Synthesis of the ABC substructure of brevenal by sequential exo-mode oxacyclizations of acyclic polyene precursors

Jessica A. Hurtak and Frank E. McDonald*

Department of Chemistry, Emory University, Atlanta GA, 30322, USA e-mail: fmcdona@emory.edu

SUPPORTING INFORMATION: Experimental details and characterization data

1) General experimental S-2
2) Synthesis of acyclic triene-triol 2 (Scheme 1) S-2
4-Hydroxybutanal, acetate ester $\mathbf{8}$ S-2
Terminal alkyne 9 S-3
Enone 10 S-6
Allylic alcohol 11 S-7
Diol 12 S-10
Lactone 13 S-10
Diene-diol 14 S-11
Bis-silyl ether 15 S-13
Dienoate-alcohol 16 S-14
Diene-aldehyde 17 S-15
Vinylic iodide 18 S-16
Bis-allylic alcohol 19 S-17
Triene-triol 2 S-18
3) Sequential oxacyclizations to form the AB rings from diene-diol 14 (Scheme 2) S-19
Iodomethyl tetrahydropyranols 20 and 21 S-19
Bicyclic polyethers 22 and 23 S-20
Bicyclic polyether 24 S-22
Bicyclic polyether 25 S-23
Bicyclic alcohol 26 S-24
4) Sequential oxacyclizations to form the AB rings from triene-triol 2 (Scheme 3) S-25
Tetrahydropyranol dienone 27 S-25
Bicyclic enone 28 S-27
5) Alternative synthesis of enone $\mathbf{2 8}$ from bicyclic polyether ester $\mathbf{2 2}$ (Scheme 4) S-28
Bicyclic aldehyde 29 S-28
Bicyclic enone 28 (from coupling 18 and 29) S-29
Bicyclic allylic alcohol 30 S-30
6) Preparation of tricyclic polyether $\mathbf{3 3}$ from bicyclic allylic alcohol $\mathbf{3 0}$ (Scheme 5) S-32
Bicyclic triol 31 S-32
Tricyclic polyether organomercurial 32 S-33
Tricyclic polyether 33 S-34
7) Preparation of bis-acetate dienoate $\mathbf{3 4}$ and its conversion to bicyclic $\mathbf{3 6}$ (footnote 26) S-36
Dienoate ester, diacetate 34 S-36
Unexpected formation of methylene-oxepane $\mathbf{3 5}$ S-39
Cis-fused bicyclic polyether 36 S-39
8) Iodocyclization of alkenyl triol $\mathbf{3 7}$ to tricyclic $\mathbf{3 8}$ (footnote 30) S-41
9) References S-43
10) General experimental: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian INOVA 600 , INOVA 400, and Bruker AVANCE 600 spectrometers. NMR spectra were generally measured from solutions of deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$, with the residual chloroform (7.27 ppm for ${ }^{1} \mathrm{H}$ NMR and 77.23 ppm for ${ }^{13} \mathrm{C}$ NMR) taken as the internal standard, deuterated acetone $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ with residual acetone (2.09 ppm for ${ }^{1} \mathrm{H}$ NMR and 30.6 ppm for ${ }^{13} \mathrm{C}$ NMR) taken as the internal standard, or deuterated benzene with residual benzene (7.16 ppm for ${ }^{1} \mathrm{H}$ NMR and 128.23 ppm for ${ }^{13} \mathrm{C}$ NMR) taken as the internal standard, and were reported in parts per million (ppm). Abbreviations for signal coupling are as follows: s , singlet; d , doublet; t , triplet; q , quartet; dd, doublet of doublet; ddd, doublet of doublet of doublet; dt, doublet of triplet; m, multiplet.

IR spectra were collected on a Thermo Scientific Nicolet iS10 FT-IR spectrometer as neat films on a plate with diamond screw-down tip. Mass spectra (high resolution ESI and APCI) were recorded on a Thermo LTQ FTMS Mass spectrometer. Optical rotations were measured using a Perkin-Elmer 341 polarimeter (concentration in $\mathrm{g} / 100 \mathrm{~mL}$). Thin layer chromatography (TLC) was performed on a precoated glass backed plates purchased from Silicycle (silica gel $60 \mathrm{~F}_{254}$; 0.25 mm thickness). Flash column chromatography was carried out with silica gel 60 (230-400 mesh ASTM) from Silicycle.

All reactions were carried out with anhydrous solvents in oven dried and argon-charged glassware. All anhydrous solvents were dried with $4 \AA$ molecular sieves purchased from Sigma Aldrich and tested for trace water content with Coulometric KF titrator from Denver Instruments. Reactants were used as received from commercial suppliers without prior purification, as were solvents used for extractions and chromatographic separations.

2) Synthesis of acyclic triene-triol 2 (Scheme 1):

4-Hydroxybutanal, acetate ester 8 was prepared in two steps from 4-penten-1-ol (39).

Preparation of 4-penten-1-ol, acetate ester 40: 4-Penten-1-ol (39, $10.54 \mathrm{~g}, 122.4 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. Vinyl acetate ($16.9 \mathrm{~mL}, 184 \mathrm{mmol}$) and CAL-B (500 mg) were added. The reaction mixture was stirred at room temperature for 3 h , then filtered over a pad of Celite (ether eluent) and concentrated under reduced pressure to afford $\mathbf{4 0}$ as a clear colorless liquid $(15.46 \mathrm{~g}, 120.6 \mathrm{mmol}, 99 \%$ yield $)$.

 40

Data for 40:

IR (thin film): 2922, 285, 1732, 1456, $1284 \mathrm{~cm}^{-1}$.
HRMS (NSI): m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$151.0730, found 151.0729.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{ddt}, J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.1,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{ddt}, J=10.2,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}$, $3 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,137.4,115.2,63.8,30.1,27.8,20.9$.

Preparation of aldehyde 8: Alkene $40(8.19 \mathrm{~g}, 63.9 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$. A stream of O_{2} was bubbled through the $-78{ }^{\circ} \mathrm{C}$ solution for 10 min , followed by a stream of O_{3} for 45 min , until the saturated solution took on a persistent pale blue color. The reaction was sparged with O_{2} at $-78{ }^{\circ} \mathrm{C}$ for an additional 10 min before the pale blue color faded. Dimethyl sulfide (30 mL) was added. The reaction mixture warmed to room temperature, and after $1 \mathrm{~h}, \mathrm{NEt}_{3}(20 \mathrm{~mL})$ was added, and the reaction mixture was stirred for 1 h . The reaction mixture was diluted with water. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($25 \mathrm{~mL} \times 3$). The combined organic layer was washed with water (50 mL), washed with brine, and dried over MgSO_{4} before filtration and concentration under reduced pressure to furnish aldehyde $\mathbf{8}$ as a yellow oil $\left(5.42 \mathrm{~g}, 41.7 \mathrm{mmol}, 64 \%\right.$ yield). The ${ }^{1} \mathrm{H}$ NMR spectrum matched reported spectra from the literature from PCC oxidation. ${ }^{1}$

8

Data for 8:

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.80(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{dt}, J=$ $7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{td}, J=7.1,6.4 \mathrm{~Hz}, 2 \mathrm{H})$.

Terminal alkyne 9 was prepared in three steps from 2-deoxy-D-ribose (41). ${ }^{2,3}$

Preparation of acetonide 42: 2-Deoxy-D-ribose (41, $25.0 \mathrm{~g}, 186 \mathrm{mmol}$) was dissolved in EtOAc (375 mL). 2-Methoxypropane ($24.0 \mathrm{~mL}, 242 \mathrm{mmol}$) and pyridinium p-toluenesulfonate (PPTS, $942 \mathrm{mg}, 3.72 \mathrm{mmol}$) were added, and the resulting suspension was stirred at $30{ }^{\circ} \mathrm{C}$ for 18 h . Although 41 was not completely consumed (monitored by TLC), neither extended reaction times, increased heating, nor additional equivalents of 2-methoxypropane or additional PPTS catalyst improved the yield or conversion. Aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added to the pale yellow, clear reaction mixture and the resulting biphasic mixture was stirred for 1 h . The layers were separated and the aqueous layer was extracted with EtOAc ($25 \mathrm{~mL} x 3$). The combined organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before being filtered and concentrated under reduced pressure to afford a crude yellow oil. The crude oil was purified by silica gel flash column chromatography (30% to $50 \% \mathrm{EtOAc}$ in hexanes) to afford the acetonide product 42 as a clear, colorless oil ($17.9 \mathrm{~g}, 102 \mathrm{mmol}, 55 \%$ yield, $3: 1$ mixture of anomers by ${ }^{1} \mathrm{H}$ NMR). The spectra matched that of the published compound. ${ }^{2}$

42

Data for 42:

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) (major anomer) $\delta 5.26(\mathrm{dd}, J=7.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dt}, J=6.6$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{br} \mathrm{s}, \mathrm{OH}), 2.24$ (dt, $J=14.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, J=14.8,7.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.

Preparation of alkynyl alcohol 43: n-Butyllithium solution ($61.2 \mathrm{~mL}, 2.45 \mathrm{M}$ in hexanes, 150 mmol) was added dropwise to a stirred solution of diisopropylamine ($20.0 \mathrm{~mL}, 150 \mathrm{mmol}$) in THF (36 mL) at $-78{ }^{\circ} \mathrm{C}$. After stirring for $45 \mathrm{~min}, \mathrm{TMSCHN}_{2}$ solution $(37.5 \mathrm{~mL}, 2.0 \mathrm{M}$ in ether, 75.0 mmol) was added dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min before slow addition of lactol $42(8.71 \mathrm{~g}, 50.0 \mathrm{mmol})$ in THF $(17 \mathrm{~mL})$. The reaction mixture was warmed to room temperature over a period of 4 h , and was stirred overnight before being quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($5 \times 30 \mathrm{~mL}$) and the combined organic phase was washed with water ($2 \times 30 \mathrm{~mL}$), brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, decanted, and concentrated under reduced pressure to afford an orange residue, which was dissolved in methanol (17 mL) and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \% \mathrm{w} / \mathrm{w}, 17$ mL) and stirred for 30 min . The reaction mixture was then extracted with EtOAc ($5 \times 25 \mathrm{~mL}$), washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and decanted before being concentrated under reduced pressure to afford the crude product as an orange syrup. The oil was purified by silica gel flash column chromatography (40% EtOAc in hexanes to 55% EtOAc in hexanes) to afford alkynyl alcohol 43 as a clear orange oil ($6.62 \mathrm{~g}, 38.9 \mathrm{mmol}, 78 \%$ yield). The spectra matched that of the published compound. ${ }^{3}$ This reaction was run with three batches in parallel around 50
mmol scale each, rather than scaling up, due to concerns of rapid nitrogen evolution as the reaction warmed to room temperature.

Data for 43:

HRMS (NSI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 307.1700$, found 307.1700.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 4.38(\mathrm{dt}, J=8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{td}, J=6.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (dd, $J=11.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=16.8,6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.51 (ddd, $J=16.7,8.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{br} \mathrm{s},-\mathrm{OH}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.39$ ($\mathrm{s}, 3 \mathrm{H}$).

