 13.3394	4.4912 4.4912 19c 2.6189 4.7616 1.6445 1.2229 2.3493 0.1683 12.7655 29c 5.0386 0.5547	3.9686 3.9686 20 4.2085 7.6514 1.2916 1.6755 5.7458 6.8272 27.4 29d	1.9231 5.4003 7.3234 2.0019 2.0544 3.9596 2.5843 0.9777 3.4064 14.9843	3.5269 4.5827 5.028 13.1376 21b 2.0019 2.0544 3.9596 7.6893	10.0 0.7 0.5

No.	Method	Step	Reaction scheme	Ref.	Yield [%] (^[c])	AE ^[a] [%]	AE ^[b] [%]	Condi	tions
1	β-Elimi- nation of xanthates,		$HO^{V} \xrightarrow{\downarrow} + Na + \overset{S}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{$	19	65	62	62	reflux, i.e. 111°C reflux	32h 1h
	prepared from alcohols		$S = O^{(1)} + $	19	56 (36.4)	56.1	34.8	Reflux, 145- 155°C	6h
2a	Wittig	1	P + P + P + P + P + P + P + P + P + P	20	90	100	100	130°C	20h
		2	$\left[\swarrow \right]_{3}^{P^{+}} + Br' + NaH \longrightarrow \left[\swarrow \right]_{3}^{3} + NaBr + H_{2}$	20	100 ^[d]	73.5	73.5	80°C (nitrogen atm.)	45min +
		3	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	20	95 (85.5)	41.1	33.6	rt rt	10min 3h
2b	Wittig (catalytic)	1	$R_0 + H_2 \longrightarrow R_0$	21	100	100		rt, 20bar, 1mL/mi n	
		2	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	21	77	34.5		100°C	24h
3	Carbene Dimeri- sation	1	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & $	22	96	69.9	69.9	70°C	1h
	sation	2	$2 \xrightarrow{\text{Br}} \text{Br} + 2 \text{Zn} \xrightarrow{\text{Hr}} + 2 \text{Zn} \text{Br}_{2}[af]$	22	75 (72)	37.3	27.6	heating cooling in ice Reflux	few minutes 10 min

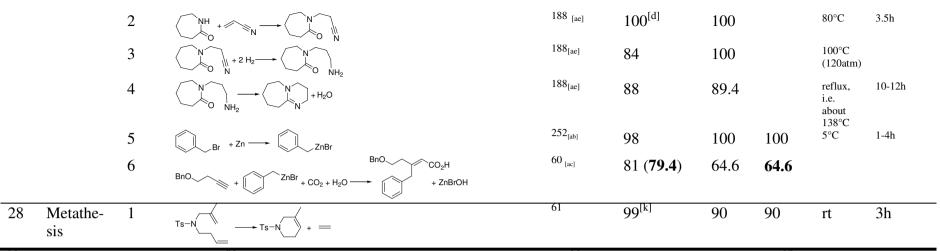
Table S 7 Selected methods for the preparation of alkens with tri- and tetrasubstituted double bond: yields, atom economies and reaction conditions. Detail information related to Table 1 and Table 2.

No.	Method	Step	Reaction scheme	Ref.	Yield	$AE^{[a]}$	AE ^[b]	Condi	tions
					$[\%]^{[c]}$	[%]	[%]		
4a	Barton- Kellogg's	1	$2 \qquad \qquad$	23	98	84.6	84.6	Reflux (i.e. 82°C)	12,75 h
	extrusion process	2	H H H	23	95	100	85.9	ambient temp.	12h
		3	$H H H + Fb(OAc)_4 \rightarrow Fb(OAc)_2 + CO_2 + CO_$	23	94	37.6	35.4	0°C ambient temp.	110min 8h
		4	$ \begin{array}{c} N=N \\ S \\ $	23	74 (64.8)	45.4	22.6	125°C- 130°C (nitrogen atm.)	12h
4b	Barton- Kellogg's	1	$ + N_2H_5OH \longrightarrow V_1-NH_2 + 2H_2O $	24	83	85.4	85.4 ^[n]	Reflux (i.e. 120°C)	3d
	extrusion process	2	$F_{3}C \xrightarrow{0} CF_{3} + H_{0} \xrightarrow{0} CF_{3} + H_{$	24	100 ^[d]	32.5	30.8 ^[n]	-30°C	allowed to warm to rt
		3	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & $	24	100 ^[d]	51.3	51.3 ^[n]	80°C (nitrogen atm.)	1.5h
		4	$ \begin{array}{c} -0 \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	24	48	93.1	35.6 ^[n]	see step2	see step2
		5	$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	24	81 (32.3)	53.9	26.1	Reflux (i.e. about 138°C)	3h
5a	McMurry	1	$TiCl_4 + 2 Zn \longrightarrow Ti + 2 ZnCl_2$	25[f]	100 ^[d]	14.9	14.9	0°C (inert	not spec.: dropping
	(variation using TiCl ₄ /Zn)	2	$2 + Ti \longrightarrow + TiO_2$	25	85 (85)	77.1	43.2	atm.) reflux (i.e. ≈66°C)	20h

No.	Method	Step	Reaction scheme	Ref.	Yield	AE ^[a]	$AE^{[b]}$	Condi	tions
					$[\%](^{[c]})$	[%]	[%]		
5b	McMurry	1	8 TiCl ₃ + 3 LiAlH ₄ \longrightarrow 8 Ti + 3 AlCl ₃ + 3 LiCl + 12 HCl ^[g]	26	$100^{[d]}$	28.4	28.4	nitrogen atm.	not spec.
	(variation using TiCl ₃ /LiAlH ₄)	2	$2 + Ti \longrightarrow + TiO_2$		85 (85)	77.1	57.2	reflux (i.e. ≈66°C)	4h
5c	McMurry (variation using TiCl ₃ /K)	1	$TiCl_3 + 3 K \longrightarrow Ti + 3 KCl$	27	100 ^[d]	17.6	17.6	reflux (i.e. ≈66°C)	45min
	using riengin)	2	$2 \int \int \int f + Ti \longrightarrow f + TiO_2$		91 (91)	77.1	46.9	reflux (i.e. ≈66°C)	12h
5d	McMurry (variation	1	$TiCl_3 + 3 Li \longrightarrow Ti + 3 KLi$	28	100 ^[d]	27.4	27.4	120°C (argon atm.)	12h
	using TiCl ₃ /Li)	2	$2 \int \int + Ti \longrightarrow + TiO_2$	28	76 ^[h] (76)	77.1	56.5	Reflux (i.e. 84°C)	18h
5e	McMurry (variation	0	$z_n \longrightarrow z_n$ (Preparation of zinc-copper-couple)	29	100 ^[d]			rt (nitrogen atm.)	15min
	using TiCl ₃ DME _{1.5} /Z n-Cu) ²⁹	1	$TiCl_{3} + 1.5 / 0 / 0 / TiCl_{3}(C_{4}H_{10}O_{2})_{1.5}$	29	80	100	100	Reflux, i.e. 84°C (argon atm.)	2d
		2	2 TiCl ₃ (C ₄ H ₁₀ O ₂) _{1.5} + 3 Zn - 2 Ti + 3 ZnCl ₂ + 3 C ₄ H ₁₀ O ₂	29	100 ^[d]	12.4	12.4	Reflux, i.e. 84°C (argon atm.)	2h
		3	$2 \longrightarrow 0 + Ti \longrightarrow 2 + TiO_2$	29	97 (97 ^[i])	67.3	12.4	Reflux, i.e. 84°C (argon atm.)	8h
5f	McMurry (variation using Ti and Me ₃ SiCl)		$2 \xrightarrow{+ 4/3 \text{ Ti} + 4/3 \text{ (CH}_3)_3 \text{SiCl}}_{0} \xrightarrow{+ 4/3 \text{ TiOCl} + 2/3 \text{ (CH}_3)_3 \text{Si-O-Si(CH}_3)_3}$	30	94	57.7	57.7	Reflux	67h + 4h
5g	McMurry (variation using TiCl ₂ and Zn)		$2 \qquad \qquad$	31	80	53.6	53.6	Ball milling	120min

No.	Method	Step	Reaction scheme	Ref.	Yield [%] (^[c])	AE ^[a] [%]	AE ^[b] [%]	Condi	tions
6	Claisen	1	$CI + O + Mg + HCI + MgCl_2$	32	69	57	57	30°C (nitrogen atm.	>30min >45min >1.5h
	rearrange- ment	2	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & $	32	88 (60.7)	68.1	51.2	138– 142°C	until ethanol no longer distils from the reaction flask
7	Alky- lation –	1	$() \qquad $	33	100 ^[e]	76.3	76.3	0°C	
	elimi- nation process	2	$ \bigcirc \bigvee_{L_{i}} + \bigvee_{L_{i}} + gr + gr + H_{2}O \longrightarrow HO $	³⁴ acc. to	100 ^[j]	64.1	58.2	-78°C (nitrogen atm.)	1h
	process	3	HO H	34	62 (62)	32.8	23.7	0°C 0°C	20min 1h
8	Suzuki- Miyaura (Zhou, Larock)	1	$- \underbrace{\bigcirc}_{B_{1}}^{O} - B_{1} + Mg + \underbrace{\bigcirc}_{O_{1}}^{O} - B_{1} + HO_{2} + HO_$	48	93	44.8	44.8	Reflux	overnight
	(Znou, Larock)	2	$- \underbrace{ B_{0}^{O}}_{O} + 2 H_{2}O \longrightarrow - \underbrace{ B_{0}^{O}}_{B(OH)_{2}} + \underbrace{ HO}_{HO}$		100 ^[e]	68.7	34.2		
		3	$2 \qquad \qquad$	35 [1]	80 (80 ^[m])	74.7	33.2	-50°C	24h
9	Hydro- arylation	1	See steps 1-2 in 8	48			34.2		
		2	$ \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & + & \\ & + & \\ & + & \\ & + & \\ & + & \\ & & \\ & + & \\ & $	36	77	77.8	44.1	28°C (nitrogen atm.)	24h
10	Arylzinca tion	1	/	246	100 ^[d]	100	100	rt (drying,	24h
	(Murakami Oshima)	2	$ \qquad \qquad$	37	82	49.3	49.3	argon) 60°C	4h

