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ABSTRACT

Fouling is a term describing progressive reduction of membrane permeability during filtration of
solutes and suspensions. The problem with fouling lies in its complexity and our lack of under-
standing of the science behind it. In wastewater treatment applications the problem is addition-
ally magnified by polydispersity of wastewater suspensions. For these reasons fouling models
in wastewater treatment applications are usually black-box or grey-box. Theoretical/classical
fouling models are available but are applied predominantly to monodisperse suspensions where
one fouling mechanism dominates and hence, only one classical fouling equation suffices to
describe the filtration process. In wastewater applications we need to solve several equations
simultaneously in order to be able to predict different stages of the filtration process. This paper
presents such a model which combines three classical fouling mechanisms: blocking, constriction
and cake growth. The paper shows successful calibration results but also indicates parameter
identifiability issues.
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1 INTRODUCTION

As briefly outlined above, fouling is still not well understood, especially when the medium being
filtered is polydispere such as wastewater. Due to complex nature of the fouling phenomena
during filtration of wastewater suspensions, fouling models applied to wastewater treatment are
usually black-box or grey-box. Such models are simpler, often easier to calibrate, and faster
to execute than more complex mechanistic models but their downside is lack of generality
and completeness. Meanwhile, classical mechanistic fouling models, i.e. pore constriction,
complete pore blocking, intermediate pore blocking, and cake formation, as defined in [1],
offer more physical description of fouling mechanisms but historically had been applied only to
monodisperse suspensions where one fouling mechanism dominated over the other and only this
one classical fouling model was sufficient to describe the entire course of the filtration process.
In case of polydisperse suspensions such as wastewater one classical fouling mechanism cannot
successfully describe the entire filtration process due to simultaneous as well as sequential
occurrence of several fouling processes.

The research question, which the authors try to answer in this piece of work, is how to combine
these classical fouling models into one single fouling model such that membrane fouling during
filtration of various polydisperse suspensions can be accurately predicted. This problem was
already attempted in several earlier publications, e.g. [2, 3]. However, some of the proposed
models were either presented in an analytically derived integral form which limited their ap-
plication to constant trans-membrane pressure (TMP) dead-end filtration and were based on
physically incorrect assumptions [2]. For example, in [2] the authors assumed that cake grows
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only on the previously blocked area and introduced the concept of ‘blocked flux’ which dis-
agrees with the original concept of pore blocking which, being an open pore area loss model,
assumes that the flow through the blocked part of the membrane is null and stops as soon as
the pore is blocked. As a result of this, pore blocking was not actually represented and the
model was reduced to pore constriction and cake filtration only. Additionally, the model of
[2] was presented in an integral form which limits its application to constant flux unstirred
dead-end filtration. In [3], the authors rightfully assumed zero flux through the blocked pores
and additionally modelled cake consolidation through entrapment of soluble and colloidal ma-
terial. What stems from it is a reduction of the available soluble and colloidal component
concentrations at the membrane surface via prefiltering effects of the cake and thus lower pore
constriction and blocking rates under the cake. At the same time though, their model assumes
that cake grows instantly on the entire unblocked area and that not only constriction, but also
pore blocking occurs below the cake. It may be argued that these two assumptions are not
physically correct.

The model presented here is based on slightly different assumptions as outlined in Section 2.1.
It was successfully calibrated on the data obtained from dead-end and cross-flow filtration
experiments, hence proving its ability to predict fouling on different types of membranes, con-
figurations and with complex feeds. Since it was formulated as a system of differential and
algebraic equations it can be used to simulate membrane operation under time-varying flux
and pressure conditions, contrary to [2] whose models were presented in an analytically derived
integral form for dead-end constant TMP filtration only. The work presented here also demon-
strates the difficulty in calibrating fouling models and prompts the need for more research
focused on experiment design and identification of multimechamism fouling models, such as
one presented in this paper.

2 MODEL FORMULATION

The model is formulated as a system of 6 ordinary differential equations (ODEs) and 3 algebraic
equations (AEs). The ODEs describe, respectively, pore blocking, cake growth, pore constric-
tion on the unblocked membrane and under the cake, growth of area under the cake, and change
of average membrane resistance under the cake. The AEs describe the relationships between
TMP and the two modelled flux components (see Fig. 1) and ascertain that the sum of the
blocked, unblocked and ‘caked’ areas on the membrane is always equal to the total membrane
area A. The model contains 6 unknown parameters: α1, α2, β1, β2, f R′, Rc,0/Rm - see Sec. 2.2.