Preparation of silyl ether 9: The alkynyl alcohol $43(6.62 \mathrm{~g}, 38.9 \mathrm{mmol})$ was dissolved in DMF $(40 \mathrm{~mL})$, and the solution was cooled to $0^{\circ} \mathrm{C} . \mathrm{TBSCl}(7.02 \mathrm{~g}, 46.6 \mathrm{mmol})$ and imidazole (3.32 $\mathrm{g}, 48.6 \mathrm{mmol}$) were each added in one portion. The reaction mixture was warmed to room temperature and stirred overnight. Upon completion by TLC, the reaction mixture was diluted with water (300 mL) and ether $(50 \mathrm{~mL})$. The aqueous and organic layers were separated and the aqueous layer was extracted with ether ($20 \mathrm{~mL} \times 5$). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} x 2)$ and brine before being dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes to 3% EtOAc in hexanes) to yield silyl ether 9 as a clear orange oil ($7.20 \mathrm{~g}, 29.0 \mathrm{mmol}$, 75% yield). Although the ${ }^{1} \mathrm{H}$ NMR spectra of the alcohol precursor 43 matched the published compound, ${ }^{3}$ the resonances in our spectrum for silyl ether 9 were $0.14 \mathrm{ppm}(\pm 0.02 \mathrm{ppm})$ higher in chemical shift than the reported tabulated data. The image of the published spectra did not have an apparent CDCl_{3} signal or another obvious reference peak. As the discrepancies in chemical shifts between our spectra and the reported spectra are systematic, we believe the concentrated sample in the literature report was referenced incorrectly, resulting in misreported tabulated data. ${ }^{3}$ The discrepancies in coupling constants may be explained by relatively lowresolution spectra in the literature spectra $(300 \mathrm{MHz})$ compared to our spectra $(600 \mathrm{MHz})$.

9

Data for 9:

${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 4.35(\mathrm{ddd}, J=7.9,6.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (ddd, $J=7.0,5.9,5.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.79-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{ddd}, J=16.6,5.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=16.9,7.9,2.7$, $1 \mathrm{H}), 2.04(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.

Enone 10 was prepared by $\mathrm{Cr}(\mathrm{II}) / \mathrm{Ni}(\mathrm{II})$ mediated reductive coupling of aldehyde $\mathbf{8}$ and terminal alkyne $\mathbf{9}$ to form the allylic alcohol $\mathbf{1 1}$ as a mixture of diastereomers, followed by oxidation.

Preparation of allylic alcohol 11 ($\mathbf{6 0}: \mathbf{4 0} \mathbf{~ d r}$): $\mathrm{CrCl}_{2}(3.30 \mathrm{~g}, 26.8 \mathrm{mmol})$ and $\mathrm{NiCl}_{2}(71 \mathrm{mg}$, 0.54 mmol) were weighed out in a glovebox. The flask was removed from the glovebox and sparged with argon for 10 min before rapid addition of triphenylphosphine ($707 \mathrm{mg}, 2.68 \mathrm{mmol}$). After 10 min under argon, dry, degassed DMF (33 mL) was added. Aldehyde 8 ($924 \mathrm{mg}, 5.36$ mmol) in DMF (21 mL) was added, and the reaction mixture was stirred for 15 min . Alkyne 9 $(3.82 \mathrm{~g}, 13.4 \mathrm{mmol})$ and water $(0.19 \mathrm{~mL})$ in DMF $(33 \mathrm{~mL})$ were added via syringe pump over 4 h , and the resulting suspension was stirred at room temperature for 4 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(400 \mathrm{~mL})$ and $\mathrm{EtOAc}(100 \mathrm{~mL})$ and stirred for 1 h . The layers were separated and the aqueous layer was extracted with EtOAc ($50 \mathrm{~mL} \times 6$). The combined organic phase was washed with water ($50 \mathrm{~mL} \times 2$) and brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography (18% EtOAc in hexanes to 25% EtOAc in hexanes) to afford allylic alcohol $\mathbf{1 1}$ as a clear pale yellow oil $(1.71 \mathrm{~g}, 4.10 \mathrm{mmol}, 77 \%$ yield, $60: 40 \mathrm{dr}$ favoring the (S)-alcohol.

11 ($60: 40 \mathrm{dr}$)

Data for 11 (60 : 40 dr):

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-25.6\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{ClSi}[\mathrm{M}+\mathrm{Cl}]^{-} 451.2288$, found 451.2290 .
IR (neat): 3464, 2930, 2857, 1739, 1471, 1367, 1246, 1163, 1096, 1071, 835, 777, $666 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13(\mathrm{~s}, 0.4 \mathrm{H}), 5.11(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.02(\mathrm{t}, J=1.3 \mathrm{~Hz}$, 0.4 H), $5.00(\mathrm{t}, J=1.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.40(\mathrm{ddd}, J=9.6,5.9,3.5 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.30(\mathrm{ddd}, J=9.7,6.1$, $3.7 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 3 \mathrm{H}), 3.71$ (ddd, $J=10.5,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.65 (ddd, $J=15.0,10.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.37$ $(\mathrm{m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}$, $2 \mathrm{H}), 1.44(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 171.4,148.8,148.7,114.3,112.6,108.4,108.2,78.3,77.9,77.9$, $77.2,75.2,75.2,75.0,75.0,64.6,64.6,62.1,61.9,32.5,32.2,31.6,30.9,28.3,28.0,26.0,25.6$, $25.5,25.3,25.2,21.2,18.42,18.37,-5.3$.

Allylic alcohol 11 ($2.86 \mathrm{~g}, 6.86 \mathrm{mmol}$, arising from multiple batches) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(135 \mathrm{~mL})$, followed by addition of $\mathrm{NaHCO}_{3}(1.78 \mathrm{~g}, 21.0 \mathrm{mmol})$ and Dess-Martin periodinane (DMP, $4.37 \mathrm{~g}, 10.3 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 h . Aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(80 \mathrm{~mL})$ and aqueous $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$ were added and the biphasic mixture was stirred for 1 h , at which point the layers became clear upon standing. The aqueous phase was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated to afford enone $\mathbf{1 0}$ as a light yellow clear oil (2.44 $\mathrm{g}, 5.87 \mathrm{mmol}, 86 \%$ yield).

Data for 10:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-25.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 437.2330$, found 437.2327 .
IR (neat): 2984, 2930, 2857, 1740, 1679, 1471, 1138, 1245, 1165, 1045, 836, 777, $667 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (ddd, $J=10.6,6.0$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, J=7.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=10.5,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{dd}, J=10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{td}, J=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{ddd}, J=14.7,2.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=14.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 200.2,170.9,145.2,125.9,107.9,77.6,75.4,63.6,61.7,33.8$, 30.9, 28.0, 25.8, 25.4, 23.1, 20.8, -5.6.

Preparation of allylic alcohol 11 (93:7 dr): (R)-2-Methyl-CBS-oxazaborolidine in toluene $(1.0 \mathrm{M}, 2.90 \mathrm{~mL}, 2.90 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}, 4.34 \mathrm{~mL}, 4.34 \mathrm{mmol})$ were added to THF $(14 \mathrm{~mL})$ at room temperature and stirred for 50 min before being cooled to $-40^{\circ} \mathrm{C}$, where a solution of enone $10(1.12 \mathrm{~g}, 2.89 \mathrm{mmol})$ in THF (57 mL) was slowly added. The resulting reaction mixture was stirred at $-25^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with methanol
(5 mL), warmed to room temperature, and concentrated under reduced pressure. The resulting oil was dissolved in EtOAc , washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with brine (15 mL), dried over MgSO_{4}, filtered, and concentrated in under reduced pressure. The residue was purified by flash column chromatography (15% to 25% EtOAc in hexanes) to furnish compound $\mathbf{1 1}$ as a light yellow clear oil ($1.10 \mathrm{~g}, 2.64 \mathrm{mmol}, 91 \%$ yield, $93: 7 \mathrm{dr}$, determined by Mosher ester analysis).

Data for 11 (93:7 dr):
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-32.8\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 439.2486$, found 43902483.
FT-IR (neat): 3485, 2953, 2930, 2857, 1738, 1649, 1471, 1367, 1245, 1094, 1045, 834, 776, 736, 703, $667,607 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{ddd}, J=9.7,6.1,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18$ (ddd, $J=7.8,6.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{tt}, J=6.4,3.3 \mathrm{~Hz}, 2 \mathrm{H})$, 3.71 (dd, $J=10.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (dd, $J=10.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (d, $J=4.5 \mathrm{~Hz},-\mathrm{OH}), 2.45-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, 0.90 (s, 9H), 0.05 (m, 6H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 171.3,148.7,114.2,108.4,78.3,77.9,75.2,64.6,61.9,32.5$, 30.9, 28.0, 26.0, 25.4, 25.2, 21.2, 18.4, -5.3, -5.3.

The Mosher esters were prepared by the following protocol: ${ }^{4}$ In an NMR tube, the alcohol (ca. 10 mg) and pyridine- d_{5} ($2-3$ drops) were dissolved in CDCl_{3} (ca. 0.5 mL), and $2-3$ drops of (S) - or (R)-methoxy(trifluoromethyl)-phenylacetyl chloride (MTPA-Cl) were added. The tube was gently shaken and then allowed to stand overnight, to afford a solution of the (R) - or (S) MTPA ester, respectively. Partial ${ }^{1} \mathrm{H}$ NMR data are provided, absent phenyl and methoxy signals obscured by the excess MTPA reagent:

Data for (S)-MTPA ester: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 5.41(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}$, $1 \mathrm{H}), 4.31$ (ddd, $J=10.0,5.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dt}, J=7.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (ddt, $J=11.1,6.7$, $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{qd}, J=10.4,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=16.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=16.1$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H})$, -0.02 (s, 3H), -0.03 (s, 3H).

Data for (R)-MTPA ester: ${ }^{1} \mathbf{H}$ NMR ($600 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 5.33(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}$, $1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{ddd}, J=10.0,6.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}$, $1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}$, $9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H})$.

Table 1. MTPA-ester data for compound 11

MTPA-ester resonance	δS-ester (ppm)	δR-ester (ppm)	$\Delta\left(\delta_{\mathrm{S}}-\delta_{\mathrm{R}}\right)$ (ppm)	$\Delta\left(\delta_{\mathrm{S}}-\delta_{\mathrm{R}}\right)$ (Hz)
b	5.16	5.03	0.13	78
c	5.12	4.99	0.13	78
j	2.27	2.16	0.11	66
g	3.68	3.59	0.09	54
a	5.41	5.33	n / a	n / a
h	3.55	3.47	0.08	48
i	2.40	2.32	0.08	48
d	4.31	4.26	0.05	30
e	4.05	4.01	0.04	24
$\mathrm{~m}_{3}$	1.35	1.33	0.02	12
n_{3}	1.26	1.25	0.01	6
o_{9}	0.81	0.80	0.01	6
p_{6}	-0.02	-0.03	0.01	6
f_{2}	3.93	3.98	-0.05	-30
k_{2}	1.70	1.75	-0.05	-30
l_{2}	1.47	1.6	-0.13	-78

Figure 1. MTPA-ester data for compound 11

Diol 12: Silyl ether 11 ($93: 7 \mathrm{dr}, 1.78 \mathrm{~g}, 4.27 \mathrm{mmol}$) was dissolved in THF (40 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. Acetic acid ($0.49 \mathrm{~mL}, 8.53 \mathrm{mmol}$) and TBAF (1.0 M in THF, $6.40 \mathrm{~mL}, 6.40 \mathrm{mmol}$) were added. The resulting solution was gradually warmed to room temperature and stirred for 18 h before removal of solvent under reduced pressure. The resulting oil was purified by silica gel flash column chromatography (75% EtOAc in hexanes) to afford compound $\mathbf{1 2}$ as a clear colorless oil (93 : $7 \mathrm{dr}, 1.248 \mathrm{~g}, 4.13 \mathrm{mmol}, 97 \%$ yield).