No.	Method	Step	Reaction scheme	Ref.	Yield [%] (^[c])	AE ^[a] [%]	AE ^[b] [%]	Condi	itions
11	Coupling of ge-	1	$ \begin{array}{c} & CI \\ & + N_2H_5OH + CI \\ & -CI \\ & -CI \\ & + 2 NH_4OH \end{array} \xrightarrow{CI \\ & + 2 NH_4CI + N_2 + 4 H_2O \end{array} $	see entry 29b ⁶³	74	45.5	45.5	rt 20°C rt	3h 10min 4h
	minal 1,1- dihalides	2	$\bigcup_{Cl} + Br_{Zn} \longrightarrow \bigcup_{Cl} + ZnBrCl$	38	90	58.1	39.3	50°C	12h
	(Negishi, Tan)	3	$Br \rightarrow Mg \longrightarrow Br_{Mg}$	[o]	100	100		reflux	2h
		4	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & $	38	100 (66.6)	62.3	30.4	appr. temp.	
12	Shapiro type	1	$\begin{array}{c} \begin{array}{c} & & H_{2}N-N-S\\ & & H_{2}N-N-S\\ & & H_{C}I \end{array} \end{array} \begin{array}{c} & & H_{2}O\\ & & & H_{C}I \end{array} \begin{array}{c} & H_{2}O\\ & & H_{2}O\\ & & H_{2}O\\ & & H_{2}O \end{array} \begin{array}{c} & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O \end{array} \begin{array}{c} & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O \end{array} \begin{array}{c} & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O \end{array} \begin{array}{c} & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O \end{array} \begin{array}{c} & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O\\ & H_{2}O \end{array} \begin{array}{c} & H_{2}O\\ & H_{2}O$	39	53	96.3	96.3	rt -10°C	overnight 4h
		2	HO =	39	Not isolated			Nitrogen -55°C Ice bath	?min 15-20min 2h 20mim
		3	+ Br + LiBr	39	73 (38.7)	26.2	25.6	rt	10min overnight
13	Peterson	1	Ph 	40	82	69.9	69.9	0°C	16h
			$Ph-Si-Cl + 2 Li + \bigcirc O + NH_4Cl \longrightarrow OH + 2 LiCl + NH_3$					(argon) -78°C	addition of substrate
		2	$\begin{array}{c} Ph \\ -Si - \\ \hline \\ OH + PPh_3 + CCl_4 \end{array} \xrightarrow{Ph} \\ -Si - \\ \hline \\ Cl + HCCl_3 OPPh_3 \end{array}$	40	74	39.1	33.8	0°C Reflux (argon)	1h 12h
		3	$\begin{array}{c} + 2 \operatorname{Na} + \operatorname{MgBr}_2 \cdot \operatorname{El}_2 O \\ + 2 \operatorname{Na} + \operatorname{MgBr}_2 \cdot \operatorname{El}_2 O \\ - \operatorname{Si} - + O \\ - \operatorname{Si} - + O \\ + C \operatorname{UBr} \cdot \operatorname{Me}_2 S + \operatorname{MeLi} \\ + p - \operatorname{TSOH} \cdot \operatorname{H}_2 O \end{array}$	40	52 (31.6)	15.9	11.1	Reflux (argon) -78°C to -10°C rt -78°C	3h addition of substrate 3h 1.5h+2h


No.	Method	Step	Reaction scheme	Ref.	Yield [%] (^[c])	AE ^[a] [%]	AE ^[b] [%]	Condi	tions
14	Julia- Lythgoe	1	See step 1 in entry 21	50	100	64.8	64.8	-71°C (argon	26min
	Lytingoe	2		[p](247)	87	100	100	atm.) ice bath rt	2h + 0.5h
		3	$ \begin{array}{c} & & & \\ & $	[q]	88	60.2	60.2	n.s.	n.s.
		4	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & $	41	100 ^[d]	70.5	43.4	-78°C	0.5h
		5	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & $	41	100 ^[d]	100	51	-78°C	2h
		6	$ \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	41	100 ^[d]	91	54.4	-78°C -78°C to rt rt	0.5h 1h 0.5h+0.16h
		7	$ \begin{array}{c} \begin{array}{c} & & \\$	41	29 (22.2)	14.6	11.3	-78°C	0.5h
15	Thiolester conver- sion	1	$ \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	42	98	69.6	69.6	0°C rt	30min 1h
	51011	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	75.1	42.2	35.1	0°C -78°C→ 0°C	10min 30+30min
		3	$ \begin{array}{c} & & \\ & & $	42	91.7 (67.5)	81.7	28.7	reflux (cyclohe xane) rt	1 h 5min

No.	Method	Step	Reaction scheme	Ref.	Yield [%] (^[c])	$AE^{[a]}$ [%]	AE ^[b] [%]	Cond	litions
16	Heck	1	$ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	43	95	48.5	48.5	100°C	22h
17	Heck (Itami)	1	$ \begin{array}{c} & & \\ & & $	248	80	43.2	43.2	rt	2h
		2	$ \begin{bmatrix} N \\ N \\ N \end{bmatrix}_{S} CN + BrMg^{(N)} \longrightarrow \begin{bmatrix} N \\ N \\ N \end{bmatrix}_{S} CN + MgBrCN $	249	97	51.5	30.8	0°C	1h
		3	2-Thiocyanatopyrimidine N S $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	44	89	42.2	30.3	60°C (argon) 90°C	3h 18h
		4	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	44	82	48.9	27.1	-78°C (argon) 0°C 50°C rt	0.5h 2h 3h 0.5h
		5	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	44	52 (29.4)	59.2	20.5	90°C (argon)	20h
18	Alkynes	1	$C_4H_9 \longrightarrow C_4H_9 \longrightarrow C$	45 [r]	100 ^[d]	40.9	40.9	60°C	12-24h
	(Yamagami)	2	o−√ →−Br + Mg → o−√ →−MgBr	45	100 ^[d]	100		rt	2h
		3	C_4H_9 + Q - $MgBr$ + H_2O + $MgBrOH$	45	91 (91)	68.7	43.2	rt 60°C	5min 16h
19a	Suzuki- Coupling	3	$C_6H_5 \sim C_6H_5 + Br_2 \longrightarrow C_6H_5 + C_6H_5$	46	81	100	100	rt	1.25 h
	of Vinyl- bromides	4	$ \begin{array}{c} \text{Br} \\ 2 \\ C_6H_5 \\ \end{array} \begin{array}{c} C_6H_5 \\ P_r \end{array} + K_2CO_3 2 \\ \end{array} \begin{array}{c} C_6H_5 \\ P_r \end{array} \begin{array}{c} C_6H_5 \\ P_r \end{array} + 2 \text{ KBr} + CO_2 + H_2O \\ \end{array} $	47	88	63.3	63.3	Reflux	1h
		7	$C_{6}H_{5} \underbrace{C_{6}H_{5}}_{Br} + \underbrace{HO)_{2}B}_{F} + \underbrace{C_{6}H_{5}}_{F} \underbrace{C_{6}H_{5}}_{F} + BBr(OH)_{2}$	47	95 (67.7)	68.4	49.6	rt	1h

No.	Method	Step	Reaction scheme	Ref.	Yield [%] (^[c])	AE ^[a] [%]	AE ^[b] [%]	Conc	litions
19b	Suzuki- Coupling	1	$ \qquad \qquad$	20	90	67.7	67.7	150- 155°C	5h
	of Vinyl- bromides	2	$ \bigcirc O_{P_{0}}^{O} O_{C_{2}}^{C_{2}} H_{5} $ $ \bigcirc O_{C_{2}}^{O} O_{C_{2}}^{C_{2}} H_{5} + NaOH + \bigcirc O_{C_{2}}^{O} O_{C_{2}}^{C_{2}} H_{5} + H_{2}O $	20	70	48.2	37.3	90°C	30min
		3	$C_{6}H_{5} \xrightarrow{C_{6}H_{5}} Br_{2} \xrightarrow{Br} C_{6}H_{5}$	46	81	100	52.9	rt	1.25 h
		4	$ 2 \qquad \underset{C_6H_5}{\overset{Br}{\longrightarrow}} C_6H_5 + K_2CO_3 \longrightarrow 2 \qquad \underset{Br}{\overset{Br}{\longrightarrow}} 2 \overset{C_6H_5}{\longrightarrow} + 2 KBr + CO_2 + H_2O $	47, 250	88	63.3	36.4	Reflux	1h
		5	$ \begin{array}{c} Br \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	48	93	44.8	[s]	Reflux	overnight
		6	$- \underbrace{ B_0^{(0)}}_{O} + 2 H_2 O \longrightarrow - \underbrace{ B_0^{(0)}}_{H_0} + B_0^{$		100 ^[e]	68.7	[s]		
		7	$C_{6}H_{5} \xrightarrow{C_{6}H_{5}} + 2 \text{ KOH} \xrightarrow{C_{6}H_{5}} + \text{KBO(OH)}_{2} + \text{KBr} + H_{2}O$ $[u]$	47	94 (42.2 ^[t])	53.3	22.1	rt	1h
19c	Suzuki- Coupling of Vinyl- bromides	1	$ \qquad \qquad$	20 [v]	90	67.7	67.7	150- 155°C	5h
	bronndes	2	$ \underbrace{\bigcirc}_{O,P_{\oplus}}^{\Theta,OC_{2}H_{5}} + NaOH + \underbrace{\bigcirc}_{O}^{O,C_{2}H_{5}} + NaOH + \underbrace{\bigcirc}_{O}^{O,C_{2}H_{5}} + H_{2}O $	20	70	48.2	37.3	90°C	30min
		3	$C_{6}H_{5} \xrightarrow{C_{6}H_{5}} + 2 HBr + \frac{1}{2}O_{2} \xrightarrow{C_{6}H_{5}} C_{6}H_{5} + H_{2}O$	49	95	95	51.4	rt	12 h
		4	$2 \underset{C_6H_5}{\overset{Br}{\longrightarrow}} \overset{C_6H_5}{\longrightarrow} + K_2CO_3 \longrightarrow 2 \overset{C_6H_5}{\overset{C_6H_5}{\longrightarrow}} + 2 \text{ KBr} + CO_2 + H_2O$	47, 250	88	63.3	35.5	Reflux	1h
		5	$ \begin{array}{c} Br \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	48	93	44.8	[s]	Reflux	overnight
		6	$- \underbrace{ \begin{array}{c} & & \\ $		100 ^[e]	68.7	[s]		
		7	$C_{6}H_{5} \xrightarrow{C_{6}H_{5}} + 2 \text{ KOH} \xrightarrow{C_{6}H_{5}} + \text{KBO}(\text{OH})_{2} + \text{KBr} + H_{2}\text{O}$ $[u]$	47	94 (49.5 ^[t])	53.3	21.8	rt	1h