2.1 Modelling Hypotheses

Figure 1: Graphical representation of
flux split on a membrane

Fouling is modelled here with three classical fouling
mechanisms: constriction, blocking, and cake growth.
Pore blocking leads to gradual reduction of open pores
and an immediate and complete reduction of flux to
zero through the blocked pores. Therefore ‘blocked
flux’ as in [2] does not exist. The model divides the
membrane into three areas: blocked (Ab), unblocked
(Au), and area under the cake (Ac). Cake grows only
on Ac which increases in time as cake particles keep
landing on the membrane surface. The growth of Ac
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can be viewed as ‘incomplete’ pore blocking. The particles cover the membrane pores and
create initial resistance Rc,0 but do not block the pores completely and hence let the flux across
the membrane to continue, albeit at a diminished rate. The rate of pore constriction under the
cake is slower because the flux across Ac is lower due to additional resistance created by the
cake. Additionally, cake acts as a prefilter for some colloidal matter. Hence, pore constriction
occurs in the pores of the unblocked membrane surface as well as under the cake. Pore blocking
occurs only on the unblocked membrane with area Au. The flux across the membrane is divided
into two parts: flux through the unblocked area Ju and flux through the cake-covered area Jc.

2.2 Model Equations

2.2.1 Classical fouling equations

Pore blocking is described with complete pore blocking mechanism

dAb/dt = α1Cp Ju (A−Ab − Ac) (1)

where α1 (m2 kg−1) is the pore blocking parameter and Cp (g m−3) denotes the concentration
of particulate matter. Pore constriction occurs on the unblocked membrane (Eq. 2) and under
the cake (Eq. 3).

dRinb/dt = β1

(

2 π φP L3
)− 1

2 Rinb

3

2 JuCs (2)

dRic/dt = β2

(

2 π φP L3
)− 1

2 Ric

3

2 Jc Cs (3)

in which Rinb and Ric (m
−1) represent, respectively, the resistances of the unblocked membrane

and membrane under cake due to pore constriction. β1 and β1 (m3 kg−1) are pore constriction
parameters, Cs (g m

−3) denotes the concentration of dissolved organic matter (DOM), φP (m−2)
represents pore density, and L (m) is membrane thickness. φP and L are calculated from initial
conditions, i.e. flow and pressure at the beginning of the filtration study. Both equations above
are derived from the fundamental pore constriction equation describing a reduction of mean
pore radius in time due to deposition of DOM inside the pores’ inner walls. Cake growth is
modelled as net increase in cake resistance Rc (m−1) due to deposition of particulate matter
with concentration Cp (g m−3) minus the effects of cake removal due to cross-flow, see second
term in Eq. 4.

dRc/dt = f R′ JcCp − kr Rc (4)

where kr (s−1) is the cake removal constant, R′ (m kg−1) is the specific cake resistance and f
is a dimensionless parameter describing fraction of the particular matter contributing to cake
formation. For the purpose of model identification f and R′ are lumped into one calibration
parameter f R′. Rate of membrane area coverage with cake is modelled with ‘complete pore
blocking’ type equation with proportionality constant α2. Both processes share the same type
of dynamics since they both describe pore blocking with the only difference that the second
one is ’incomplete’, i.e. the pores are not entirely closed by the particles. In most cases the
chance of a particle to completely block a pore will be lower then to block it partially, hence
usually α2 > α1.

dAc/dt = α2 Cp Ju (A− Ab − Ac) (5)
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2.2.2 Total resistance of membrane covered with cake

The rate of change of total resistance of cake-covered membrane Rc,tot is given as the sum of the
rate of change of resistance due to constriction under cake given in Eq. 3, rate of cake growth
described with Eq. 4 and the change of membrane resistance under cake due to gradual coverage
of unblocked membrane with cake layer (Eq. 5). This equation arises from the fact that in each
subsequent time moment cake layer advances onto an area with different unblocked membrane
resistance Rinb while the unblocked membrane is simultaneously undergoing pore constriction.
This process is visualised in Fig. 2. Since we model the membrane as a point in space we
need to calculate average resistance under the cake such that the flow through Ac with such
equivalent resistance Rc,tot is equal to the sum of flows through all individual elementary areas
having different resistances.

Figure 2: Cake area advancement and total resistance of cake-covered membrane Rc,tot

The equality of flow is represented with Darcy’s law which relates flux to pressure and resistance.