Data for 12:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-11.3\left(\mathrm{c}=0.981, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 325.1622$, found 325.1614 .
IR (neat): 3425, 2985, 2931, 1734, 1648, 1454, 1368, 1243, 1164, 1037, 981, 899, 837, 734, $702,607 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR (600 MHz, Acetone- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 5.09(\mathrm{dt}, J=1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ $(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.08-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H})$, 3.62 (dd, $J=11.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=10.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H})$, 1.37 (s, 3H), 1.29 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.4,148.1,114.0,108.5,78.0,77.2,75.1,64.5,61.6,32.3$, 30.9, 28.0, 25.4, 25.1, 21.2 .

Lactone 13: In a procedure adapted from Forsyth et al., ${ }^{5} \mathrm{PhI}(\mathrm{OAc})_{2}(1.67 \mathrm{~g}, 5.17 \mathrm{mmol})$ and TEMPO ($47 \mathrm{mg}, 0.30 \mathrm{mmol}$) were added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, followed by addition in portions of a solution of the diol $\mathbf{1 2}$ ($93: 7 \mathrm{dr}, 447 \mathrm{mg}, 1.47 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 8 h before being diluted with diethyl ether and quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with aqueous $\mathrm{NaHCO}_{3}(20$
mL) and brine before being dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The resulting oil was purified by silica gel flash column chromatography (30% to 45% diethyl ether in pentane) to afford diastereomerically pure lactone $\mathbf{1 3}$ as an orange-yellow oil ($383 \mathrm{mg}, 1.28 \mathrm{mmol}, 79 \%$ yield).

Data for 13:

$\left[\alpha_{\mathrm{D}}{ }^{\mathbf{2 5}}-93.4\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right)\right.$
HRMS (APCI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$299.1489, found 299.1490.
IR (neat): 3435, 2925, 2855, 1734, 1437, 1370, 1249, 1088, 1042, 980, $908 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 5.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{ddd}, J=7.7,5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.05(\mathrm{~m}$, $2 \mathrm{H}), 2.78(\mathrm{dd}, J=15.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.86-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 171.3,170.5,141.4,115.6,111.3,78.7,78.2,73.6,64.0,35.2$, 29.5, 26.1, 24.6, 24.1, 21.1.

Dienoate-diol 14: This compound was prepared in two steps via the lactol 44.

Preparation of lactol 44: Lactone $13(383 \mathrm{mg}, 1.28 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in hexanes, 3.85 mL) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h before being warmed to $0{ }^{\circ} \mathrm{C}$, and diluted with diethyl ether before quenching with $\mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{~mL}), 15 \%$ aqueous $\mathrm{NaOH}(0.16 \mathrm{~mL})$, then more water $(0.39 \mathrm{~mL})$. The reaction was then allowed to warm to room temperature where it was stirred for 15 min before addition of MgSO_{4}. The mixture was stirred for 15 min before being filtered through a coarse frit, and concentrated under reduced pressure, to afford crude lactol 44 as a light-yellow oil ($248 \mathrm{mg}, 0.97 \mathrm{mmol}, 76 \%$ yield).

Data for 44:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-2.1\left(\mathrm{c}=0.975, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 259.1540$, found 259.1540 .
IR (neat): 3402, 2986, 2931, 2870, 1434, 1381, 1219, 1155, 1061, 909, 789, 733, $701 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 5.03(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.55(\mathrm{~m}$, $2 \mathrm{H}), 2.45(\mathrm{br} \mathrm{s}, \mathrm{OH}), 1.86-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 144.2,116.2,108.6,95.7,82.2,80.9,74.6,62.8,32.2,31.1$, 29.4, 28.4, 25.9.

Preparation of dienoate-diol 14: The lactol $44(248 \mathrm{mg}, 0.97 \mathrm{mmol})$ was dissolved in methanol (5 mL). The Wittig reagent ($388 \mathrm{mg}, 1.16 \mathrm{mmol}$) and benzoic acid ($12 \mathrm{mg}, 0.10$ mmol) were added. The reaction mixture was placed in an oil bath at $65^{\circ} \mathrm{C}$ where it was heated for 4 h . The reaction mixture was then cooled to room temperature before the solvent was removed under reduced pressure. The resulting oil was purified by silica gel flash column chromatography (75% EtOAc in hexanes) to afford the products $\mathbf{1 4}$ and $\mathbf{4 5}$ as a $3.8 / 1 \mathrm{Z} / E$ alkene isomer mixture, with contamination by triphenylphosphine oxide. The impure material was partially separable at this point (enriched to $5.7: 1 \mathrm{Z} / E$, still containing ca. $10 \% \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ by ${ }^{1} \mathrm{H}$ integration) and was subjected to the next step, at which point the triphenylphosphine oxide and alkene isomers were completely separated.

14
Data for (\boldsymbol{Z})-enoate 14 (5.7: $\mathbf{1 , ~} \boldsymbol{Z}: \boldsymbol{E}$ mixture): $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}$: -96.9 (c = $\left.1.04, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 337.1622$, found 337.1617.
IR (neat): 3375, 2987, 2935, 1718, 1648, 1439, 1381, 1200, 1051, 902, 850, 826, 724, $542 \mathrm{~cm}^{-1}$. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$, major isomer reported) $\delta 6.28(\mathrm{dd}, J=11.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.98 (dd, $J=11.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{td}, J=8.1,7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.57 (ddd, $J=10.2,6.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.12$ $(\mathrm{m}, 3 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right){ }_{3} \mathrm{PO}$ impurity (\#H relative to 14): $\delta 7.68$ (ddt, $\left.J=10.8,6.9,1.4 \mathrm{~Hz}, 0.5 \mathrm{H}\right), 7.56(\mathrm{td}, J=$ $7.3,1.4 \mathrm{~Hz}, 0.25 \mathrm{H}), 7.47(\mathrm{td}, J=7.7,7.2,2.9 \mathrm{~Hz}, 0.5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 166.1,148.1,146.7,132.2\left(\mathrm{PPh}_{3} \mathrm{O}\right), 128.5\left(\mathrm{PPh}_{3} \mathrm{O}\right), 121.5$, $114.0,109.0,78.8,75.3,75.2,62.8,51.7,33.1,32.3,29.4,27.8,25.0$.

Data for (\boldsymbol{E})-enoate 45 (5.2: 1, $\boldsymbol{E}: \boldsymbol{Z}$ mixture): $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-32.0\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 337.1622$, found 337.1620 .
IR (neat): 3381, 2988, 2934, 1719, 1660, 1437, 1372, 1262, 1215, 1163, 1119, 1049, 984, 903, 734, $699,541 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$, major isomer reported) $\delta 6.86(\mathrm{dd}, J=15.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}$, $J=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{ddd}, J=7.0,5.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.38$ $(\mathrm{m}, 1 \mathrm{H}), 4.18-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dd}, J=14.9,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}$ impurity (\#H relative to 45$): \delta 7.68(\mathrm{ddt}, J=10.8,6.9,1.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.56(\mathrm{td}, J=$ $7.3,1.4 \mathrm{~Hz}, 0.25 \mathrm{H}$), 7.47 (td, $J=7.7,7.2,2.9 \mathrm{~Hz}, 0.5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$, minor isomer denoted by ${ }^{*}$) $\delta 166.7,166.3^{*}, 148.3^{*}$, 148.1, $146.8^{*}, 143.6,132.3\left(\mathrm{PPh}_{3} \mathrm{O}\right), 132.21\left(\mathrm{PPh}_{3} \mathrm{O}\right), 132.20\left(\mathrm{PPh}_{3} \mathrm{O}\right), 128.77\left(\mathrm{PPh}_{3} \mathrm{O}\right), 128.69$ $\left(\mathrm{PPh}_{3} \mathrm{O}\right), 123.0,121.7^{*}, 114.2^{*}, 113.6,109.4,109.2^{*}, 79.0^{*}, 78.2,77.3^{*}, 75.5,75.4^{*}, 63.03^{*}$, $62.99,52.0,51.9^{*}, 33.3^{*}, 33.1,32.8,32.5^{*}, 29.6^{*}, 29.5,28.02^{*}, 27.93,25.5,25.3^{*}$.

14

from 44)
15

Bis-silyl ether 15: Diol 14 ($256 \mathrm{mg}, 0.82 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, and cooled to $0{ }^{\circ} \mathrm{C}$ with stirring. 2,6-lutidine ($350 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$) and TBSOTf ($415 \mu \mathrm{~L}, 1.80 \mathrm{mmol}$) were added. The ice bath was removed, and the reaction mixture was stirred at ambient temperature for 2 h , whereupon it was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \mathrm{~mL} x 3$). The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography ($2 \% \mathrm{EtOAc}$ in hexanes to $3 \% \mathrm{EtOAc}$ in hexanes) to afford Z-alkenoate bis-silyl ether 15 as a clear pale yellow oil ($379 \mathrm{mg}, 0.69 \mathrm{mmol}, 85 \%$ yield $)$.

15

Data for 15:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-61.2\left(\mathrm{c}=1.06, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 565.3351$, found 565.3360 .
IR (neat): 2967, 2953, 2929, 2857, 1723, 1649, 1472, 1463, 1407, 1380, 1253, 1219, 1196, $1181,1093,1053,1004,939,901,835,775,740,665 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.24(\mathrm{dd}, J=11.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=11.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{ddd}, J=8.2,6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{ddd}, J=9.4,6.4$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 8 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H}), 0.89$ (app. d, $J=2.5 \mathrm{~Hz}, 18 \mathrm{H}), 0.04(\operatorname{app~d}, J=2.3 \mathrm{~Hz}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 166.1,147.8,146.6,146.5,121.6,111.6,108.9,76.59,76.55$, $76.01,75.93,74.96,74.92,63.4,33.0,31.8,28.9,28.54,28.51,26.18,26.05,25.72,25.69,18.5$, 18.4, -4.5, -4.80, -4.83, -5.05, -5.07.

Diene-alcohol 16: The ester 15 ($193 \mathrm{mg}, 0.35 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in hexanes, 0.76 mL) was added dropwise to the solution at $-78{ }^{\circ} \mathrm{C}$. After 1.5 h , the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and diluted with ether before addition of water $(30 \mu \mathrm{~L}), 15 \%$ aqueous $\mathrm{NaOH}(30 \mu \mathrm{~L})$, and more water $(75 \mu \mathrm{~L})$. After stirring for 15 min , the ice bath was removed and MgSO_{4} was added. The slurry was stirred for 30 min at room temperature before filtration to remove the solids and concentration under reduced pressure. The primary alcohol 16 was obtained as a clear oil ($182 \mathrm{mg}, 0.35 \mathrm{mmol}$, 99% yield) and used without further purification.

16

Data for 16:

$[\alpha]_{\mathbf{D}}{ }^{25}-1.3\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 515.3583$, found 515.3588 .

IR (thin film): 3412, 2985, 2953, 2929, 2885, 2856, 1648, 1507, 1472, 1462, 1380, 1370, 1521, $1217,1162,1091,1042,106,939,896,833,773,665,542 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 5.83$ (dddd, $J=11.3,7.1,6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (ddt, $J=11.0$, $9.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{ddd}, J=9.2,6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{q}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45$ (dt, $J=7.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.29 (ddd, $J=13.3,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (ddd, $J=13.3$, $6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (ddt, $J=16.4,7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.11(\mathrm{ddt}, J=16.0,5.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{br} \mathrm{s},-\mathrm{OH}), 1.53(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H})$, $1.38(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 18 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 147.9,133.0,128.2,111.3,108.4,77.5,77.2,77.0,76.4,76.3$, $74.0,73.9,63.4,58.7,32.9,31.4,28.57,28.54,26.06,26.05,25.9,18.6,18.4,-4.5,-4.8,-5.1$.