No.	Method	Step	Reaction scheme	Ref.	Yield	$AE^{[a]}$	$AE^{[b]}$	Conc	litions
		-			$[\%] (^{[c]})$	[%]	[%]		
20	Negishi-	1-4	See 19b	251			r 1		
	Coupling	5	$1 + Br + 2Zn \rightarrow Zn + ZnBrl$	251 47	89	31.2	[s]	reflux	1h
	of vinyl	6	$ZnCl_{2} + C_{2}R_{1} \longrightarrow 2 \qquad ZnCl$ $C_{6}H_{5} = C_{6}H_{5} + C_{2}H_{2}ZnCl \rightarrow C_{6}H_{5} + C_{8}H_{5}$		100 ^[d]	100	[s]	rt	1h
	bromides	7	$\begin{array}{c} \text{ZnCl} \\ C_6H_5 \\ \leftarrow \\ Br \end{array} C_6H_5 \\ + C_2H_5\text{ZnCl} \\ \hline \\ C_2H_5 \\ \hline \\ \end{array}$	47	90 (47.4 ^[t])	53.5	21.3	rt	2h
21	Ynolate conver-	1	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & $	50	100 ^[d]	64.8	64.8	-71°C (argon atm.)	26min
	sion (Shindo)	2	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	50	100 ^[d]	64.9	54	-71°C (argon atm.)	52min
		3	$\begin{array}{c} Li^{+} O \\ \downarrow \\ P \\ R_{r} \end{array} \xrightarrow{Ci Ci} Ci Ci \\ \downarrow \\ Ci Ci \\ Br \\ Ci Ci \\ Br \\ B$	50	90	50.7	38.7	-71°C (argon atm.)	40min
		4	$ \begin{array}{c} & \text{O} \\ & \text{O} \\ & \text{O} \\ & \text{Br} \\ & \text{Br} \end{array} + 2 \text{ (CH3)3CLi} \longrightarrow \\ \hline \end{array} \begin{array}{c} & \text{OLi} \\ & + 2 \text{ (CH3)3CBr} + C_2H_5\text{OLi}_{[W]} \end{array} $	50	100 ^[d]	16	7.7	-72°C (argon atm.)	177min
		5	$ \ + 0 = $	50	100 ^[d]	100	19.5	2°C rt	30min 60min
а		6		50	69 (62.1)	80.3	18.1	rt	acidification during work-up
b		4- 6 ^[x]	$\begin{array}{c} O \\ HO \\ HO \\ HO \\ HC \\ HC \\ HC \\ HC \\ $	50	69 (62.1)	26.2	16.1	see above	see above
22	Ring- Opening		$- \underbrace{ \bigcirc \overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}$	53 [y]	100 ^[d]	77.1	77.1	-	1h
	Reactions of cyclo-		$- \underbrace{ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	52 [z]	91	48	40.8	rt	3h + 15h
	propenes (Wang, Y.)		$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & $	9	59	90.3	50.3	rt	8h
			$ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ 0 \\ \end{array} + \begin{array}{c} A_{1} \\ A_{2} \\ \end{array} + \begin{array}{c} H_{2} \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\$	9 [aa]	78 (41.9)	78.9	45.4	0°C; rt	1h; 15.5h

No.	Method	Step	Reaction scheme	Ref.	Yield [%] (^[c])	AE ^[a] [%]	AE ^[b] [%]	Condi	tions
23	Allylation of Alkenylal	1		55	100 ^[d]	100	100	nitrogen rt	12h
	anes	2	$ \xrightarrow{+2 \text{ HCl}} + 2 \text{ HCl} + 2 \text{ CH}_4 $	55	83 (83)	55.3	55.3	rt	6h
24	Organo- zinc rea-	1		252	98	100	100	5°C	1-4h
	gents and carbonyl com- pounds (Wang)	2	ZnBr ⁺ O + ZnBrOH [ag]	56	78 (76.4)	56.2	56.2	60°C (inert atm.) -28°C, rt	10min 8h
25	Cross- coupling of alke- nylcar- boxylates	1	$ + NaH + CI + H_2 $	57	98	79,2	79,2	nitrogen rt	10+108min
	with Grignard reagents	2	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & + & & \\ & & + & & \\ & & + & & \\ & & + & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & $	57	96 (94.1)	52.1	45.4	nitrogen rt -5 to 0°C 25°C	10+20min 43+90min 15min
26	three compo- nents (Li)		Ph + Ph Ph + Ph + Ph + Ph + H_2O Ph Ph + H_2O	58	82	95.6	95.6	10°C	21h
27a		1	$Br + Zn \longrightarrow ZnBr$	252 _[ab]	98	100	100	5°C	1-4h
	Carboxyl ation of Alkynes	2	BnO CO_2H + $CO_2 + H_2O$ + $ZnBrOH$	60 _[ac]	81 (79.4)	64.6	64.6	0°C	1h+2h
27b	see 27a	1	$Ni(C_5H_7O_2)_2 + 2 C_8H_{12} + 2 Bu_2AIH \longrightarrow Ni(C_8H_{12})_2 + 2 Bu_2AI(C_5H_7O_2) + H_2$	253 _[ad]	72	36.3		-78°C to 0°C, N ₂ atm.	1h

^[a] Atom economy of a single synthesis: ^[b] Atom economy of the synthesis sequence until this reaction; ^[c] Overall yield of synthesis sequence: ^[d] The intermediate was not isolated. Therefore, quantitative vield was assumed. [e] A published protocol does not exist for this reaction. Thus, a relatively ideal synthesis (dioxaborolane, 2 mass equiv. of aqueous hydrochloric acid (5%), 100% yield, no work up) is assumed resulting in a 100% yield. ^[f] according to ⁶⁶ and ²⁵⁴, ^[g] There are no details given in the experimental description. Instead of masses, the authors indicate 'equivalents'. Therefore, the amounts of converted materials do not seem to be complete. The stoichiometry is not known. We assume aluminum chloride, lithium chloride and hydrogene chloride to result from the reaction. ^[h]Concentration of the mother liquor and same work up results in 9-11% more product, which, however, is slightly impure.^[i] The yield (97%) refers to cyclohexanone, i.e. the isolation of TiCl₃(DME)_{1.5} with 80% yield was not considered for calculation of the overall yield. ^[i] A published protocol does not exist for this reaction. The authors refer to the literature procedure³³. Thus, a relatively ideal synthesis is assumed resulting in a 100% yield. ^[k] The yield of a protocol delivering an alkene with tetrasubstituted double bond was 66%. ^[1] The coupled product is not known. The authors supposed (OH)₂B-B(OH)₂ in their Scheme 2. However, this is stoichiometrically not possible without further assumptions. If one considers something like the α -form of the metaboric acid (B₃H₃O₆) as a potential coupled product, though not verified, the stoichiometry is correct.^[m] The yield refers to the alkyne, explaining why the yield of preceding steps resulting in the boronic acid is not included. ^[n] Step 4 is a convergent synthesis resulting in one pot from step 3 and the sequence of step 1 and step 2.^[0] The preparation of Grignard compounds often uses nearly equimolar amounts of alkyl halide and magnesium. For example, the protocol of Boeckman et al.²⁵⁵ describes the conversion of 1.086 mol magnesium with 1 mol vinylbromide (75 mL) in tetrahydrofuran (200 mL) within two hours. Another protocol reports the reaction of 0.4 mol of magnesium and 0.4 mol of iodomethane (56.7 g) in 200 mL diethyl ether within 2.5 hours.²⁵⁶ Therefore, we assume the following: magnesium (1 mol), methylbromide (1 mol) react to 100% in diethyl ether (150 mL) within 2 hours. [P] Personal communication with I. Marko enabled us to identify the protocol: 1 equiv. vinylcyclohexane, 1 equiv. thiophenol, 0.25 equiv. $HClO_4$ (aq, 70%) were converted according to the literature²⁴⁷ yielding 87% of the product.^[q] Personal communication with I. Marko enabled us to identify the protocol: 1 equiv thioether, 1.02 equiv. mCPBA in dichloromethane resulted in a yield of 88%. No more details were available.^[r] The preparation of 4-methoxyphenyl magnesium bromide is not sufficiently described in literature. Information was used as it was and 100% yield was assumed. According to the synthesis of 4-methylphenyl magnesium bromide ²⁵⁷ (yield 95%) this Grignard reaction is supposed to have a high yield as well. ^[s] Step 5 and 6 do not continue step 1-4, but represent a second path for the convergent synthesis step 7. ^[t] Yield related to triethylphosphit, ignoring the yield of step 5 and 6. ^[u] We assumed KBO(OH)₂ as the formula for the coupled product. See e.g. ²⁵⁸ for boronic acid salts. ^[v] Variants such as Horner–Wadsworth–Emmons (e.g. ^{259,260}) can directly deliver alkenes with tetrasubstituted double bond. ^[w] In ref. ⁵⁰ the authors suggest to use lithium naphthalenide¹⁸² instead of *tert*.-butyllithium for larger scale, as naphthalene could be used catalytically.^[x] In step 5 the mixture is poured onto 1 M aqueous lithium hydroxide. This can be understood as a reaction that can be summarized with step 4 and 6. While the overall mass balance is not affected, the atom economy is slightly reduced because of the neutralization step. ^[y] According to the literature⁵¹ the preparation of dimethyl diazomalonate can be performed reasonably using tosyl azide.⁵² [z] A polymer – bound tosyl azide ⁵⁴ could be an alternative azide source to the considered literature⁵³. [aa] Malonic acid esters undergo decarbalkoxylations ^{183,184} so that trisubstituted β , γ – unsaturated acid derivatives should be producible. ^[ab] The authors⁶⁰ produce benzyl zinc bromide according to literature⁵⁹. However, according to literature²⁵², which is also applied in entry 24, a higher yield is conceivable. An alternative procedure to prepare

