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Table S1. Binding energies (in kJ/mol) for guest molecules in MOFs.  

CO2 tpt-Mg-MOF-74 tpt-Zn-MOF-74 Mg-MOF-74 Zn-MOF-74 

DFT Classic

al 

DFT Classic

al 

DFT Classic

al 

DFT Classic

al 

None      -45.24 -46.6 -35.18 -35.65 

100%  -57.89 -57.34 -40.77 -46.68     

50%   -55.25  -44.39     

Cross   -63.05  -47.93     

 

 

 

Table S2. Binding energies (in kJ/mol) for guest molecules in MOFs.  

H2O tpt-Mg-MOF-74 tpt-Zn-MOF-74 Mg-MOF-74 Zn-MOF-74 

DFT Classic

al 

DFT Classic

al 

DFT Classic

al 

DFT Classic

al 

None      -69.48 -78.08 -51.68 -46.49 

100%  -85.51 -85.03 -69.96 -60.42     

50%   -90.06  -69.05     

Cross   -93.48  -73.48     

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1. At 313K, (a) CO2 adsorption isotherm in Mg-MOF-74, tpt-Mg-MOF-74 (50%), 

tpt-Mg-MOF-74 (100%) and tpt-Mg-MOF-74 (100%, crossed) represented by black, green, 

blue, and red squares, respectively. (b) Same as (a) except for H2O with circle representations. 

(c) Same as (a) but in Zn-MOF-74 and tpt-Zn-MOF-74. (d) Same as (b) but in Zn-MOF-74 

and tpt-Zn-MOF-74. In (a) - (d), the inset figures show the zoomed in part at the low pressure 

region of the isotherms. 
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Figure S2. Binary mixture inside (a) the IAST code result in Mg-MOF-74 and tpt-Mg-MOF-

74. (b) same as (a) but mixture GCMC simulation result are used. (c) the IAST code result in 

Zn-MOF-74 and tpt-Zn-MOF-74. (d) same as (c) but mixture GCMC simulation result are 

used. y-axis: simulated binary mixture uptake of CO2 (solid lines) and H2O (dot line) as a 

function of H2O mole fraction at total pressure of 0.15 bar and temperature of 298 K. 
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Figure S3. At 298K, (a) N2 adsorption isotherm in Mg-MOF-74, tpt-Mg-MOF-74 (50%), tpt-

Mg-MOF-74 (100%) and tpt-Mg-MOF-74 (100%, crossed) represented by black, green, blue, 

and red triangles, respectively. (b) Same as (a) but in Zn-MOF-74 and tpt-Zn-MOF-74. (c) 

Same as (a) but at 313K. (d) Same as (b) but at 313K. In (a) - (d), the inset figures show the 

zoomed in part at the low pressure region of the isotherms. 
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Section S4 

 

CO2/N2 selectivity using IAST 

 

The selectivity of CO2/N2 binary mixture was predicted using the IAST code. By assuming 

that the binary mixture of CO2/N2(15/85) is identical to the composition of flue gas in post-

combustion CO2 capture. The adsorption selectivity is defined as:  

S =  
x1 /x2
y1 /y2

                    

where x is the in the molar fraction in the adsorbed phase and y is the molar fraction in the 

gas phase. 

 



 

Figure S4. IAST-predicted selectivity for CO2/N2 (15:85) mixtures at 298K: (a) Mg-MOF-

74(black), tpt-Mg-MOF-74 (50%) (green), tpt-Mg-MOF-74 (100%) (blue) and tpt-Mg-MOF-

74 (100%, crossed) (red). (b) Same as (a) but with Zn-MOF-74. 

 

The selectivity of CO2/N2 mixtures exhibits on the calculated samples at 298K(Figure S4). 

The CO2/N2 selectivity of tpt-M-MOF-74 (M=Mg, Zn) was significantly higher than that of 

the parent material, especially within the low-pressure region. The selectivity of CO2/N2 of 
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Mg-MOF-74 was 30.74 at 1bar. Whereas, that of tpt-Mg-MOF-74s was as high as 

484.42(100%, crossed), 456.11(100%, non-crossed) and 72.06(50%), respectively. Similar 

results obtained for tpt-Zn-MOF-74s. The Zn-MOF-74 shows selectivity of 48.10. On the 

other hand, the CO2/N2 selectivity is also high in tpt-Zn-MOF-74(100%, crossed), tpt-Zn-

MOF-74(100%, non-crossed), and tpt-Zn-MOF-74(50%), with values of 632.80, 434.70 and 

114.36, respectively. It can be concluded that the tpt-M-MOF-74(M=Mg, Zn) not only had a 

CO2 adsorption, but also had high CO2/N2 selectivity, which would be a promising material 

for CO2 capture. Breakthrough simulations were also performed for the four materials, 

demonstrating the superior performance of tpt-Zn-MOF-74(100%, crossed) over tpt-Zn-

MOF-74(50%) and Zn-MOF-74 (See Fig.S5). It can be concluded that the tpt-M-MOF-

74(M=Mg, Zn) not only had a CO2 adsorption, but also had high CO2/N2 selectivity, which 

would be a promising material for CO2 capture. 

 

Figure S5. Breakthrough curves representing the mole % CO2 in the outlet with step-input 

15/85 CO2/N2 mixture at a total pressure of 1 bar and 298K. 
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