Diene-aldehyde 17: The primary alcohol $16(182 \mathrm{mg}, 0.35 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7$ mL). DMP ($225 \mathrm{mg}, 0.52 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(88 \mathrm{mg}, 1.04 \mathrm{mmol})$ were added. After 1.5 h , the reaction mixture was poured into a rapidly stirred solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~g})$ in saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The suspension was stirred for 45 min until the layers turned clear. The layers were separated and the organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, water ($8 \mathrm{~mL} \times 2$), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The resulting crude oil was purified by silica gel flash column chromatography (8% EtOAc in hexanes) to furnish compound $\mathbf{1 7}$ as a yellow oil ($162 \mathrm{mg}, 0.32 \mathrm{mmol}, 91 \%$ yield).

17

Data for 17:

$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 5}}-29.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 535.3246, found 535.3241.
IR (neat): 2953, 2929, 2886, 2856, 1697, 1686, 1253, 1217, 1093, 1054, 1005, 836, $776 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $\mathbf{C l}_{3}$) $\delta 10.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=11.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ (ddd, $J=11.5,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{ddd}, J=8.9,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.63(\mathrm{dt}, J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ (ddt, $J=16.2,8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 5 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.45-$ $1.37(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 8 \mathrm{H}),-0.00(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 190.8,147.3,146.1,131.3,112.0,109.4,77.2,76.51,76.47$, $76.31,76.24,74.13,74.10,63.2,32.9,31.5,28.9,28.5,26.17,26.16,26.05,26.04,25.73,25.70$, 18.5, 18.4, -4.5, -4.8, -5.1.

Vinylic iodide 18: This compound was prepared in two steps from pent-4-yn-1-ol (46).

Preparation of 4-pentyn-1-ol, pivalate ester 47: 4-Pentyn-1-ol (46, $9.62 \mathrm{~g}, 114 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(375 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Pivaloyl chloride ($\mathrm{PivCl}, 16.54 \mathrm{~g}, 137 \mathrm{mmol}$) was added slowly prior to addition of pyridine $(13.57 \mathrm{~g}, 172 \mathrm{mmol})$ and N, N-dimethylaminopyridine (DMAP, 200 mg). The reaction mixture was stirred overnight at room temperature before further addition of $\operatorname{PivCl}(6.36 \mathrm{~g}, 52.8 \mathrm{mmol})$, pyridine ($5.40 \mathrm{~g}, 68.2 \mathrm{mmol}$), and DMAP (100 $\mathrm{mg})$. After 5 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and extracted with diethyl ether ($5 \times 75 \mathrm{~mL}$). The combined organic layers were washed with brine (40 mL), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography (hexanes to 5% ethyl acetate in hexanes) to afford the pivalate ester 47 as a clear oil ($19.18 \mathrm{~g}, 114 \mathrm{mmol}$, in 99% yield). ${ }^{1} \mathrm{H}$ NMR data for $\mathbf{4 7}$ matched the literature values. ${ }^{6}$

Data for 47:

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 4.16(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{td}, J=7.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{t}, J$ $=2.7,1 \mathrm{H}), 1.94-1.76(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$.

Preparation of 4-iodopent-4-en-1-yl pivalate 18: I-9-BBN (1.0 M in hexanes, $50 \mathrm{~mL}, 50.0$ $\mathrm{mmol})$ was diluted with pentane (80 mL) and cooled to $-25^{\circ} \mathrm{C}$, at which point a solution of alkyne $47(3.36 \mathrm{~g}, 20.0 \mathrm{mmol})$ in pentane $(35 \mathrm{~mL})$ was added slowly. The reaction mixture turned light yellow and clear. The reaction mixture was stirred at $-25^{\circ} \mathrm{C}$ for 5 h , followed by addition of acetic acid (12 mL), which resulted in vigorous bubbling and produced a white, cloudy precipitate. The suspension was then warmed to $0{ }^{\circ} \mathrm{C}$, where it was stirred for 1 h , followed by addition of $3 \mathrm{M} \mathrm{NaOH}(280 \mathrm{~mL})$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(48 \mathrm{~mL})$, resulting in vigorous bubbling upon addition. The suspension was then warmed to room temperature and stirred for 45 min . The layers turned clear and colorless. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel
flash column chromatography (hexanes to 2.5% ethyl acetate in hexanes) to afford vinylic iodide 18 as a light-yellow oil ($5.17 \mathrm{~g}, 17.5 \mathrm{mmol}, 88 \%$ yield).

Data for 18:

HRMS (NSI): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+}$297.0346, found 297.0347.
IR (thin film): 2969, 2958, 1726, 1619, 1479, 1282, 1151, $892 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=$
$7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 178.7,126.5,110.8,62.7,42.0,39.0,28.3,27.4$.

Bis-allylic alcohol 19: $\mathrm{CrCl}_{2}(70 \mathrm{mg}, 0.47 \mathrm{mmol})$ and $\mathrm{NiCl}_{2}(0.3 \mathrm{mg}, 0.02 \mathrm{mmol})$ were weighed out in a glove box, and the flask was flushed with argon for 10 min . The flask was cooled to 0 ${ }^{\circ} \mathrm{C}$ and dry DMF (2 mL) was added. The ice bath was removed after 10 min and the solvated salts were warmed to room temperature. A solution of vinyl iodide $\mathbf{1 8}(71 \mathrm{mg}, 0.23 \mathrm{mmol})$ in DMF (0.7 mL) was added in one portion, and the reaction mixture was stirred for 10 min before aldehyde 17 ($66 \mathrm{mg}, 0.16 \mathrm{mmol}$) in DMF ($0.33 \mathrm{~mL}+0.2 \mathrm{~mL}$ rinsate) was added over 30 min by syringe pump. The reaction mixture was stirred at room temperature for 2 h before being diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and $\mathrm{EtOAc}(5 \mathrm{~mL})$. After stirring for 1 h the layers were separated. The aqueous layer was extracted with EtOAc $(10 \mathrm{~mL} \times 6)$. The combined organic layers were washed with water ($10 \mathrm{~mL} \times 3$), 10% aqueous LiCl , and brine before being dried over MgSO_{4} and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography ($6 \% \mathrm{EtOAc}$ in hexanes to $14 \% \mathrm{EtOAc}$ in hexanes) to afford compound 19 as a clear pale yellow oil ($52 \mathrm{mg}, 0.077 \mathrm{mmol}, 48 \%$ yield, $1: 1$ mixture of diastereomers).

Data for 19:

$[\alpha]_{\mathbf{D}}{ }^{25}+2.0\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 705.4552$, found 705.4575 .
IR (neat): $3412,2954,2928,2856,1729,1253,1159,1095,1054,1006,835,775 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 5.87-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=1.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.09$ (t, $J=1.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.03(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.02(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dt}, J=9.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (ddd, $J=20.5,16.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{td}, J=15.7,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 1.5 \mathrm{H}), 1.52(\mathrm{~s}, 1.5 \mathrm{H}), 1.34(\mathrm{~s}$, $1.5 \mathrm{H}), 1.33(\mathrm{~s}, 1.5 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~m}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 177.8,150.0,149.9,148.3,135.13,135.08,128.4,128.1,111.89$, $111.86,110.82,110.6,108.24,108.17,79.1,79.0,76.7,75.3,75.2,63.95,63.93,63.42,63.39$, $38.8,33.38,33.35,32.52,32.50,30.2,29.3,28.6,28.3,28.2,27.51,27.49,27.43,26.23,26.18$, 25.8, -4.3, -4.8, -5.1.

Triene-triol 2: Bis-silyl ether 19 ($52 \mathrm{mg}, 0.077 \mathrm{mmol}$) was dissolved in THF (5 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$. HF-pyridine (1 mL) was added dropwise. The reaction mixture was warmed to room temperature gradually and stirred for 4 h , at which point the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before addition of saturated sodium bicarbonate (10 mL in 1 mL portions). The mixture was stirred for 45 min before dilution with EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (10 mL x 5). The combined organic layers were washed with saturated aqueous bicarbonate (10 mL) and brine (10 mL) before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude oil was purified by silica gel flash column chromatography ($50 \% \mathrm{EtOAc}$ in hexanes to EtOAc) to afford triene-triol 2 as a clear pale yellow oil $(23 \mathrm{mg}, 0.052 \mathrm{mmol}, 68 \%$ yield, $1: 1$ mixture of diastereomers).

Data for 2:

$[\alpha]_{\mathrm{D}}{ }^{25}-5.5\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 477.2823$, found 477.2826.
IR (neat): 3385, 2931, 2871, 1725, 1648, 1552, 1480, 1457, 1369, 1285, 1250, 1216, 1159, 1044, 976, 901, 795, $773 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 5.82-5.72(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 0.5 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 0.5 \mathrm{H})$, $4.95(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 0.5 \mathrm{H}), 4.93(\mathrm{~s}, 0.5 \mathrm{H}), 4.68-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.37$ (dddd, $J=17.5$, $10.0,6.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{td}, J=6.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (ddd, $J=$ 20.2, 15.0, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}$, $1.5 \mathrm{H}), 1.51(\mathrm{~s}, 1.5 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$) $\delta 178.9,149.2,149.1,148.4,148.3,135.4,135.2,127.5,127.3$, $113.2,112.8,111.2,111.0,108.68,108.63,78.75,78.67,78.40,78.27,75.4,75.2,75.0,64.11$, $64.09,62.9,39.0,33.30,33.26,32.76,32.74,29.9,29.4,28.20,28.16,28.11,27.4,27.13,27.11$, 25.5 .

3) Sequential oxacyclizations to form the $A B$ rings from diene-diol 14 (Scheme 2):

Iodomethyl tetrahydropyranols 20 and 21: Diol 14 (338 mg , contaminated with ca. 10% $\left.\mathrm{Ph}_{3} \mathrm{PO}\right)$ was dissolved in THF $(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaHCO}_{3}(735 \mathrm{mg}, 8.70 \mathrm{mmol})$ was added, followed by $\mathrm{I}_{2}(1.47 \mathrm{~g}, 5.80 \mathrm{mmol})$. The reaction mixture warmed to room temperature and was stirred for 2 h . The reaction mixture was quenched with addition of aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and diluted with EtOAc. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were combined and washed with brine before being dried over MgSO_{4}, filtered and concentrated under reduced pressure. The resulting crude oil was purified by silica gel flash column chromatography (35% ether in pentane) to afford cyclized compound favoring diastereomer 20 ($335 \mathrm{mg}, 0.76 \mathrm{mmol}, 78 \%$ yield over 2 steps, 85:15 dr, 5:1 Z:E).