benzylzinc reagents was reported by Harada et al..^{261 [ac]} The catalyst Ni(COD)₂, for which synthesis is described in references²⁶² and ²⁵³, was applied in nearly stoichiometrical amounts. ^[ad] As no stoichiometric equation has been indicated in literature, we assume the one shown here. ^[ae] In literature, the synthesis not of DBU but of DBN was presented! This protocol was adapted, i.e. instead of the five-ring pyrrolidone, the sept-ring azepan-2-one was considered using the amounts and yields of DBN-synthesis. ^[af] The stoichiometry is not completely known. Copper acetate, which is used in a certain amount, is considered to be a catalyst. ^[ag] Trimethylsilylchloride (Me₃SiCl) is applied twice as much using 0.02 mol as the carbonyl compound. The mechanism presages the transformation to Me₃SiOH. Therefore, a corresponding reaction equation could also be formulated, which would reduce the atom economy.

No.	Method	Step	Reaction scheme	Ref.	Yield	$AE^{[a]}$	$AE^{[b]}$	cond	itions
		1			$[\%](^{[c]})$	[%]	[%]		
29a	Nenajdenko 2005	1	$CI \longrightarrow O + N_2H_5OH \longrightarrow CI \longrightarrow VIH_2 + 2H_2O[e]$	62	87	82.4	82.4	Reflux (i.e. 78°C)	3h
		2	$CI \longrightarrow VNH_2 + CI \longrightarrow CI + 2 NH_3 \longrightarrow CI \longrightarrow CI + 2 NH_4CI + N_2$	62	86 (74.8)	56.4	51.2	rt	overnight
29b	Nenajdenko 2001	1	$ \begin{array}{c} & & \\ & & $	63	74	45.5	45.5	rt 20°C rt	3h 10min 4h
29c	Corey	1	$ \begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & $	64	100 ^[d]	100	100	23°C	24-30h
		2	$ \begin{array}{c} Br \\ Br \\ P^{P} \\ Br \\ F \\ P \\ Br \\ F \\ $	64	100 ^[d]	65.8	65.8		
		3	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & $	64	90 (90)	48.5	34.2		1-2h
29d	Patil	1	() + 2 + C + C + C + C + C + C + C + C + C	65	70	23.4	23.4	Reflux, i.e. 39.7°C	48h

Table S 8 Methods for the preparation of geminal dihalogenids: yields, atom economies and reaction conditions. Detail information related to Table 1 and Table 2.

^[a-c] See Table S 7 ^[d] Step 1 to Step 3 need to be considered together: all substrates are mixed in one pot. Addition of benzaldehyde takes place after about 24-30h. ^[e] More syntheses of mono- and dihaloalkenes (also dibromo-compounds) were presented in the literature. ²⁶³

· · ·						Func	tion of	fsolvent			Rem	oval of		Aqueous
											solve	ent		solutions
No.	Method	Step	Ref.	Name	Mass	Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
1	B -Elimination	1	19	Toluene	2.7724	X					×			
	of xanthates,	1		Diethyl ether	5.6729	X					×			
	prepared	1		Diethyl ether	not spec.			×			×			
	from alcohols	1		Ethanol	5.0319			X				X		water to precipitate
2a	Wittig	1	20	Toluene	7.8285	X								
		1	20	Toluene	not spec.			X						
		2	20	Pentane	not spec.			X						
		2/3	20	Dimethylsulfoxide	8.9401	X					×			water
		3	20	Pentane	not spec.		X				\mathbf{X}			water
2b	Wittig	1	21	Methanol	10.9306	X							Х	
	(catalytic)	2	21	Toluene	2.1038	X							×	
		2	21	Benzene (with solvent next line)	not spec.					X			×	
		2	21	Pentane	not spec.					×			X	
3	Carbene	1	22	Dichloromethane	not spec.		X				×			NaOH(aq)
	Dimerisation	2	22	Acetic acid	24.5118.6/16	X					X			
				Acetic acid	24.5118.10/16			X			×			
				Diethyl ether	94.9276.40/65			X			×			
				Tetrahydrofuran	25.9722	X					×			
				Diethyl ether	not spec.			X			×			
				Diethyl ether	94.9276.25/65		×				×			water
		2	22	Methanol	17.3455			X				X		

Table S 9 Solvent utilization (Note: four decimal places are probably not necessary, but they were given by the software ⁶⁹ and simply noted here.)

						Func	ction of	fsolver	nt		Rem	oval o	f	Aqueous
											solve	ent		solutions
No.	Method	Step	Ref.	Name	Mass									
								tion)	on	hy				
							-	ulib)	lisati	grap	u		uo	
						tion	ction	ing	ystal	matc	llatic	tion	ntati	ing.
						Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
4a	Barton-	1	23	t-Butanol	19.4756	X	_	-	_	-	×	_	_	water
тα	Kellogg's	1	23	Diethyl ether	93.0887		×				×			brine
	extrusion	1	23	Hexane	not spec.				×			×		
	process	2	23	Acetone	8.126	X					×			
	I	2	23	Benzene	26.9724	X					X			
		3	23	Benzene	78.2275	\boxtimes					b)		a)	water
		3	23	Diethyl ether	not spac		X				X		X	brine
		3 4	23	Hexane	not spec. not spec.					X	X			orme
	Barton-	1	24	Пехане	not spec.									water
	Kellogg's	1	24	Diethyl ether	27.6929		×				×			brine
	extrusion	2	24	Dimethylformamid	14.0378	X	_				×			
	process	3	24	Toluene	19.3766									
	process	3/4	24	Hexane / CH2Cl2	not spec.					X	×			NH ₄ Cl(aq)
		4	24	Diethyl ether	not spec.		×				×			water
		4	24	Pentane / Ether	not spec.					×	×			
		5	24	Xylol	30.8234						×			
		5	24	Pentane / Ether	not spec.					X	×			
5a	McMurry	1	66	Tetrahydrofuran	21.8232	X					X			
Ju	(variation	2	66	Tetrahydrofuran	11.6884	\mathbf{X}					×			K ₂ CO ₃ (10%)
	using	2	66	Cyclohexane	17.0921		×				×			water
	TiCl ₄ /Zn)	2	66	Ethanol / Cyclohexane	not spec.				×					
5b	McMurry	1	26	Tetrahydrofuran	not spec.	X					×			
	(variation using TiCl ₃ / LiAlH ₄)	2		Tetrahydrofuran	not spec.	X					X			

					Func	tion o	f solven	t		Rem	oval of	İ	Aqueous
										solve	ent		solutions
No. Method	Step	Ref.	Name	Mass									
							tion)	uo	hy				
						_	dilu	isati	grap	с		u	
					ion	ction	ng (stall	nato	latio	tion	ntatio	ng
					Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
5c McMurry	y 1	27	Tetrahydrofuran	145.6025	X	Щ	>	щ	0	I	Ц	ц	~
(variation			Tetrahydrofuran	14.557	X					×			
using	2		Ethanol	not spec.			×			×			
TiCl ₃ /K)	2		Emanor	not spee.									
5d McMurry	y 1	28	1,2-dimethoxyethane	50.1692	X					X			
(variation	. 2	28	Petroleum ether	88.8053			×			×			
using TiCl ₃ /Li)	2	28	Methanol	269.8807.1500/3550			X			X			
- 3. 7	2	28	Methanol	269.8807.2000/3550			×				×		
	2	28	Methanol	269.8807.50/3550			X				×		
5e McMurry	, 0	29	Acetone	not spec.			X				×		
(variation	ı 0		Diethyl ether	not spec.			×				×		
using	1		Dimethoxyethane	108.8568	X						X		
TiCl ₃ DM	E _{1.5} /		Pentane	not spec.			×				X		
Zn-Cu)	2		Dimethoxyethane	242.6352	X					X			
	3		Dimethoxyethane	24.2635	X					X			
	3		Pentane	175.7014			(\mathbf{X})			X			
5f	1	30	Dimethoxyethane	11.1174	Х					X			
	1		Tetrahydrofuran	113.824		×				X			
	1		Hexane / ethyl acetate, 10:1	not spec.					×	X			
5g	1	31	Dichloromethane	24.9102 (assumption of 10 mL)		X				X			
6 Claisen	1	32	Diethyl ether	5.9838	X					X			NaHCO3
													(aq, conc.), NaCl(aq,
		32		0 5005	121					57			conc.)
	1	52	Diethyl ether	8.7037	X					×			NaHCO3 (aq, conc.)
													NaCl(aq,
	2	32	Propionic acid	0.0202	X					×			conc.)
	L			0.0202									