∆P

µRc,tot(t + dt)
(Ac + dAc) =

∆P

µ (Rc,tot(t) + dRic + dRc)
Ac +

∆P

µRinb(t)
dAc (6)

The left side of Eq. 6 represents the flow over caked-covered area Ac + dAc at time moment
t+ dt whilst the right side represents the sum of two flows: one across Ac with resistance Rc,tot

plus elementary increases of resistances dRic and dRc, and the other across additional area
increment dAc with resistance Rinb(t). After simplification and rearrangement we obtain the
expression for Rc,tot at time moment t+ dt

Rc,tot(t + dt) =
Rinb(t) (Rc,tot(t) + dRic + dRc) (Ac + dAc)

AcRinb(t) +Rc,tot(t) dAc + dRic(t) dAc + dRc(t) dAc

(7)

which after substitution of Rc,tot(t + dt) with Rc,tot(t) +
dRc,tot

dt

∣

∣

∣

t
dt, i.e. the first two terms

of the Taylor expansion series, and eliminating infinitesimally small terms, gives the following
expression

dRc,tot

dt
=

dRic

dt
+

dRc

dt
+

1

Ac

dAc

dt
Rc,tot

(

1−
Rc,tot

Rinb

)

(8)

in which the first term is described by Eq. 3, the second term is calculated with Eq. 4 whilst
the third term describes the change of resistance due to cake advancement.

2.2.3 Auxiliary algebraic equations

The ODEs are supplemented with algebraic equations (AEs) which ascertain that A−Au−Ab−

Ac = 0 and calculate Ju and Jc from the corresponding resistances: Rm +Rinb and Rm +Rc,tot,
given dynamic permeate viscosity µ (Pa·s) and ‘clean’ membrane resistance at the beginning
of filtration Rm. Ju = ∆P

µ (Rm+Rinb)
, Jc =

∆P
µ (Rm+Rc,tot)

. The volumetric flows are calculated from

the fluxes and the corresponding surface areas, i.e. Qu = JuAu and Qc = JcAc.
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2.2.4 Initial conditions

The initial conditions for Eqs. 1, 2, 3 + 8, 4, 5, and 8 are, respectively, Ab(0) = 0, Rinb(0) = 0,
Ric(0) = 0, Rc(0) = Rc,0, Ac(0) = 0, Rc,tot(0) = Rc,0.

3 MODEL CALIBRATION

3.1 Experimental Procedures

The model was calibrated on two sets of experimental data obtained from two different sources.
For a detailed description of the experimental methods the reader is referred to the original
papers of [2] and [4]. This section just outlines the most important information about the type
of equipment used and the environmental conditions.

The first set of data was obtained by [2] using the 25mm dia. Amicon ultrafiltration cell
model 8010 with stirring switched off and the cell operating at a constant TMP of 14kPa
and a constant temperature of 20◦C. Filtration was carried out on two different membranes
(0.2µm polycarbonate track etched and 0.22µm hydrophobic DuraporeR© membrane (GVHP)),
with three different solutions (polystyrene microsphere solution, bovine serum albumen (BSA)
solution, and BSA solution prefiltered through 0.1µm hydrophilic DuraporeR© membrane). Four
filtration experiments were carried out. Each experiment was performed at different solution
concentration which resulted in a family of flux and resistance curves. Due to space limitation
in this manuscript only three out of four experiments were used for identification.

Data for the second calibration study was obtained by [4] from a crossflow filtration cell equipped
with a 0.22µm hydrophilic Millipore polyvinylidene fluoride (PVDF) membrane receiving a
100 mgL−1 0.2µm sodium alginate solution at different sub-critical flux rates. For each preset
flux rate the cell was operating for a period of time sufficient to observe a two-stage TMP
profile, i.e. slow gradual pressure rise over a relatively long period of time followed by a rapid
TMP increase. The experiment was run at 5 different subcritical flux rates of, respectively, 40,
45, 50, 55, and 60 Lm−2h−1. Each experiment was carried out on a virgin membrane. The
critical flux for this alginate solution and membrane was determined in a separate flux stepping
experiment to be 66 Lm−2h−1.

3.2 Numerical Methods

In the first calibration study four model parameters were calibrated in three separate calibra-
tions: β1, α2, f R′, and initial resistance of cake deposit Rc,0. In this as well as the second
calibration we assumed that α1 = 0 and β2 = 0, i.e. no pore blocking and no constriction under
cake. In the second calibration study we additionally assumed that Rc,0 = 0. Thus, on both
occasions we calibrated the reduced order model. The reason for this decision are parameter
identifiability issues encountered during model calibration, as described later in text. The model
parameters were identified in two steps: first, genetic algorithm (GA) was used to find a global
minimum since the objective function looks to be non-convex; second, a Levenberg-Marquardt
algorithm implemented in MATLAB function lsqnonlin was used to refine the solution and
output the Jacobian of the objective function around the minimum necessary for the calculation
of asymptotic confidence intervals of the model parameter estimates. The objective function
was the sum of squared errors between measured and calculated outputs. In the first calibration
experiments the errors were calculated between the predicted and measured (Q/Q0) and Rtot.
The data were normalised to 0 − 1 to ascertain that the errors in flows and resistances were
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Figure 3: Flow decline and resistance increase during filtration of 0.25µm polystyrene micro-
sphere solutions through 0.2µm polycarbonate track etched membranes.
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Figure 4: Flow decline and resistance increase during filtration of standard BSA solutions
through 0.22µm hydrophobic Durapore membranes (GVHP).

assigned equal weights. In the second calibration study the objective function was the sum of
squared errors between modelled and predicted TMP at each flux.