Data for 20 (from 85:15 mixture of 20:21)
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-110.0\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+} 441.0769$, found 441.0771 .
IR (neat): 3470, 2983, 2939, 2870, 1723, 1660, 1437, 1306, 1255, 1216, 1164, 1080, 985, 861, $832 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$, major diastereomer) $\delta 6.19$ (dd, $J=11.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.99 (dd, $J=$ $11.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (ddd, $J=8.3,6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (ddd, $J=10.5,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (dd, $J=9.3,4.61 \mathrm{H}), 3.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=4.9 \mathrm{~Hz},-\mathrm{OH}), 2.00(\mathrm{~m} 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.52(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 207.0,165.8,146.4,145.7,121.9,121.8,109.3,109.0,75.9$, $75.4,75.13,75.09,73.8,68.6,68.4,61.2,60.8,53.9,51.7,39.3,31.0,29.3,28.3,28.0,27.3,26.6$, 25.6, 25.3, 12.6.

Bicyclic polyethers 22 and 23: Tetrahydropyranol enoate $20(550 \mathrm{mg}, 1.25 \mathrm{mmol}, 85: 15 \mathrm{dr}, 5: 1$ $Z: E)$ was dissolved in THF (20 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ before addition of NaH (60% in mineral oil, $50 \mathrm{mg}, 1.25 \mathrm{mmol}$). The reaction warmed to room temperature gradually and stirred for 1 h . The reaction was diluted with diethyl ether and quenched by addition of methanol (1 mL) and then concentrated under reduced pressure. The organic layer was separated and the aqueous layer was extracted with diethyl ether ($3 \times 7 \mathrm{~mL}$). The combined organic extracts were combined and washed with brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulting crude powder was purified by silica gel flash column chromatography (15% to 20% diethyl ether in pentane) to afford the cyclized compound 22 ($280 \mathrm{mg}, 0.64 \mathrm{mmol}, 51 \%$ yield). At this stage, the cis-fused isomer 23 was isolated as a white powder ($36 \mathrm{mg}, 0.082 \mathrm{mmol}, 7 \%$ yield, from the minor diastereomer 21 arising from the iodocyclization step).

22

Data for 22:

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+5.2\left(\mathrm{c}=0.78, \mathrm{CH}_{3} \mathrm{OH}\right),-0.7\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{IH}[\mathrm{M}+\mathrm{H}]^{+} 441.0769$, found 441.0765 .
IR (neat): 2983, 2947, 2875, 1736, 1437, 1381, 1302, 1266, 1212, 1166, 1121, 1105, 1043, 998, 883, 800, $737 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 4.50(\mathrm{ddd}, J=10.8,6.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=10.0,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{td}, J=9.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=12.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.63$ (ddt, $J=$ $12.3,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=12.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{td}, J=12.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J$ $=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=16.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=$ $16.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=14.0,10.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.42$ ($\mathrm{s}, 3 \mathrm{H}$), $1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 172.1, 109.0, 85.2, 79.2, 78.5, 74.0, 72.9, 60.0, 51.9, 42.1, 39.1, 27.3, 26.1, 25.5, 24.4, 8.1.

Data for 23:

$[\alpha]_{\mathrm{D}}{ }^{25}-7.0\left(\mathrm{c}=0.772, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{IH}[\mathrm{M}+\mathrm{H}]^{+} 441.0769$, found 441.0773 .
IR (neat): 2931, 2858, 1734, 1437, 1369, 1264, 1207, 1154, 1088, 1044, 1016, 995, 914, 870, $841,800,744,648,624,589 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 4.66(\mathrm{ddd}, J=11.4,7.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=9.7,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96(\mathrm{td}, J=10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.53 (app dd, $J=12.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=16.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.52 (dd, $J=16.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (dd, $J=14.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (dd, $J=14.3,11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.31$ ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}^{\mathbf{~ M H E}} \mathbf{C D C l}_{3}$) $\delta 172.2,109.4,78.7,77.7,76.4,74.0,73.2,61.8,51.9,41.4,39.9$, 27.8, 26.8, 25.0, 19.6, 13.3.

Bicyclic polyether 24: Alkyl iodide $22(21 \mathrm{mg}, 0.048 \mathrm{mmol})$ was dissolved in benzene (1 mL). A single crystal of AIBN was added along with $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{SiH}(18 \mu \mathrm{~L}, 0.057 \mathrm{mmol})$. The reaction mixture was heated to reflux, where it was stirred for 45 min before cooling and solvent removal under reduced pressure. The resulting oil was purified by silica gel flash column chromatography ($20 \% \mathrm{EtOAc}$ in hexanes to $25 \% \mathrm{EtOAc}$ in hexanes) to afford product 24 (6.0 $\mathrm{mg}, 0.019 \mathrm{mmol}, 40 \%$ yield). NOESY of this compound revealed correlations that allowed for assignment of the stereochemistry at the new stereocenters.

24

Data for 24:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+11.5\left(\mathrm{c}=0.609 \mathrm{CHCl}_{3}\right)$
IR (thin film): 2983, 2875, 1737, 1383, 1221, $850 \mathrm{~cm}^{-1}$.
HRMS (NSI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 315.1802$, found 315.1805.
${ }^{1} H$ NMR (400 MHz, Acetone- \boldsymbol{d}_{6}) $\delta 4.54$ (ddd, $J=10.8,7.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (dd, $J=10.0,7.1$
$\mathrm{Hz}, 1 \mathrm{H}$), 3.82 (td, $J=10.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (s, 3H), $3.59-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.46$ (ddt, $J=12.0$,
$4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=11.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=15.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=$ $15.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=13.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 3 \mathrm{H}), 1.53-$ $1.36(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz , Acetone- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 171.8,109.0,82.6,80.1,78.8,74.7,60.2,51.8,45.3,40.2$, 30.8, 27.7, 26.9, 24.5, 23.1, 21.2.

Figure 2. Key NOE correlations for compound 24

Bicyclic polyether 25 (from minor diastereomer 23): To confirm the stereochemistry across the AB ring fusion, the cis-fused diastereomer $\mathbf{2 5}$ was prepared. The minor diastereomer iodide $23(10 \mathrm{mg}, 0.023 \mathrm{mmol})$ was dissolved in benzene $(0.4 \mathrm{~mL}) .\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{SiH}(18 \mu \mathrm{~L}, 0.057 \mathrm{mmol})$ and a single crystal of AIBN were added and the reaction was heated to $60^{\circ} \mathrm{C}$, where it was stirred for 10 min before cooling and removal of solvent under reduced pressure. The resulting oil was purified by silica gel flash column chromatography (15% EtOAc in hexanes to 20% EtOAc in hexanes) to afford product $25(6.0 \mathrm{mg}, 0.019 \mathrm{mmol}, 83 \%$ yield, $5.7: 1$ mixture of cis : trans fused diastereomers. NOESY of this compound revealed correlations that allowed for assignment of the stereochemistry at the cis-AB ring fusion.

Data for 25:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+26.0\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right)$
IR (thin film): 2985, 2360, 1740, 1436, 1263, 1115, $1046 \mathrm{~cm}^{-1}$.
HRMS (NSI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 337.1608$, found 337.1617.
${ }^{1} \mathbf{H}$ NMR (600 MHz, Acetone- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 4.62(\mathrm{ddd}, J=11.7,6.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dd, $J=9.6,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92(\mathrm{td}, J=10.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{td}, J=13.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$, 3.59 (dd, $J=11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (dd, $J=16.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.60$ (dd, $J=13.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.17$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1}^{\mathbf{M H z}}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 172.2,109.7,82.5,79.9,77.2,74.8,74.3,61.7,51.7,44.5$, 40.7, 28.3, 27.3, 25.4, 23.0, 21.2.

Figure 3. Key NOE correlations for compound $\mathbf{2 5}$

Bicyclic alcohol 26: The ester $22(122 \mathrm{mg}, 0.277 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$, and DIBAL-H (1.0 M in hexanes, 0.61 mL) was added dropwise. After 2 h , more DIBAL-H (0.3 mL) was added, and after 7 h , additional DIBAL-H (0.3 mL) was added, totaling about 4 equivalents. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, diluted with ether, and quenched by addition of Rochelle's salt (12 mL) and stirred for 4 h at room temperature. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined organic layers were washed with water ($10 \mathrm{~mL} \times 2$), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The resulting crude powder 26 ($113 \mathrm{mg}, 0.277 \mathrm{mmol},>95 \%$ yield) was recrystallized from heptane and benzene via vapor diffusion to afford colorless needle-like crystals.

Data for 26:

Melting point: dec. at $181-184^{\circ} \mathrm{C}$ then melts at $187-188^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-8.1\left(\mathrm{c}=1.02 \mathrm{CHCl}_{3}\right)$
IR (neat): 3490, 2936, 2873, 1382, 1266, 1169, 1049, $882 \mathrm{~cm}^{-1}$.
HRMS (NSI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{IO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 413.0819$, found 413.0820.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 4.48(\mathrm{ddd}, J=10.9,7.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=9.7,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.64(\mathrm{~m}$, 2H), $1.63-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.87(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 108.0,85.3,81.3,79.7,73.9,73.0,60.6,59.9,42.2,36.1,27.4$, 26.4, 25.5, 24.4, 7.8.

Figure 4. X-ray crystal structure of AB bicyclic compound 26

4) Sequential oxacyclizations to form the $A B$ rings from triene-triol 2 (Scheme 3):

Tetrahydropyranol dienone 27: Triene-triol $2(23 \mathrm{mg}, 0.052 \mathrm{mmol})$ was dissolved in THF (1 $\mathrm{mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$, then sodium bicarbonate ($60 \mathrm{mg}, 0.71 \mathrm{mmol}$) was added followed by iodine ($120 \mathrm{mg}, 0.47 \mathrm{mmol}$). The reaction mixture gradually warmed to ambient temperature. After 6 h , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. The reaction mixture was diluted with EtOAc (2 mL) and the layers were separated. The aqueous layer was extracted with EtOAc ($4 \times 2 \mathrm{~mL}$) and the combined organic extracts were washed with brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude oil was purified by silica gel flash column chromatography (15% EtOAc in hexanes) to afford iodomethyl tetrahydropyranol 48 as a clear light-yellow film ($20 \mathrm{mg}, 0.034 \mathrm{mmol}, 66 \%$ yield, 1:1.2 mixture of diastereomers of the bis-allylic alcohol. COSY, HMBC, and HMQC confirmed the structure. Additionally, dienone 27 was obtained (7.0 $\mathrm{mg}, 0.013 \mathrm{mmol}, 25 \%$ yield).

Data for 48:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}:-5.9\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{7} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+} 603.1789$, found 603.1800 .
IR (neat): 3457, 2956, 2925, 2853, 2152, 1726, 1558, 1457, 1371, 1286, 1215, 1162, 1084, 1036, 975, 943, 905, $802 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$ * denotes minor diastereomer) $\delta 5.75$ (ddd, $J=15.4,7.7,1.4 \mathrm{~Hz}$, 0.45 H)*, 5.67 (dd, $J=15.6,7.9 \mathrm{~Hz}, 0.55 \mathrm{H}$), 5.57 (app. $\mathrm{t}, J=6.2 \mathrm{~Hz}, 0.55 \mathrm{H}$), 5.55 (app. $\mathrm{t}, J=6.2$ $\mathrm{Hz}, 0.45 \mathrm{H})^{*}, \delta 5.16(\mathrm{~s}, 0.45 \mathrm{H})^{*}, 5.11(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 0.55 \mathrm{H}), 4.84(\mathrm{~s}, 0.55 \mathrm{H}), 4.82(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $0.45 \mathrm{H})^{*}, 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=17.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{br} \mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H})$, $2.03(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 3 \mathrm{H}), \delta 1.36(\mathrm{~s}, 1.65 \mathrm{H}), 1.35(\mathrm{~s}, 1.55 \mathrm{H}) *, 1.34(\mathrm{~m}$, $2 \mathrm{H}), 1.21(\mathrm{~s}, 4 \mathrm{H})^{*}, 1.20(\mathrm{~s}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}^{\mathbf{~ M H}} \mathbf{C}_{\mathbf{6}} \mathbf{6}$) $\delta 177.9,149.6,135.7,135.5,111.0,110.7,108.5,79.7,75.6,75.3$, $75.2,74.1,68.9,64.1,60.8,40.33,40.29,38.9,32.37(2), 30.2,28.4,28.3,28.1,27.6,27.5,25.8$, 25.6, 14.4, 13.3.