						Func	ction of	f solven	t		Rem	oval of		Aqueous
											solve	ent		solutions
No.	Method	Step	Ref.	Name	Mass									
								tion)	uo	hy				
							_	ulib)	lisati	grap	Ę		uo	
						tion	ctior	ing	/stall	mato	llatio	tion	ntati	ing.
						Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
7	Alkylation –	1	33	Tetrahydrofuran	12.7780	X					X			Water
	elimination	1	33	Hexane, n-	5.1126	×					×			(hydrolysis) Water
	process	1		Tiexane, n	5.1120									(hydrolysis)
	-	2	34	Tetrahydrofuran	12.7780	×								Water (hydrolysis)
			acc. to 33											(ilyurorysis)
		2	34	Diethyl ether	not spec.		×				×			water
			acc. to 33	-	-									
		3	34	Tetrahydrofuran	76.6678	×					×			Water
		3	34	Hexane, n-	16.8715	×					×			Water
		3	34	Hexane	284.1623		X				×			
				not spec.						X	×			
8	Suzuki-	1-2	35	See 19b steps 5-6										
	Miyaura			DMSO	35.2052	×					×			NaCl(conc.)
	(Zhou,			Diethyl ether	1019.6714		×				×			
	Laroc)			not spec.						X	×			
9	Hydro- arylation	1-2		See 19b steps 5-6										
		3		Methanol	7.714	×					×			
				Acetic acid ethyl ester	0.0325			×			×			
				Hexane	3.1919			×			×			
				hexanes/ethyl acetate	Approximately 1L for ca. 6.5 g product					X	X			
10	Arylzincation	1	246	THF	13.3068	×							X	
		1	37	Acetonitrile	1.1765	×							X	NH4Cl (aq)
		2	37	Hexane	0.3288	×							X	NH4Cl (aq)
		2	37	Ethyl acetate			×						X	NH4Cl (aq)
		2	37	Hexane	not spec.					×	×			

11	Negishi-Tan	1	63	Dimethylsulfoxide	7.3152	X	X	HCl (1M)
11	riegioni run	1	63	Dichloromethane	132.1718	X	\mathbf{X}	HCl (1M)
		2	38	Dimethylformamide	13.8775	X	X	HCl(aq), brine
		2		Diethyl ether	not spec.	\boxtimes	X	brine
		3		Diethyl ether	0.7055	X		
		4		Tetrahydrofuran	7.8748	\boxtimes	X	NH ₄ C 1 (conc.),
		4		Diethyl ether	not spec.	X	X	brine brine
				not spec.			XX	
12	Shapiro type	1	39	Acetonitrile	5.281	X	X	HCl (aq)
	1	1	39	Dichloromethane	15.5793	\boxtimes	X	
		2	39	n-Hexane	9.632	X	X	water
		2	39	n-Hexane	14.0532	X	X	water
		2	39	tetramethylethylenediamine	16.5269	X	X	water
		3	39	Diethyl ether	15.0981	X	X	Water
13	Peterson	1	40	Tetrahydrofuran	61.182	X	X	NH4Cl(aq)
	method	1	40	Diethyl ether	18.7405	\boxtimes	X	NaCl(aq) NH4Cl(aq) NaCl(aq)
		2	40	Tetrahydrofuran	46.8414	X	X	Tues(uq)
		2	40	Hexane; n-	62.5008	X	X	
		3	40	Tetrahydrofuran	70.2086	X	X	
		3	40	Isopropanol	17.0316	X	X	
		3	40	Diethyl ether	82.9495	X	X	
		3	40	Hexane; n-	40.0341	\square	X	NaHCO ₃ (conc.),
		3	40	Diethyl ether	15.361		X	NaCl(aq) NaHCO ₃ (conc.), NaCl(aq)

						Func	ction of	solven	t		Rem	ioval o	f	Aqueous
											solv	ent		solutions
No.	Method	Step	Ref.	Name	Mass									
						Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
							Ex	ма	Re	Ch		Εï	De	
14	Julia-Lythgoe	1	50	Tetrahydrofuran (see step 1 in entry 21)	39.9068	X					X			NaHCO ₃ (conc.)
		1		Hexane (see step 1 in entry 21)	7.5389	X					X			NaHCO ₃ (conc.)
		2		Benzene	16.3719		×				×			NaOH (aq)
		3		Dichloromethane	not spec.	X					n.s			
		4	247	Tetrahydrofuran	169.9924	×					×			HCl (1M),
		5	247	Tetrahydrofuran	8.4996	X					×			water, brine HCl (1M),
		6	247	Tetrahydrofuran	8.4996	\mathbf{X}					×			water, brine HCl (1M),
			247	•			\mathbf{X}				×			water, brine
		6		Diethyl ether	67.691									HCl (1M), water, brine
		7	247	Tetrahydrofuran	590.0096	X					X			NH4Cl (sat.), Na2S2O3 (10% aq), water, brine
		7	247	Tetrahydrofuran	8.4996	X					×			dito
		7	247 247	HMPA	0.0121		X				X			dito
		7	2-17	Diethyl ether	812.2922		X			X	×			dito
15	Thiolester	1	42	not spec. Dichloromethane	15.1513	X				<u></u>	X			H2O (with
1.J	conversion													HCl, NaCl)
		2	42	Hexane	1.2219	X					X			H2O (with NH4Cl, Na2CO3, NaCl)
		2	42	Tetrahydrofuran	12.426	X					×			See above
		2	42	Hexane	5.9427		X				×			See above
		3	42	Cyclohexane	8.7923	X					X			
		3	42	Hexane	(20 mL per min, 120- mL fractions)					X	X			

						Func	ction of	solvent	t		Rem	oval of		Aqueous
											solve	ent		solutions
No.	Method	Step	Ref.	Name	Mass									
								washing (dilution)	uo	hy				
							e	ulib)	lisati	grap	u		uo	
						tion	Extraction	ing	ystal	matc	Distillation	Filtration	Decantation	ing
						Reaction	Extra	wash	Recrystallisation	Chromatography	Disti	Filtra	Deci	washing
16	Heck	1	43	Toluene	4.2373	X								
10			43	Diethyl ether	27.0954		×				X			H2O/brine
			43	hexane/diethyl ether 19/1	Not spec.					×				
17	Heck	1	248	THF	57.3933	X							×	H2O
		1	248	CHC13	not spec.		×						×	H2O
		1	248	Benzene	not spec.					×			×	
		1	248	CHCl3	not spec.					×			×	
		2	249	THF	14.0940	X							×	H2O
		2	249	CHCl3	not spec.		×						×	H2O
		2	249	Hexane	not spec.					×			X	
		2	249	Dichloromethane	not spec.					×			×	
		3	44	Toluene	29.8861	×							X	
		3	44	Hexane (with solvent next line)	not spec.					×			×	
		3	44	Acetic acid ethyl ester	not spec.					×			×	
		3	44	Acetic acid ethyl ester	not spec.								×	
		4	44	THF	44.0423	X								NaOH (aq, 1%)
		4	44	Pentane	5.3812	X								same
		4	44	THF	Integrated into first	X								same
		4	44	THF	THF figure	×								same
		4	44	Unknown (extractive workup)	not spec.		×							same
		4	44	Hexane (with solvent next line)	not spec.					×				
		4	44	Acetic acid ethyl ester	not spec.					×				
		5	44	Toluene	85.4750	X							X	
		5	44	THF	16.2393								X	
		5	44	Acetic acid ethyl ester	not spec.								X	
		5	44	Hexane (with solvent next line)	not spec.					×			X	
		5	44	Acetic acid ethyl ester	not spec.					×			×	

						Functio	on of solve	nt			oval of	-	Aqueous
										solve	ent		solutions
No.	Method	Step	Ref.	Name	Mass		lilution)	sation	raphy			ч	
						Reaction	Extraction washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
18	Alkynes	1	45	Et3N (substrate excess)	4.0997	X						Х	
	(Yamagami)	1	45	Acetic acid ethyl ester	not spec.				(区)			×	
		1	45	Hexane	not spec.				×				
		2	45	THF	18.3369	X						×	
		3	45	THF	6.6013								H2O
		3	45	Diethyl ether (TLC)	not spec.				×			×	
		3	45	Hexane (TLC)	not spec.				×			×	
19a	Suzuki-	3	46	Diethyl ether	11.6011	X					X		
	Coupling of Vinyl- bromides	4	47, 250	Tetrahydrofuran	7.8661	X				X			
	bioindes	4	47 250	Methanol	6.9990	X				×			
		4	47 250	Diethyl ether	12.5292		X			×			
		7	47	Methanol	7.6989	X				×			NaOH (aq),
		7	47	Tetrahydrofuran	8.6528	\boxtimes				X			brine NaOH (aq), brine
		7	47	Diethyl ether	82.6927		\times			X			NaOH (aq),
		7	47	Cyclohexane	not. spec.				X	×			brine
19b	Suzuki-	1	20	-									
	Coupling of Vinyl- bromides	2	20	Toluene	8.0992	\boxtimes				X			water
	bronnides	3	46	Diethyl ether	11.6011	X					×		
		4	47, 250	Tetrahydrofuran	7.8661	X				X			
		4	47, 250	Methanol	6.9990	X				×			
		4	47, 250	Diethyl ether	12.5292		X			\mathbf{X}			
		5	48	Tetrahydrofuran	4.4659	X				×			
		5	48	Toluene	2.1727	\mathbf{X}				×			