3.3 Constant-pressure Unstirred Dead-end Filtration

Outputs of the model are presented in Figures 3,4, and 5. The estimated parameter values
together with asymptotic 95% confidence intervals are shown in Table 1 in which Exp. 1 cor-
responds to filtration of 0.25µm polystyrene beads through 0.2µm polycarbonate track etched
membrane, Exp. 2 corresponds to filtration of standard BSA solution through 0.22µm GVHP
membrane, whilst Exp 3 corresponds to filtration of 0.1µm prefiltered BSA solution through
0.22µm GVHP membrane. Clean membrane resistances Rm were calculated from initial con-
ditions and were found to be 5.963× 1010, 4.184× 1010, and 4.622× 1010, respectively.

Table 1: Calibration results on dead-end constant pressure filtration data

β1 (m3 kg−1) α2 (m2 kg−1) f ′R′ (m kg−1) Rc,0/Rm (–)

1 0 5.370× 104 ± 6.747× 103 2.252× 1014 ± 3.142× 1012 0.2945± 0.0167
2 2.057× 10−7

± 1.203× 10−7 2.064× 10−2
± 1.199× 10−1 1.292× 109 ± 5.164× 1010 0.5111± 10.22

3 1.694× 10−7
± 2.708× 10−8 0 0 0
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Figure 5: Flow decline and resistance increase during filtration of 0.1µm prefiltered BSA solu-
tions through 0.22µm hydrophobic Durapore membranes (GVHP).

As demonstrated, the model fits the data reasonably well on all three occasions, however,
looking at the concavity of the curves (see Fig 4), the quality of fit in Exp 2 is worse than
for the other two experiments which represent the extreme cases where a single mechanism
dominates fouling, i.e. cake filtration in Exp 1 and pore constriction in Exp 3 (notice zeros in
Table 1). In case of Exp 2 identification proved a little more problematic resulting in worse
fit and very large confidence intervals on the estimated parameters. The reason for such an
outcome can be two-fold - either inappropriate model structure or inappropriate objective
function. Recalibration with cake filtration replaced by pore blocking or with all processes
switched on could be attempted but it has already been suspected that the information used for
calibration was insufficient to attempt identification of the entire parameter set. GA was found
to converge to minima with similar objective function values but different parameter estimates
indicating that the objective function was non-convex. It is likely that some parameters, e.g.
α1 and f ′R′ may also be correlated.

3.4 Constant-flux Cross-flow Filtration

Table 2: Results of model calibration on long-term constant flux filtration data of [4]

Fluxes, Lmh 60 55 50 45 40

Parameter Unit

f ′R′
× 1014 m kg−1 3.62 1.68 0.754 1.03 0.427

α2 m2 kg−1 454 365 88.0 43.6 10.6
β1 × 102 m3 kg−1 3.91 6.97 1.29 1.26 0.303

The curve fits resulting from the model identification based on the measured TMP curves during
constant flux cross-flow filtration at 5 different subcritical fluxes are shown in Fig.6 whilst the
estimated parameter values for each flux are given in Table 2. The results show good model
fits with just two fouling mechanisms - pore constriction and cake formation. All estimated
parameters, if plotted, show exponential dependence on flux but the amount of information
provided by this single experiment is insufficient to make any of the observations conclusive.
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Figure 6: Calibration results on constant flux filtration data in a crossflow microfiltration cell.

4 CONCLUSIONS

Developing a single identifiable fouling model able to predict the course of filtration of different
suspensions on different membranes has so far proven difficult due to complexity of the fouling
phenomena, simultaneous and sequential occurrence of different fouling mechanisms, differences
in hypotheses regarding the model structure, problems with identifiability on available experi-
mental data. A candidate multimechamism fouling model was proposed in this study but the
data used for identification was insufficient to calibrate and validate the full model, resulting in
calibration of a reduced order model, albeit with good results. The calibration study revealed
the problems with parameter identifiability which could results from improper model structure
but were likely due to a poor choice of the objective function. In order to make progress in
modelling membrane fouling more efforts should be concentrated on appropriate experiment
design such that all measurable and observable quantities about the process are available for
model identification. Additionally, more sophisticated objective functions can be formulated,
e.g. exploiting the concavity of the curves by incorporating some measure of similarity between
measured and simulated n exponents in the Hermia’s equation [1] or partitioning the experi-
mental data into regions where different fouling processes dominate the filtration process.
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