27

Data for 27:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+3.4\left(\mathrm{c}=0.62, \mathrm{CHCl}_{3}\right)$
HRMS (APCI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+} 579.1813$, found 579.1814 .
IR (neat): 2933, 2873, 234, 2481, 2365, 2230, 2183, 2046, 1725, 1674, 1561, 1510, 1479, 1370, $1285,1215,1162,1081,1046,881 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3} 5: 1 \mathrm{dr}$ major diastereomer reported) $\delta 6.79$ (dd, $J=11.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16(\mathrm{dd}, J=11.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (dd, $J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.40$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.64(\mathrm{~m}$, $2 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.38(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR not obtained due to compound instability.

Preparation of tetrahydropyranol dienone 27 (from oxidation of 48): Bis-allylic alcohol 48 $(11 \mathrm{mg}, 0.019 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$, and activated $\mathrm{MnO}_{2}(80 \mathrm{mg}, 0.95$ mmol) was added. The reaction was stirred at ambient temperature for 16 h before it was filtered through a pad of Celite. ${ }^{1} \mathrm{H}$ NMR of the crude mixture revealed that the reaction proceeded to roughly 66% conversion to dienone 27 . The crude mixture was used in conjugate addition reactions, at which point the unreacted alcohol 48 was separated.

Bicyclic enone 28 (from cyclization of 27): The dienone $27(44 \mathrm{mg}, 0.076 \mathrm{mmol}$, obtained from 2 via several batches of iodocyclization and oxidation) was dissolved in THF (5 mL). The solution was cooled to $0^{\circ} \mathrm{C}$, and then sodium hydride ($3.3 \mathrm{mg}, 0.083 \mathrm{mmol}$) was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , before being quenched with methanol. The solvent was removed under reduced pressure, and the resulting film was purified by silica gel column chromatography (40% diethyl ether in pentane) to afford bicyclic enone 28 as a light-yellow oil ($37 \mathrm{mg}, 0.65 \mathrm{mmol}, 86 \%$ yield). This compound was produced as a single diastereomer at the newly formed chiral center, although as an $85: 15$ mixture of diastereomers across the AB ring fusion.

28

Data for 28:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+8.4\left(\mathrm{c}=1.06, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+} 601.1633$, found 601.1631.
IR (neat): 2954, 2873, 2196, 1726, 1688, 1480, 1453, 1368, 1346, 1284, 1212, 1158, 1121, $1105,1080,1038,973,939,884 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dt}, J=10.4,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.02$ (app. dq, $J=3.3,2.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{dd}, J=12.0,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{dd}, J=12.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=12.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\operatorname{td}, J=12.3,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J=14.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{td}, J=7.4$, $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87$ (ddd, $J=13.4,10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.62$ (m, 3 H), 1.41 ($\mathrm{s}, 3 \mathrm{H}$), 1.35 ($\mathrm{s}, 3 \mathrm{H}$), 1.20 ($\mathrm{s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 199.2,178.7,148.1,125.4,108.8,85.0,79.0,77.8,73.9,73.0$, $63.7,60.0,42.0,41.8,38.9,27.56,27.52,27.39,27.30,25.9,25.5,24.3,8.3$.

5) Alternative synthesis of bicyclic enone 28 from bicyclic ester 22 (Scheme 4):

Bicyclic aldehyde 29: The ester $22(445 \mathrm{mg}, 1.01 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, and DIBAL-H (1.0 M in hexanes, 1.10 mL) was added dropwise. After stirring at room temperature for 2 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, diluted with ether, quenched by addition of Rochelle's salt (10 mL), and stirred for 4 h at room temperature. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined organic layers were washed with water ($10 \mathrm{~mL} \times 2$), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The resulting crude powder $29(443 \mathrm{mg}, 1.00 \mathrm{mmol})$ was used without further purification.

29

Data for 29:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-6.4\left(c=1.00, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{IO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 411.0663$, found 411.0662.
IR (neat): 2939, 2870, 1971, 1725, 1454, 1382, 1212, 1078, 1050, 975, $881 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($399 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.79(\mathrm{dd}, J=2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dt}, J=10.8,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.09-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=12.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 1 \mathrm{H})$, $3.43-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.61$ (ddd, $J=17.3,9.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.54 (dd, $J=14.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.85 (ddd, $J=14.1,10.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.73$ (m, $1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{C l}_{3}$) 200.3, 108.9, 85.1, 79.1, 76.5, 73.9, 72.7, 59.9, 47.9, 42.0, 27.3, 26.0, 25.5, 24.3, 8.0.

Bicyclic enone 28 (from $18+29$):

28
Preparation of allylic alcohol 31 (mixture of diastereomers): CrCl_{2} ($80 \mathrm{mg}, 0.64 \mathrm{mmol}$) and $\mathrm{NiCl}_{2}(0.5 \mathrm{mg}, 0.03 \mathrm{mmol})$ were weighed out in a glove box and the flask was flushed with argon for 10 min . The flask was cooled to $0^{\circ} \mathrm{C}$, and dry DMF (2 mL) was added. The ice bath was removed after 10 min and the solvated salts were warmed to room temperature. A solution of vinylic iodide $18(97 \mathrm{mg}, 0.32 \mathrm{mmol})$ in DMF (0.6 mL) was added in one portion. The reaction mixture was stirred for 15 min and then a solution of aldehyde 29 ($66 \mathrm{mg}, 0.16 \mathrm{mmol}$) in DMF (0.33 mL) was added dropwise. The resulting suspension was stirred at room temperature for 4 h . The reaction mixture was diluted with water $(15 \mathrm{~mL})$ and extracted with EtOAc (10 mL $\times 6$). The combined organic phase was washed with water ($20 \mathrm{~mL} \times 2$) and brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography (20% EtOAc in hexanes to $30 \% \mathrm{EtOAc}$ in hexanes) to afford compound $\mathbf{3 1}$ as a clear pale-yellow oil ($64 \mathrm{mg}, 0.11 \mathrm{mmol}, 69 \%$ yield, $1.5: 1$ mixture of diastereomers).

Data for 31 (mixture of diastereomers):

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-2.1\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{IO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 581.1970$, found 581.1962.
IR (neat): 3485, 2954, 2937, 2872, 1725, 1646, 1480, 1456, 1289, 1212, 1162, 1120, 1106, 1045, 997, 886, 800, $772 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 5.16(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.10(\mathrm{t}, J=1.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.92(\mathrm{t}, J=$ $1.3 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.88(\mathrm{q}, J=1.5 \mathrm{~Hz}, 4.6 \mathrm{H}), 4.47(\mathrm{dtd}, J=11.0,7.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{td}, J=11.1$, $9.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99 (ddd, $J=9.7,7.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (dt, $J=$ $12.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.8,2.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{td}, J=9.8,2.6 \mathrm{~Hz}, 0.6 \mathrm{H})$, $3.48(\mathrm{ddd}, J=14.9,11.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=12.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$
(dt, $J=14.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{qd}, J=15.6,14.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.88$ $-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 178.7,150.9,150.1,110.6,109.7,108.70,108.67,85.3,85.0$, $82.2,79.8,79.5,79.3,74.7,73.9,73.8,72.9,72.8,71.8,64.1,64.0,59.9,54.0,42.14,42.07,39.4$, $38.9,38.5,31.9,29.9,29.5,28.6,27.5,27.3,27.2,26.3,25.52,25.46,24.4,24.3,7.9,7.6$.

Preparation of bicyclic enone 28 (from oxidation of 31): The allylic alcohol 31 (from coupling vinylic iodide 18 and aldehyde $29 ; 60 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and DMP ($44 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(17 \mathrm{mg}, 0.21 \mathrm{mmol})$ were added. After 2.5 h , additional DMP ($27 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added. After 1 h , the reaction mixture was poured into a solution of aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~g})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The suspension was stirred for 30 min until the layers turned clear upon standing. The layers were separated and the aqueous layer was extracted with and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, water $(5 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford enone $\mathbf{2 8}(54 \mathrm{mg}, 0.093 \mathrm{mmol}, 93 \%$ yield).

(Characterization data provided on page S-27)

Bicyclic allylic alcohol 30 (enriched in (S)-diastereomer): The enone 28 (119 mg, 0.204 mmol) was dissolved in methanol (2 mL), and the solution was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ $(96 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(9.8 \mathrm{mg}, 0.26 \mathrm{mmol})$ were added. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was quenched at low temperature by addition of acetone (0.5 mL), and allowed to warm to room temperature. The reaction mixture was concentrated under reduced pressure before being diluted saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and EtOAc (2 mL). The layers were separated and the aqueous later was extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography (20% EtOAc in hexanes to 25% EtOAc in hexanes) to afford compound $\mathbf{3 0}$ as a clear pale-yellow oil ($110 \mathrm{mg}, 0.189 \mathrm{mmol}, 93 \%$ yield, $97: 3 \mathrm{dr}$ favoring the (S)-alcohol, based on Mosher ester analysis).

Data for 30:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-7.3\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$
HRMS (NSI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{IO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 581.1970$, found 581.1978.
IR (neat): 3504, 2954, 2935, 2872, 2360, 2342, 1726, 1457, 1381, 1285, $1080 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 5.10(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=$ $11.0,7.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.98$ (dd, $J=9.7$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=12.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dt}, J=12.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{td}, J=9.9,2.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.50 (dd, $J=11.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (ddd, $J=12.4,8.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 3.05$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H})$, $1.88-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.71$ (app. qd, $J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34$ (s, 3H), 1.20 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 178.7,150.1,110.6,108.7,85.3,82.2,79.8,74.7,73.8,72.8$, 64.1, 59.8, 42.1, 39.4, 38.9, 27.4, 27.3, 26.3, 25.5, 24.3, 7.6.

Table 2. Selected resonances for MTPA-ester derivatives from compound $\mathbf{3 0}$

alcohol 30 resonance	MTPA-ester resonance	$\begin{gathered} \delta S \text {-ester } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \delta R \text {-ester } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \Delta\left(\delta_{\mathrm{S}}-\delta_{\mathrm{R}}\right) \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \Delta\left(\delta_{\mathrm{S}}-\delta_{\mathrm{R}}\right) \\ (\mathrm{Hz}) \end{gathered}$
5.10	a	5.21	5.14	0.07	42
4.88	b	5.11	5.05	0.06	36
2.06	j_{2}	2.13	2.08	0.05	30
4.32	c	5.69	5.67	n/a	n/a
3.76	e	3.77	3.77	0	0
2.50	1	2.50	2.50	0	0
3.63	f	3.62	3.63	-0.01	-6
3.36	g	3.35	3.36	-0.01	-6
3.05	h	3.04	3.07	-0.03	-18
3.98	d	3.95	4.00	-0.05	-30

Figure 5. MTPA-ester data for compound 30

6) Preparation of tricyclic polyether 33 from bicyclic allylic alcohol 30 (Scheme 5):

Bicyclic triol 31: Acetonide $30(44 \mathrm{mg}, 0.075 \mathrm{mmol})$ was added to a vial, and a mixture of trifluoroacetic acid and water ($3: 1,1 \mathrm{~mL}$) was added. The reaction mixture was stirred for 15 min, then cooled to $0^{\circ} \mathrm{C}$ before slow addition of saturated aqueous sodium bicarbonate solution $(4 \mathrm{~mL})$ and dilution with EtOAc (2 mL). The biphasic mixture was stirred for 30 min before the layers were separated. The aqueous layer was extracted with EtOAc ($5 \mathrm{~mL} \times 5$). The combined organic extracts were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before being filtered and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography (50% EtOAc in hexanes to 75% EtOAc in hexanes) to afford compound $\mathbf{3 1}$ as a clear pale-yellow film ($35 \mathrm{mg}, 0.065 \mathrm{mmol}, 86 \%$ yield).