		5 7	48 47	Ethylene glycol Methanol	2.4763 7.6989	X			X	NaOH (aq),
		7 7	47	Tetrahydrofuran	8.6528	\boxtimes			×	brine NaOH (aq),
		7	47	Diethyl ether	82.6927		\mathbf{X}		\boxtimes	brine NaOH (aq), brine
		7	47	Cyclohexane	not. spec.			X	\boxtimes	brine
19c	Suzuki- Coupling	1	20	-						
	of Vinyl- bromides	2	20	Toluene	6.9057	X			X	water
	eronnaes	3	49	Acetonitrile	7.3208	X			X	
		4	47, 250	Tetrahydrofuran	7.8661	X			X	
		4	47, 250	Methanol	6.9990	X			X	
		4	47, 250	Diethyl ether	12.5292		X		X	
		5	48	Tetrahydrofuran	4.4659	X			X	
		5	48	Toluene	2.1727	X			X	
		5	48	Ethylene glycol	2.4763	X			X	
		7	47	Methanol	7.6989	X			X	NaOH (aq), brine
		7	47	Tetrahydrofuran	8.6528	X			\boxtimes	NaOH (aq), brine
		7	47	Diethyl ether	82.6927		X		X	NaOH (aq),
		7	47	Cyclohexane	not. spec.			X	\boxtimes	brine

						Func	ction of	solven	it		Rem	oval of		Aqueous
											solve	ent		solutions
No.	Method Shindo Ynolate conversion	Step	Ref.	Name	Mass	Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
20		1-4		See 19b										
		5	251	-	-									
		5		Hexane						X	×			
		6	47	Hexane	2.1923	X					×			
		7	47	Tetrahydrofuran	25.2909	\mathbf{X}					×			
		7	47	Hexane	not. spec.					×	X			
21	Shindo	1	50	Tetrahydrofuran	22.9296	X					X			NaHCO ₃ (conc.)
	Ynolate	1		Hexane	4.3317	\boxtimes					X			NaHCO ₃ (conc.)
	conversion	2		Tetrahydrofuran	1.9654									
		3		Tetrahydrofuran	3.9308	X					×			NaHCO ₃ (conc.)
		3		Hexane	14.5691		×				×			water, brine
		4		Tetrahydrofuran	24.7033	X					×			NaOH (1M),
		4		Pentane	12.8891	\boxtimes					\mathbf{X}			brine NaOH (1M), brine
		5		Tetrahydrofuran	2.6706	X					X			NaOH (1M), brine
		5		Ethylacetate	32.5161		X				X			NaOH (1M), brine
		6		Ethylacetate	48.7742		X				X			brine
		4-6		See above										

						Func	tion of	f solvent	t		Rem solve	oval of ent		Aqueous solutions
No.	Method	Step	Ref.	Name	Mass			tion)	uo	hy				
						Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
2	Wang	1	53	Ethanol (95%)	7.5122	X					X			Water
		2	52	Benzene	7.8907	X					×			
		2	52	Hexane; n-	1.6999	X					×			
		3	9	Dichloromethane	18.1468	X					×			
		3	9	EtOAc/hexane	not. spec.					х	×			
		4	9	Tetrahydrofuran	41.2455	X					×			Rochelle's salt (aq)
		4	9	Hexane; n-	3.0575	\boxtimes					X			Rochelle's salt (aq)
		4	9	Dichloromethane	307.3695			X			X			Rochelle's salt (aq)
		4	9	Dichloromethane	1383.1626		×				X			Rochelle's salt (aq)
		4		EtOAc/hexane	not. spec.					×	X			
23	Allylation of Alkenyl- alanes	1	55	1,2-dichloroethane	7.405	\boxtimes					X			HCl(aq)
	ununos	1	55	Xylene	0.3679	X					×			HCl(aq)
		1	55	Toluene	4.7107	X					×			HCl(aq)
		2	55	Tetrahydrofuran	5.2413	X					×			HCl(aq)
		2	55	Pentane	not. spec.		X				X			HCl(aq), water,
		2	55	Hexane	not. spec.					X	\mathbf{X}			NaHCO ₃ (aq)
24		1	252	Tetrahydrofuran	6.5659	X					X			
		2	56	Tetrahydrofuran	3.6849	X					X			NH ₄ C l(conc.)
		2	56	Diethyl ether	4.3576		×				×			
		2		petroleum/ ethyl acetate	not. spec.					×	×			

	Method					Func	tion of	f solvei	nt		Rem	oval o ent	f	Aqueous solutions
No.	Method	Step	Ref.	Name	Mass	Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
25	Cross-	1	57	Tetrahydrofuran	10.1393	X					X			
	coupling of alkenyl- carboxylates	1	57	Acetic acid ethyl ester	8.9457		\boxtimes				X			Partly water NaOH(aq), NaCl(aq)
	with	1	57	Dichloromethane	39.4227					X	×			NaCI(aq)
	Grignard	1	57	Hexane; n-	75.1611					×	×			
	reagents	2	57	Tetrahydrofuran (from HexylMgCl)	3.281	X					×			HCl (aq),
	-	2	57	Tetrahydrofuran	6.0483	X					×			NaCl(aq) HCl (aq),
		2	57	Acetic acid ethyl ester	19.287		X				×			NaCl(aq) HCl (aq),
		2	57	Hexane; n-	61.4883					\mathbf{X}	X			NaCl(aq)
26		1	58	Nitromethane	3.578	X				(🗙)	X			
		1	58	petroleum ether	not. spec.					×	X			
27a	Alkylative or	1	252	Tetrahydrofuran	4.1379	X					X			HCl (10%)
	Arylative	2	60	Tetrahydrofuran	53.6979	X					×			(hydrolysis) HCl (10%)
	Carboxyla -	2	60	Tetrahydrofuran	7.8325	X					×			(hydrolysis) HCl (10%)
	tion of	2	60	Diethyl ether	4.4535	X					X			(hydrolysis) HCl (10%) (hydrolysis)
	Alkynes	2	60	Acetic acid ethyl ester	not spec.		×				×			(flydrofysis) brine
	·	2	60	hexane/EtOAc/AcOH	not. spec.					×	×			
27b	see 27a	1	253	Tetrahydrofuran	17.9061	X						X		
		1	253	Diethyl ether	13.1666		×					×		
		2	188	-										
		3	188	Methanol	0.214	\mathbf{X}					\mathbf{X}			
		3	188	Ammonia	0.4166	\mathbf{X}					\mathbf{X}			
		4	188	Xylene See 27a for syntheses 5 and 6	1.4877	X					X			

						Func	tion of	solven	t		Rem	oval of		Aqueous
											solve	ent		solutions
No.	Method	Step	Ref.	Name	Mass	Reaction	Extraction	washing (dilution)	Recrystallisation	Chromatography	Distillation	Filtration	Decantation	washing
28	Olefin	1	61	Acetic acid ethyl ester	845.8273		х	X			X			(water was
	metathesis	1	61	12% Acetic acid ethyl ester / hexanes	not spec.					X	\mathbf{X}			solvent)
29a	Nenajdenko,		62	Ethanol	0.4079			х				х		
_,	2005		62	Acetone	0.4105			×				×		
			62	Diethyl ether	0.3679			X				X		
		1	62	Ethanol	4.7364	X					×			
		1	62	Ethanol	0.4736			X				×		
		1	62	Hexane	1.5905			×				×		
		2	62	Dimethylsulfoxide	5.7763	X					×			HCl (5%)
		2	62	Hexane	13.8372		×				×			
		2	62	Hexane	13.8372					х	×			
29b	Nenajdenko,	1	63	Dimethylsulfoxide	8.5904	X					×			HCl (1M)
	2001	1	63	Dichloromethane	155.2120		×				X			HCl (1M)
				not spec.						×	×			
29c	Corey 1972	1-3	64	Methylene chloride	not spec.	X						Х		
		3	64	Pentane	not spec.		X					×		
		3	64	Methylene chloride	not spec.							×		
		3	64	Pentane	not spec.							×		
29d	Patil 2002	1	65	Dichloromethane	20.2371	X					X			
				not spec.						х	×			

Entry	Lit.	Assumption
2b	21	Step1: "under 20 bar H ₂ , at 1 mL/min flow rate" cannot be entered. Thus, the minimum amount was assumed.
5e	29	Step1: the authors produce the Zn-Cu-couple with 150 mmol of zinc. They use 69 mmol of this Zn-Cu-couple. As they used 0.75 g of
		coppersulfate to produce the Zn-Cu-couple, we assume 0.345 g of coppersulfate to be used in synthesis of cyclohexylidenecyclohexane.
		$(0.345 \text{ g} = 0.75 \text{ g} \cdot 69 : 150))$
5g	29	Step1: 10 mL solvent for extraction
6	32	A "small chrystal of iodine" is assumed to be about 0.001g. Washing with sodium hydrogen carbonate: Solubility in water 6.9g in 100ml at 0°C (at 60°C: 16.4g) (Lit: Handbook of Chemistry and Physiks, David R. Lide, 73RD Edition 1992-1993, ISBN 0-8493-0473-3, S. 4-98)
		So the purity is $6.9/106.9 = 6.454\%$. As the density is not known it is supposed, that 1 ml is 1 g. Washing with sodium chloride (aq): Solubility in water 35,7g in 100ml at 0°C (at 100°C: 39,12g) (Lit: Handbook of Chemistry and Physiks, David R. Lide, 73RD Edition 1992-1993, ISBN 0-8493-0473-3, S. 4-98) So the purity is $35,7/135,7 = 26,308\%$. As the density is not known it is supposed, that 1 ml is 1 g.
7	33 34	Step 2: in literature ³⁴ the preparation of $1,1,1$ -tribromo-2-methyl-2-heptanol is not described. There is a reference to the literature. ³³
		Thus, the general protocol of the literature ³³ was applied to the production of 1,1,1-tribromo-2-methyl-2-heptanol. In order to avoid a discrimination of this procedure, a yield of 100% was assumed.
9	36	The authors did not denote the coupled product. As a hydrogen source is necessary and only methanol is available, the first conceivable
-		coupled product is CH ₃ OB(OH) ₂ . Possibly it will form the trimethyl ester in another conversion.
10	246 37	Step2: 0.03 mL hexane. In fact, the actual amount will differ a bit, because a 1M solution of the catalyst $(P(C_4H_9)_3)$ in 0.03 mL is used. I.e. there is also another compound in this amount.
11		The preparation of Grignard compounds often uses nearly equimolar amounts of alkyl halide and magnesium. E.g. the protocol of Boeckman et al. ²⁵⁵ describes the conversion of 1.086 mol magnesium with 1 mol vinylbromide (75 mL) in tetrahydrofuran (200 mL) within two hours. The reaction of 0.4 mol of magnesium and 0.4 mol of iodomethane (56.7 g) in 200 mL diethyl ether within 2.5 hours is reported in another protocol. ²⁵⁶ Therefore, we assume the following: magnesium (1 mol), methylbromide (1 mol) react to 100% in diethyl ether (150 mL) within 2 hours.
12	39	Step2: instead of 1.29 M solution of secbutyllithium, we considered 1.62 M, because data of such a concentration was readily available. We assumed 2,4,6-tri-isopropylphenylsulfinic acid to be the coupled product, because nitrogen evolves during the reaction.
13	40	Step1: the literature quantity of 1.06 mol of lithium compared to the necessary amount of 0.335 mol is very exaggerated. In order to obtain a more realistic overview of the synthesis, the ideal amount of 0.335 mol was assumed. Step2: the coupled product in the stoichiometric equation is not clear, therefore all atoms of potential coupled products were
		collected to one formular?. Step3: copper bromide-dimethyl sulfide is considered to be a catalyst which has to be used in stoichiometric amounts. Therefore, if was entered as substrate and as product.
		Step3: methyllithium was used as 1.4 M solution in hexane. However, no information concering the density was available. Therefore, another example could be helpful: the density of a 1.6 M solution in diethyl ether is 0.732 g/mL or 732g/L. Such a solution contains 30.76598 g/L (=1.4 mol/L x (21.9757 g/mol)). Thus, the purity is 0.04203 (= 30.76598 g/L / 732g/L) and the amount of diethyl ether in 1000 mL is 701.23 g (= 732g - 30.76598 g). A simple approximation of the amount of hexane could be 700 mL.
15	42	Step2/3: the authors obtained 41.5 g of the product in the proceeding step 2 (synthesis of the lactone). However, according to the molecular masses of the substrate (264.425 g/mol) and the product (240.385 g/mol) and the quantities (substrate 0.17mol; product 41.5g=0.172639mol), the yield would be 101.55%. Apparently, the crude product is impure. In note 15 the authors describe which by-products they obtain, even the quantities. Though note 15 belongs to the third step, the by-products can only result from the

Table S 10 Assumptions that were made for the examination of alkene syntheses (Figure 1, Figure 2).

		second step. Therefore, the following by-products will be listed under 'By-products' in step 2 (synthesis of the lactone) and the crude product is considered to contain 30.7g of the product (= $41.5g - 10.8g$), which has to be entered in the third step. Thus, the yield in the second step is 75.1% (= $30.7g/240.385g/mol / 0.17mol$) in best case. In the third step the yield is not 69% (authors) but 91.7% (= $23g/196.375g/mol / 30.7g/240.385g/mol$). The overall yield for step 2 and 3 is 68.8% (= 75.1% x 91.7%), which corresponds to the yield of 69% (authors). Including step 1, the overall yield is 67.5% (= 98% x 75.1% x 91.7%).
		By-products found: thiophenol 5g; diphenyl disulfide 0.2g; dinonyl ketone 2.4g; S-phenyl decanoate 0.8g; enol of 2-methyl- 3,5-diketotetradecane 2.4g; Sum=10.8g
18	45	Step1: 100% yield Step2: 100% yield, and minimal amount of Mg
10		Step1: 100% yield Step2: 100% yield, and minimal amount of Mg Step3: instead of 80µL water, the stoichometrical minimal amount of 0.2 mmol was assumed
19b		Step 5: Instead of sould water, the stolenometrical minimal amount of 0.2 minor was assumed Step 4: Assuming that at minimum the twofold quantity of hydrochloric acid ((substrate, 1mol = 162g)) would be necessary, one could
190		note $2*161g=322g$ Hydrochloric acid (aq, 1 M). As 2 mol of water have been allocated to the substrates, $322g - 2*18g = 286g$ of
		hydrochloric acid are considered. No further work up was considered and the yield is assumed to be 100%.
20	251	Step5: Instead of 130g of Zn-Cu-couple, 120 g of zinc and 10 g CuO were considered from which this couple is made. The utilization of
20		hydrogen was ignored.
21		Step 1: The amount of hexane (58.78 mL) of the butyllithium solution is calculated: With $M(C_4H_9Li) = 64.0561g/mol$ and $c(C_4H_9Li)=1.62$ mol/L there are $64.0561g/mol*1.62$ mol/L=103,770882 g/L
		Therefore, 0.102 L contain $m(C_4H_9Li)=103,770882 \text{ g/L}*0.102 \text{ L}=10,58462996\text{g}$ and 69.36g-10.58462996g=58.77537004g hexane Step4: The density of a 1.7 M solution (t-butyllithium) is 0.652 g/mL. $M(t$ -BuLi)=64.0561 g/mol. Therefore, there are 108.89537 g/L (=64.0561 g/mol *1.7 mol/L) of t-BuLi in solution. This means a purity of 108.89537 g/L : 652 g/L = 0.1670174. Literature: "1.72 M solution of tert-butyllithium in pentane (158 mL, 272 mmol, 4.9 equiv)" Assumption: Instead of a 1.72 M solution a 1.7 M solution is assumed.
22	9	Step 1: No further work up was considered and the yield is assumed to be 100%
		Step 4: 2 M solution of trimethyl aluminum in hexane is used. Two equivalents (i.e.0.0004 mol) of trimethyl aluminum are used. Thus
		about 0.0004 mol / 2 mol/L = 0.0002 L hexane are used. The purity of Rochelle salt solution is assumed to be $9.1\% = 0.091 = 0.1g$ (salt) /
		(0.1g (salt) + 1g (water)). The density is not known. Thus 1 g/mL are assumed.
		0,0002 mol water were allocated to the substrates to fullfill stoichiometry.
23	55	The aqueous work-up using HCl is considered to contribute to the stoichiometry, because the alane will be decomposed.
24	252 56	Step1: General procedure A was considered. The hint "GLC analysis showed complete conversion in 2 h with less than 2% Wurtz
		coupling." was interpreted in that way that 2% of Wurtz coupling product was formed, i.e. a yield of 98% was assumed.
27b	253	Step 1: As no stoichiometric equation has been indicated in literature ²⁵³ , we assume the one shown here. The quantity of tetrahydrofurane
	188	soluting DIBAH (1.0 M solution) is considered to be $0.0454 \text{ mol} / (1 \text{ mol}/\text{L}) = 0.0454 \text{ L}$.
		Step2-Step4: In literature ¹⁸⁸ , the synthesis not of DBU but of DBN is presented! This protocol was adapted, i.e. instead of the five-ring
		pyrrolidone the sept-ring azepan-2-one was considered using the amounts and yields of the DBN-synthesis. Assumption: 100% yield of
		3-(2-oxoazepan-1-yl)propanenitrile are assumed.
29c	64	The range of yield was quoted with 80-90%. The best result, i.e. 90% is assumed.