Data for 31:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25}+20.1\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$
IR (neat): 3479 (br), 1722, 1479, 1283, 1158, $802 \mathrm{~cm}^{-1}$.
HRMS (NSI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{IO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 563.1476$, found 563.1475.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=8.7,3.5 \mathrm{~Hz}$, 1 H), 4.09 (td, $J=6.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.96 (ddd, $J=10.3,3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 (ddd, $J=9.8,4.0$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=11.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{ddd}, J=10.8,5.1,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.91-$ $1.75(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 179.0,149.7,110.7,83.7,79.1,77.9,74.4,73.4,68.3,64.1$, $60.2,42.2,40.8,39.0,27.8,27.2,26.4,25.2,10.3$.

The same procedure was conducted on the diastereomer mixture of allylic alcohol $\mathbf{3 0}(1.5: 1 \mathrm{dr})$ obtained directly from the coupling of vinylic iodide 18 and aldehyde 29. Careful silica gel flash column chromatography ($50 \% \mathrm{EtOAc}$ in hexanes to $75 \% \mathrm{EtOAc}$ in hexanes) provided separation of diastereomers $\mathbf{3 1}$ and $\mathbf{3 7}$.

Data for 37:

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-7.0\left(\mathrm{c}=0.827, \mathrm{CHCl}_{3}\right)$
IR (neat): 3406 (br), 2955, 2922, 1480, 1275, 1161, $763 \mathrm{~cm}^{-1}$.
HRMS (APCI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+} 541.1657$, found 541.1643.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 5.17(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=$ $6.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dt}, J=10.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dt}, J=10.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{ddd}, J=$ $10.6,3.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dt}, J=9.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (ddd, $J=11.9$, $6.9,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{ddd}, J=13.8,4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{td}, J=$ $11.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~m}, 3 \mathrm{H})$, $1.57-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 179.0,149.9,110.2,81.7,79.1,78.2,73.4,72.3,68.6,64.0$, $60.2,42.5,39.3,39.0,27.4,27.1,26.5,25.3,10.2$.

Tricyclic polyether organomercurial 32: Alkenyl triol 31 ($32 \mathrm{mg}, 0.059 \mathrm{mmol}$) was dissolved in THF (1.2 mL), and the solution was cooled to $0^{\circ} \mathrm{C} . \mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(48 \mathrm{mg}, 0.088 \mathrm{mmol})$ was added. The ice bath was removed after 5 min , and the reaction mixture was stirred at ambient temperature for 2 h before addition of saturated aqueous $\mathrm{KCl}(60 \mu \mathrm{~L})$, and stirring for an addition 1.5 h . The reaction mixture was diluted with water $(1 \mathrm{~mL})$ and EtOAc $(2 \mathrm{~mL})$. The layers were separated and the organic layer was extracted with EtOAc ($2 \mathrm{~mL} x 3$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude oil was purified by silica gel flash column chromatography ($35 \% \mathrm{EtOAc}$ in hexanes to 45% EtOAc in hexanes) to afford organomercurial intermediate 32 ($0.028 \mathrm{mmol}, 22$ $\mathrm{mg}, 47 \%$ yield). HRMS was complicated by the multiple isotopes of mercury. In addition, another slightly more polar product was isolated $(21 \mathrm{mg}, 0.027 \mathrm{mmol}$ and 45% yield calcd. assuming mercury incorporation). This other product underwent decomposition upon attempted demercuration, when following the same protocol that was successful for converting compound 32 into compound $\mathbf{3 3}$ (see below).

Data for 32:

IR (neat): $3426,2957,2854,2360,2342,1725,1554,1480,1285,1160,1082,1014 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 4.13(\mathrm{dd}, J=11.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dt}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.93 (dt, $J=10.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{ddd}, J=$ $11.6,9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=12.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=9.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{td}, J=12.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (dd, $J=$ 16.1, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=16.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dt}, J=12.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.89$ $(\mathrm{m}, 1 \mathrm{H}), 0.82(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathbf{C}_{6} \mathbf{D}_{6}\right) \delta 178.3,79.4,77.1,76.0,75.3,72.7,70.1,67.9,64.3,60.0,46.0$, $36.9,35.0,29.9,27.1,26.8,26.1,25.1,22.3,14.9$.

Tricyclic polyether 33: Organomercurial $32(12 \mathrm{mg}, 0.016 \mathrm{mmol})$ was added to a 0.3 mL conical vial containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mu \mathrm{~L})$. Benzyltriethylammonium chloride ($14 \mathrm{mg}, 0.061 \mathrm{mmol}$) and 10% aqueous sodium hydroxide ($150 \mu \mathrm{~L}$) were added, and the resulting biphasic mixture was rapidly stirred, followed by addition of $\mathrm{NaBH}_{4}(0.012 \mathrm{mmol}$ dissolved in $25 \mu \mathrm{~L}$ of 10% aqueous NaOH). The biphasic mixture was stirred for 10 min , at which time it was diluted with water (1 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford a crude oil. The crude compound was purified by silica gel flash column chromatography ($30 \%-40 \%$ EtOAc in hexanes) to afford 33 as a clear pale-yellow oil ($7 \mathrm{mg}, 80 \%$ yield, $5.5: 1 \mathrm{dr}$). COSY, HMBC, and HMQC support the structural assignment and NOE supports the axial methyl assignment.

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{a}} \delta 4.15, \mathrm{dd}, J=11.8,5.0 \mathrm{~Hz} \\
& \mathrm{H}_{\mathrm{d}} \delta 3.90, \mathrm{dt}, J=6.0,2.9 \mathrm{~Hz} \\
& \mathrm{H}_{\mathrm{f}} \delta 3.55, \mathrm{ddd}, J=11.9,9.4,4.8 \mathrm{~Hz} \\
& \mathrm{H}_{\mathrm{i}} \delta 3.12, \mathrm{dd}, J=11.9,4.8 \mathrm{~Hz} \\
& \mathrm{H}_{\mathrm{j}} \delta 3.05, \mathrm{dd}, J=9.5,1.9 \mathrm{~Hz}
\end{aligned}
$$

Figure 6. Key NOE correlations of compound $\mathbf{3 3}$

Data for 33:

$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 5}}-15.7\left(\mathrm{c}=0.60, \mathrm{CHCl}_{3}\right)$
IR (neat): 3465 (br), 2956, 2925, 2854, 1721, 1462, 1261, 1158, 1015, $798 \mathrm{~cm}^{-1}$.
HRMS (NSI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{IO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 541.1657$, found 541.1663.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 4.18-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{dt}, J=10.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J=$ $4.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{ddd}, J=11.6,9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=$ $12.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=11.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=9.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{td}, J=12.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=16.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=16.1$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dt}, J=11.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{p}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.42-$ $1.27(\mathrm{~m}, 5 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathbf{C}_{6} \mathbf{D}_{6}\right) \delta 178.5,77.9,76.9,76.7,76.3,73.8,71.1,71.0,65.2,60.7,46.6$, $36.4,35.9,27.7,27.4,25.8,23.2,15.9$.

Attempts to remove the iodine from compound 33 began with classical methods of radical deiodination, with tributyltin hydride and with tris-trimethyl silane, initiated by AIBN over a range of temperatures with varying equivalents of hydride source. ${ }^{7,8}$ We then attempted Stephenson's photocatalytic methodology for reduction of unactivated alkyl iodides using fac$\operatorname{Ir}(\text { ppy })_{3}$ and Hantzsch ester, ${ }^{9}$ however this resulted in decomposition of starting material with trace iodomethylene protons still visible in the crude NMR. Attempted hydrogenolysis ${ }^{10}$ of compound $\mathbf{3 3}$ with $10 \% \mathrm{Pd} / \mathrm{C}$ and triethylamine at 30 bar for 22 hours gave no reaction, which we have attributed to steric congestion of the tricyclic compound.

In particular, the B ring exhibits different chemical shifts and couplings for key resonances H_{a}, $\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{k}}$ and H_{m} in compound 22, vs. the corresponding resonances $\mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{f}}, \mathrm{H}_{\mathrm{j}}, \mathrm{H}_{1}$ and H_{m} in tricyclic compound 33. The conformational drawings for compounds 22 and 33 (Figure 7) are based on these coupling constants.

compound 22

compound 33

Figure 7. Key ${ }^{1} \mathrm{H}$ resonances and coupling constants for the seven-membered rings of compounds $\mathbf{2 2}$ and $\mathbf{3 3}$

7) Preparation of bis-acetate dienoate 34 and its conversion to bicyclic 36 (footnote 25):

Dienoate ester, diacetate 34 was prepared in four steps from the allylic alcohol 11:

Preparation of bis-acetate ester 49: Alcohol 11 (from page $\mathrm{S}-23,948 \mathrm{mg}, 2.27 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, acetic anhydride $(0.9 \mathrm{~mL})$ and pyridine $(0.9 \mathrm{~mL})$ were added, and the reaction mixture was stirred overnight. The crude was concentrated under reduced pressure and purified by silica gel flash column chromatography ($20 \% \mathrm{EtOAc}$ in hexanes) to afford bisacetate ester 49 as pale yellow, clear oil ($929 \mathrm{mg}, 2.27 \mathrm{mmol}, 95 \%$ yield).

Data for 49:

HRMS (NSI): m / z calcd. for $\mathrm{C}_{2} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 481.2592$, found 481.2583.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.21(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.39 (ddd, $J=9.4,5.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=7.8,6.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{td}, J=6.5,1.7 \mathrm{~Hz}$, 2 H), 3.68 (dd, $J=10.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (dd, $J=10.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (dd, $J=16.3,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{dd}, J=16.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.

Preparation of primary alcohol 50: Silyl ether $49(929 \mathrm{mg}, 2.02 \mathrm{mmol})$ was dissolved in THF $(20 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, followed by addition of acetic acid $(90 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ and TBAF (1.0 M in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$). The reaction mixture was gradually warmed to room temperature and stirred for 2 h before removal of solvent under reduced pressure. The resulting oil was purified by silica gel flash column chromatography (60% EtOAc in hexanes) to afford the product $\mathbf{5 0}$ as a pale-yellow oil ($675 \mathrm{mg}, 1.96 \mathrm{mmol}, 97 \%$ yield).

Data for 50:

HRMS (NSI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$367.1727, found 367.1721.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.17(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.46 (ddd, $J=8.0,6.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{td}, J=6.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (td, $J=6.4,4.4$ Hz, 2H), 3.64 (m, 2H), 2.41 (ddt, $J=16.2,8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (dd, $J=16.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ $(\mathrm{s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H})$.