Entry	Method	Lit.	Work-up procedures not considered
1	Elimination	19	Step1: Washing with ether. Addition of water to precipitate.
2a	Wittig	20	Step2: Preparation of NaH by washing with pentane.
	-		Step3: Extraction with pentane (several times). Washing with water. Drying with sodium sulphate.
			Distillation of solvent. Filtration of pentane solution with Al ₂ O ₃ and eluation with pentane.
2b	Wittig Catalytic	21	Step1: catalyst cartridge containing 10% Pd/C
			Step2: flash column chromatography (benzene/pentane, 60:40)
3	Carbene Dimerisation	22	Step1: Pouring into water. Extraction with dichloromethane. Washing with aqueous sodium hydroxide.
			Drying. Treating with charcoal and filtration. Distillation of the solvent.
			Step2: Distillation of the solvent. Washing of the organic layer with water, drying, and evaporation to
			dryness. Drying in vacuo.
4a	Barton-Kellogg	23	Step1: Distillation of the solvent. Washing with brine. Drying with MgSO ₄ . Concentration.
			Recrystallisation from hexane.
			Step2: Potential excess of bubbling hydrogen sulphide. Removal of the solvent.
			Step3: Separation and saturation of the aqueous layer with NaCl. Extraction with ether. Washing the
			combined organic portions with brine and drying (MgSO ₄). Concentration.
			Step4: Column chromatography over silica gel with hexane
4b	Barton-Kellogg (Feringa)	24	Step1: Drying with anhydrous sodium sulphate
			Step3: Amount of SiO ₂ was not indicated. Elution with a mixture of hexane /CH ₂ Cl ₂ 9:1
			Step4: Extraction with diethyl ether, washing with water and drying with magnesium sulphate.
			Chromatography with SiO ₂ , pentane:ether=9:1
			Step5: Removing volatile components under reduced pressure. Chromatography with SiO ₂ ,
		66	pentane:ether=9:1
5a	McMurry (Zink)	- 26	Step2: Recrystallisation from ethanol / cyclohexane
5b	McMurry (Lithium aluminum	20	Step1+2: Tetrahydrofuran
	hydride)		
5c	McMurry (Potassium)	21	Step2: Quenching with ethanol
5d	McMurry (Lithium)	28	Step1: Cleaning of lithium with methanol and petroleum ether
5e	McMurry Zn-Cu DME	29	Step0: Washing with acetone and ether. Drying under vacuum.
			Step1: Washing with pentane. Drying under vacuum.
			Step3: Filtration through Florisil
5f	McMurry Ti-TMSCl		Step1: Filtration through silica, chromatography (hexane/ethyl acetate, 10:1)
5g	McMurry TiCl2 (ball mill)	31	Step 1: Isolation of the product. The yield of about 80% was determined with gaschromatography
6	Claisen rearrangement	32	Step 1: The quantity of drying agent is not indicated in literature. Therefore, it is ignored quantitatively.
7	Alkylation – elimination process	55 54	Step2: Extractive workup: Ether, washing water, drying over Na ₂ SO ₄ . Purification by column
			chromatography (benzene)
			Step3: Pouring into water, drying over Na ₂ SO ₄ , column chromatography
8	Suzuki-Miyaura, ZhouLarock	35	Step3: drying over MgSO ₄ , chromatography
9	Hydroarylation	36	the reaction mixture is filtered through a pad of Celite®

Table S 11 Work-up procedures of syntheses in Table 1 which are not considered in a quantitative

			93 g SiliaFlash P60 silica gel (230-400 mesh) using hexanes/ethyl acetate (24:1) as the eluent.
		246-37	Approximately 1 L of the solvent mixture was used.
10	Arylzincation (MurokamiOshima)	246 37	Step2: extraction with ethyl acetate, drying over Na ₂ SO ₄ , chromatography (silica gel, hexane)
11	Negishi-Tan	38	Step2: Quenching with diluted HCl. Extraction with diethyl ether. Washing of combined organic layers with brine. Drying over MgSO ₄ , filtration and concentration. Purification by flash column
			chromatography.
			Step4: Quenching with saturated NH ₄ Cl and extraction with diethyl ether. Washing of combined organi
			layers with brine. Drying over MgSO ₄ , filtration and concentration. Purification by flash column chromatography.
2	Shanira	39	Step2: Drying over MgSO ₄
2	Shapiro	40	
.3	Peterson		Step1: dried over MgSO ₄ ; Purification via flash column chromatography (silica gel 230-400 mech 450 s of sil loaded with homeone alwart 10.1 homeonediated ether)
			mesh, 450 g of oil, loaded with hexanes, eluant 10:1 hexanes:diethyl ether)
			Step2: flash column chromatography (silica gel 230-400 mesh, 450 g, eluant
			hexanes) Star 2: filtered threads a 75 - leave of Colity 545 daied over McCO. [] Durification of the maidee of
			Step3: filtered through a 75-g layer of Celite 545, dried over MgSO ₄ , []. Purification of the residue vi
4		247	flash column chromatography (silica gel 230-400 mesh, 450 g, eluant hexanes)
.4	Julia-Lythgoe (Markó)	41	Step2: Sodium hydroxide solution. Seperation of benzene layer and drying over anhydrous MgSO4. Recrystallization from hexane
			Step6: drying over MgSO ₄
	T1	42	Step6: drying over MgSO ₄ , chromatography
15	Thiolester conversion		Step1: dried over anhydrous magnesium sulfate
			Step2: butyllithium in hexane: Instead of a 2.53 M a 2.5 M solution was considered
			Step2: dried over anhydrous sodium sulphate Step2: This and material is applied to the tep of a 4.8 am x 20 am column of 210 a of 220,400 mach
			Step3: This crude material is applied to the top of a $4.8 \text{-cm} \times 30 \text{-cm}$ column of 210 g of 230-400 mesh ailies cal 60 and aluted with bayes (20 mL per min 120 mL fractions)
16	U1-	43	silica gel 60 and eluted with hexane (20 mL per min, 120-mL fractions)
16	Heck		Step1: Flash column chromatography was performed using silica gel (6
		0, 1248	cm diameter x 35 cm height), eluting with 19/1 hexane/diethyl ether
17	Heck (Itami)	Step 1^{248}	Step 1: pouring into ice-H20, extraction with CHCl ₃ . washing with H_2O , drying over Na_2SO_4 .
		Step 2^{249}	Concentration and column chromatography (SiO ₂ , benzene, then CHCI ₃
		Step 3-5	Step2: Extraction with CHCl ₃ , washing with H_2O , drying Na_2SO_4 , column chromatography (SiO ₂ ,
			hexane, CH_2Cl_2)
			Step3: Filtration (silica gel pad, EtOAc), chromatography (SiO ₂ , hexane, EtOAc)
			Step4: Extractive work-up, chromatography (SiO ₂ , hexane, EtOAc)
0	Xama agent: A 11	45	Step5: Filtration (silica gel pad, EtOAc), chromatography (SiO ₂ , hexane, EtOAc)
18	Yamagami Alkyne	-	Step1: pad of silica gel with EtOAc, concentration under vacuum, chromatography (SiO ₂ hexane)
			Step3: pad of silica gel with EtOAc, concentration under vacuum, silica gel preparative TLC (hexane/Et ₂ O)
19b	Suzuki (Nunes)		Step2: Drying over Na ₂ SO ₄ . Recrystallization.
			Step3: Washing the product with ether
			Step4: Drying over MgSO ₄
			Step6: Workup procedures were not considered, because no protocol exists for this hydrolysis.

			Step7: Drying over MgSO ₄ . Purification with chromatography (silica gel, cyclohexane)
19c	Suzuki (Nunes)		Step2: Drying over Na ₂ SO ₄ . Recrystallization.
			Step4: Drying over MgSO ₄
			Step6: Workup procedures were not considered, because no protocol exists for this hydrolysis.
			Step7: Drying over MgSO ₄ . Purification with chromatography (silica gel, cyclohexane)
20	Negishi (Nunes)		Step1-4 see 19b
			Step 5: Purification by flash chromatography on silica gel with hexane
22	Wang	53 52	Step1: Washing thrice with water. Drying over sodium sulfate.
	-		Step3: Filtration through a short pad of celite eluting with dichloromethane. Purification of the residue by
		9	column chromatography (hexane $\rightarrow 10\%$ EtOAc/hexane)
			Step4: Combination and drying of organic layers (MgSO ₄). Concentration in vacuo. Purification of the
			residue by column chromatography. Purification by column chromatography (hexane $\rightarrow 10\%$
			EtOAc/hexane)
23	Allylation of Alkenylalanes	55	The organic layer is separated and the aqueous layer is extracted twice with
			pentane. The combined organic layer is washed with water, saturated aqueous sodium bicarbonate, and
			water again. After the organic extract is dried over anhydrous magnesium sulfate, the solvent is
			removed thoroughly using a rotary evaporator (15–20 mm), and the crude product is passed through a
			short (15–20-cm) silica gel column (60–200 mesh) using hexane as an eluent.
24	Wang	56	Step2: Drying anhydrous MgSO ₄ . Chromatography (silica gel column using petroleum/ ethyl acetate as
	-		an eluent)
25	Cross-coupling of alkenyl-	57	Step1: The yellow organic phase is dried over anhydrous Na ₂ SO ₄ and gravity filtered through a cotton
	carboxylates with Grignard		plug and the filtrate collected in a 1-L round-bottomed flask.
	reagents		The crude oil is loaded onto a fritted chromatography column (8.0 cm outer diameter) that had been
	-		drypacked with silica gel (300 g) and wetted with hexanes under air pressure.
			Step2: A fritted chromatography column (8.0 cm outer diameter) is dry-packed with 180.0 g of silica gel
			(Note 10) and wetted with hexanes under air pressure.
26	Li	58	Purification by silica gel column chromatography eluting with petroleum ether
27a	Alkylative or Arylative	60	Step2: Hydrolyzation with 10 % HCl aq. at 0 °C and extraction of the aqueous layer with EtOAc. The
	Carboxylation of Alkynes		combined organic layer was washed with brine, dried over Na ₂ SO ₄ , and concentrated. The residue was
			purified by silica gel column chromatography
			(hexane/EtOAc/AcOH=80/20/1).
27b	see 27a	253	Step1: Washing with cold diethyl ether (15mL portions)
			Step4: Presence of p-toluenesulfonic acid
28	Lipshutz (Metathese)	61	Flash chromatography on silica gel (12% EtOAc/hexanes)
29a	Nenajdenko, 2005	62	Step2: Drying with anhydrous sodium sulphate
29b	Nenajdenko, 2001	63	Drying over Na_2SO_4 . Purification by column chromatography in SiO ₂ .
29c	Corey 1972	64	Step1-3: Methylene chloride as solvent for reaction
	2		Step3: Addition of pentane (4 vol.). Additional cycles of methylene chloride extraction and pentane
			precipitation.
29d	Patil	65	Addition of SiO ₂ (3g) and loading of a SiO ₂ (30g) column.