Preparation of aldehyde 51: To a stirred solution of primary alcohol 50 ($675 \mathrm{mg}, 1.96 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added DMP ($1.27 \mathrm{~g}, 3.03 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(503 \mathrm{mg}, 6.05 \mathrm{mmol})$. After 2 h , the reaction was poured into a rapidly stirred solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(25 \mathrm{~g})$ in saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The suspension was stirred for 30 min until the layers turned clear. The layers were separated and the organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(25$ mL), water ($15 \mathrm{~mL} \times 2$), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The resulting crude aldehyde $\mathbf{5 1}$ was used immediately without further purification.

Data for 51:

HRMS (NSI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 365.1570$, found 365.1567.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.68(\mathrm{~d}, J=3.3, \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}$, $1 \mathrm{H}), 4.62-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=7.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dt}, J=5.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-$ $2.20(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$.

Preparation of dienoate ester 34: The crude aldehyde $51(688 \mathrm{mg})$ was dissolved in methanol $(6.5 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, then the Wittig reagent ($803 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , whereupon the solvent was removed under reduced pressure and the resulting viscous yellow oil was purified by silica gel flash column chromatography ($15 \% \mathrm{EtOAc}$ in hexanes). The alkene isomers were separated cleanly to afford $\mathbf{3 4}, Z-\alpha, \beta$ unsaturated ester ($398 \mathrm{mg}, 1.07 \mathrm{mmol}, 53 \%$ yield) and 52, $E-\alpha, \beta$ unsaturated ester (107 $\mathrm{mg}, 0.29 \mathrm{mmol}, 14 \%$ yield).

34

Data for 34, $\boldsymbol{Z - \alpha , \beta} \boldsymbol{\beta}$ unsaturated ester:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.24(\mathrm{dd}, J=11.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=11.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.64 (ddd, $J=8.1,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=7.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{ddd}, J=8.6,6.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 171.2,170.4,166.1,146.7,144.2,121.7,113.8,109.0,77.0$, 76.1, 75.2, 64.2, 51.7, 33.4, 29.8, 28.4, 25.6, 24.8, 21.4, 21.1.

Data for 52, $\boldsymbol{E}-\boldsymbol{\alpha}, \boldsymbol{\beta}$ unsaturated ester:
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.86(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.17(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{td}, J=6.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{ddd}, J=8.4$,
$6.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{td}, J=6.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=$ $15.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 143.7,123.2,113.8,109.2,77.3,76.6,76.2,64.2,51.9,33.3$, 29.8, 28.1, 25.6, 24.9, 21.4, 21.2.

Unexpected formation of methylene-oxepane 35: Bis-acetate $34(398 \mathrm{mg}, 1.07 \mathrm{mmol})$ was dissolved in methanol (11 mL), and then $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{mg}, 0.21 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for 4 h . The methanol was removed by rotary evaporation before immediate purification by silica gel flash column chromatography (40\% EtOAc in hexanes to $60 \% \mathrm{EtOAc}$ in hexanes) to afford methylene-oxepane 35 as a light-yellow oil ($138 \mathrm{mg}, 0.44 \mathrm{mmol}, 41 \%$ yield, $9: 1 \mathrm{dr}$).

Data for 35:
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 5.06(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=$ $8.4,5.4 \mathrm{~Hz}, 0.1 \mathrm{H}$), 4.26 (dd, $J=8.6,5.3 \mathrm{~Hz}, 0.9 \mathrm{H}$), 4.04 (td, $J=10.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (ddd, J $=5.6,4.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.0,5.8 \mathrm{~Hz}, 0.1 \mathrm{H}), 3.52(\mathrm{dd}, J=10.2,5.5 \mathrm{~Hz}, 0.9 \mathrm{H}), 3.40$ (dd $J=12.4,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{dd}, J=15.9,2.6 \mathrm{~Hz}, 0.1 \mathrm{H}), 2.89(\mathrm{dd}, J=16.0,2.7$ $\mathrm{Hz}, 0.9 \mathrm{H}), 2.49$ (dd, $J=16.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=14.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (ddd, $J=14.0$, $3.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 3 \mathrm{H})$.

Cis-fused bicyclic polyether 36: Epoxidation of 35 was diastereoselective, although the stereochemistry of the epoxide intermediate 53 could not be determined. Acid-catalyzed cyclization produced bicyclic 36, which was unambiguously characterized by X-ray crystallography.

Preparation of epoxide 53: Methylene-oxepane $35(138 \mathrm{mg}, 0.44 \mathrm{mmol})$ was dissolved in a rapidly stirred biphasic mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ and aqueous pH 7 buffer (9 mL). m-CPBA (77% purity, $295 \mathrm{mg}, 1.31 \mathrm{mmol}$) was added. The suspension was stirred overnight until alkene
had been consumed, at which time the reaction mixture was diluted with EtOAc (20 mL). The organic layer was separated and washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}(10 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}(15$ mL), water (15 mL), and brine before being dried over MgSO_{4}, filtered, concentrated, and purified by silica gel flash column chromatography ($50 \% \mathrm{EtOAc}$ in hexanes) to afford the product with benzoic acid, which was re-subjected to column chromatography ($40 \% \mathrm{EtOAc}$ in hexanes) to afford the epoxide $\mathbf{5 3}$ as a light-yellow film ($95 \mathrm{mg}, 0.29 \mathrm{mmol}, 66 \%$ yield).

Data for 53:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 4.26(\mathrm{td}, J=10.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (ddd, $J=9.6,6.8,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{dd}, J=9.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=10.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, $2.84(\mathrm{dd}, J=15.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=15.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=4.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23 (ddd, $J=14.0,9.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=14.1,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$.

Preparation of bicyclic polyether 36: Epoxide $53(49.0 \mathrm{mg}, 0.148 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), and camphorsulfonic acid (CSA, $17.2 \mathrm{mg}, 0.074 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 14 h , and then concentrated under reduced pressure. Silica gel flash column chromatography (40% ether in pentane to 50% ether in pentane) afforded bicyclic polyether 36 as a white powder ($35.0 \mathrm{mg}, 0.106 \mathrm{mmol}, 71 \%$ yield). The powder was recrystallized from heptane and benzene via vapor diffusion to afford colorless needle-like crystals.

Data for 36:
Melting point: $126-127^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25}+5.4\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right)$
IR (neat): 3435, 2924, 2854, 1739, 1439, 1370, 1263, 1209, 1106, $1044 \mathrm{~cm}^{-1}$.
HRMS (NSI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+} 463.0588$, found 463.0585 .
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 4.68(\mathrm{ddd}, J=11.6,6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=9.6,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02(\mathrm{td}, J=10.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.70(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{td}, J=12.9,11.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{dd}, J=16.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=16.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=14.6,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 4.93(\mathrm{ddd}, J=11.6,6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{td}, J=10.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.11$ (ddd, $J=13.1,11.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=16.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (dd, $J=16.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=14.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{tdd}, J=13.9,4.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.94-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.77$ (ddq, $J=13.2,4.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 171.9,128.7,109.7,79.8,79.1,76.7,76.4,74.8,62.8,61.8,51.4$, $40.5,38.4,30.6,28.4,27.1,25.5,20.5$.

Figure 8. X-ray crystal structure of cis-fused bicyclic compound 36

8) Iodocyclization of alkenyl triol 37 to tricyclic polyether 38 (footnote 28):

Preparation of tricyclic polyether 38: Alkenyl triol 37 (see page $\mathrm{S}-42,9.0 \mathrm{mg}, 0.017 \mathrm{mmol}$) was dissolved in THF (1.5 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$. Sodium bicarbonate (14 $\mathrm{mg}, 0.16 \mathrm{mmol}$) was added followed by iodine ($26 \mathrm{mg}, 0.10 \mathrm{mmol}$). The reaction mixture gradually warmed to ambient temperature. After 10 h , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. The reaction mixture was diluted with $\mathrm{EtOAc}(2$ mL) and the layers were separated. The aqueous layer was extracted with EtOAc ($4 \times 2 \mathrm{~mL}$) and the combined organic extracts were washed with brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude oil was purified by silica gel flash column chromatography ($50 \% \mathrm{EtOAc}$ in hexanes) to afford tricyclic polyether diiodide 38 ($7.0 \mathrm{mg}, 0.012$ mmol, 70 \% yield).

38

Data for 38:

HRMS (NSI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{I}_{2}[\mathrm{M}+\mathrm{H}]^{+}$667.0623, found 667.0635.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 4.15(\mathrm{dd}, J=12.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{td}, J=5.4,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.04(\mathrm{td}, J=12.2,11.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (dd, $J=12.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 1.95-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H})$.

Tricyclic polyether $\mathbf{3 8}$ was derivatized as the acetate ester 54: Compound $\mathbf{3 8}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ and pyridine $(0.1 \mathrm{~mL})$ were added. The reaction mixture was stirred overnight. The crude product was concentrated under reduced pressure and purified by silica gel flash column chromatography to afford the acetate ester $\mathbf{5 4}$ as a yellow oil.

54

Data for 54:

$[\alpha]_{\mathrm{D}}{ }^{25}-10.5\left(\mathrm{c}=0.327, \mathrm{CHCl}_{3}\right)$
IR (neat): 3477, 2958, 2925, 2854, 1729, 1460, 1259, 1241, 1316, 1028, $797 \mathrm{~cm}^{-1}$.
HRMS (APCI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{I}_{2}[\mathrm{M}+\mathrm{H}]^{+} 709.0729$, found 709.0703.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 5.00(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (ddd, $J=11.9,9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=12.5,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ (app. ddd, $J=18.3,9.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{td}, J=12.5,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dt}, J=14.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=16.2,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 8 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right) \delta 177.3,168.9,77.7,77.3,75.9,75.8,71.4,70.7,70.0,63.2,60.1$, $45.9,38.6,29.9,29.5,27.3,25.1,22.8,21.2,20.2,14.8,6.9$.

9) References

(1) Holmes, A. B.; Smith, A. L.; Williams, S. F. J. Org. Chem. 1991, 56, 1393.
(2) Bolte, B.; Basutto, J. A.; Bryan, C. S.; Garson, M. J.; Banwell, M. G.; Ward, J. S. J. Org. Chem. 2015, 80, 460.
(3) Yuen, T. Y.; Brimble, M. A. Org. Lett. 2012, 14, 5154.
(4) Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451.
(5) Hansen, T. M.; Florence, G. J.; Lugo-Mas, P.; Chen, J.; Abrams, J. N.; Forsyth, C. J. Tetrahedron Lett. 2003, 44, 57.
(6) Durka, M.; Buffet, K.; Iehl, J.; Holler, M.; Nierengarten, J.-F.; Taganna, J.; Bouckaert, J.; Vincent, S. P. Chem. Commun. 2011, 47, 1321.
(7) Sugimura, H.; Sato, S.; Tokudome, K.; Yamada, T. Org. Lett. 2014, 16, 3384.
(8) (a) Ballestri, M.; Chatgilialoglu, C.; Clark, K. B.; Griller, D.; Giese, B.; Kopping, B. J. Org. Chem. 1991, 56, 678. (b) Postigo, A.; Kopsov, S.; Ferreri, C.; Chatgilialoglu, C. Org. Lett. 2007, 9, 5159.
(9) Nguyen, J. D.; D'Amato, E. M.; Narayanan, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.
(10) Booker-Milburn, K. I.; Jenkins, H.; Charmant, J. P. H.; Mohr, P. Org. Lett. 2003, 5, 3309.

