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Computing clustering 

From the calibration procedure that corrects for the differences in GFP and mCherry 

fluorescence [1], the Imaris threshold settings for each fluorescent colour were 3.83 µm for GFP 

and 4 µm for mCherry.  These are understood as the estimated fluorescent footprint of each 

bacterium.  Thus, bacteria of the same colour closer than 4 µm apart were likely counted as one.  

This undercounting bias is weaker for between-morph clustering measurements, because the 

focal bacterium is of a different colour than the neighbours that are being counted.  The between-

morph clustering may still be underestimated because the neighbours of another colour may be 

clustered among themselves, but can serve as a lower limit for clustering estimates. 
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 By comparing mono-fluorescent monocultures with mixed-fluorescent “monocultures” 

(either cooperators or defectors only, 7 replicates), we found that monocultures were 

undercounted by a factor of 0.6369 on average.  Thus, we infer that a portion M=1-0.6369 comes 

from missed counts within 4 µm of focal individuals.  As well, GFP counts on average were 

greater than mCherry counts by a factor of 1.1098.  Let GG=1/1.1098, and GM=1, to account for 

the GFP and mCherry bias.  We thus added GiMniE[A4]/A to within-morph neighbour counts, 

where E[A4] is the expected interaction area with a radius of 4 µm, when non-habitat areas within 

the radius are subtracted.  A is the total habitat area, ni is the number of morph i individuals, and 

nii is the number of morph i neighbours around one focal individual of morph i.  We also set the 

denominator such that Cii approaches 1 as the interaction radius approaches infinity.  Thus, the 

uncorrected raw within-morph clustering coefficient is: 

(S1)  
 

where Af is the interaction area at the given scale, with non-habitat areas within the scale 

subtracted.  The corrected version Cii is: 

(S2)   

 

Bootstrapping 

 Bootstrapping was used to estimate the spreads of regression coefficients for the 

experiment and simulations.  The basic idea is to draw randomly and with replacement 

(resample) a pool of datapoints many times, each time computing the metric of interest (such as 

the mean, or regression coefficients in our case).  The histogram of the computed metric is an 

 
!Cii

!Cii = Xii / Xi =
E[Gi (nii −1) / Af ]
Gi (ni −1) / A

Cii =
E[(Gi (nii −1)+GiMniA4 / A) / Af ]
(Gi (ni −1)+GiMniE[A4 ] / A) / A
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empirical distribution of the metric estimated from the data itself, without first assuming the 

shape of the distribution (normal, log-normal, etc.).  In our bootstrap least-squares linear 

regression for the experiment, there are 24 replicates that match the dependent variables 

(cooperator frequency and population density) with the independent variables (clustering 

coefficients).  For each bootstrap regression, we draw 24 replicates randomly and with 

replacement from the original dataset.  For each such resampled dataset, each containing 24 

replicates, we perform a multiple linear regression to obtain the effect sizes of clustering 

coefficients (Ccc, Ccd, Cdd) on cooperator frequency and population density.  By repeating this 

procedure 10000 times, we obtain estimates of the spreads of all clustering effects.  Bootstrap 

regression allows us to obtain effect spreads that are non-parametric, which is important to 

ascertain their statistical significance.  For example, if we assumed a normal distribution for the 

effect of cooperator clustering on cooperator frequency (Fig. 3c in the main text), it would 

become less significantly negative.  That is because the empirical spread of the effect skews 

towards extremely negative values and much less often towards positive values, and a normal 

function fitted to this distribution would estimate a fairly high variance and thus a tail that 

reaches farther towards 0 effect.  This skews the estimate towards the null hypothesis of no 

effect.  Conversely, if the empirical spread skews towards 0, a normality assumption could skew 

the effect estimate towards falsely rejecting the null hypothesis, which the bootstrap regression 

would avoid. 

 

Model derivation 

Here we derive the mathematical foundations of the dynamic system in equation (1) of 

the main text.  We define local density as Xij, assume that all focal individuals u of morph i 
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weigh their neighbours by the same function fij, and note that the expectation of xuj across all u 

that are morph i is the same as the expectation of the average local density in cell location y, 

Xij(y), across all y: 

(S3)   

 

q is the location of potential morph j neighbors, and W is the habitat space, which is a countable 

but infinite set of discrete cells.  The expectation E[Ni(y)Nj(q)] is taken over all cells y.  So line 1 

of equation (S3) uses individuals u as focal points (with focal location yu and neighbour location 

yv), while line 2 uses space y as focal points (with focal location y and neighbor location q); these 

are equivalent Lagrangian and Eulerian perspectives.  We define the spatial covariance between 

morph i and j at distance y-q as: 

(S4)   

where the first expectation over all focal cells y and the second expectation over all cells.  As a 

simple example, we assume that the interaction effect is linear and can be expressed as aij.  Over 

an ensemble of realizations of the same system configuration, we take Dt to be small enough for 

only one birth or death event to occur.  Then, the expected change in the number of morph i 

individuals (Ni) in Dt is: 

(S5)   
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where h is the area of a cell.  Thus, E[Ni]/h is the expected global density of morph i across all 

cells.  We invoked the Eulerian form of equation (S3) to express local densities and equation 

(S4) to go from line 1 to 2 of equation (S5).  We assume that the distribution of individuals is 

stationary to the second order and isotropic [2], such that the distribution is fully described by 

global densities and Covij(y-q).  Thus, we can move the focal cell y to the origin and rewrite 

Covij(y-q) as Covij(q).  In the limit that the cell size h is infinitely small, the point global density 

of morph i is Xi=limh®0Ni/h and covij=limh®0Covij/h2.  We obtain the continuous-time, 

continuous-space analog of equation (S5) by dividing the equation by h: 

(S6)   

The bracketed term in equation (S6) is the continuous-space definition of local density Xij, which 

is a combination of the first and second spatial moments (Xj and covij). We did not assume that 

birth is associated with seed dispersal as was done for plant interactions in the original spatial 

moment derivation [2]; rather, we assume that movement can take place at any time, which is 

realistic for organisms such as bacteria.  Note that movement does not affect morph densities 

directly because it is simply a spatial redistribution of individuals, but it affects local densities 

through changing covij [3].  As well, covij will be a function of higher moments (densities of 

triplets and so on) through birth and death processes, so equation (S6) and equation (1) do not 

constitute a closed set of equations.  However, they do sufficiently establish local densities as 

variables of interest. 

 Finally, for the cooperation-competition model in the main text, we substitute the 

clustering coefficient in place of local density using Xij= Cij Xj, and define the interaction effects 

as aic=-k+a , and aij=-k.  Equation (S6) then becomes equation (1). 
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Based on equation (1), we can write the intrinsic growth rate r, clustering to cooperators 

Cc, and clustering to defector Cd of an individual of character z as: 

r(z) = rd – (rc – rd)z 
Cc(z) = Ccd – (Ccc – Ccd)z 

(S7)  Cd(z) = Cdd – (Ccd – Cdd)z 
 
The substitutions in equation (S7) allow us to write the fitness of an individual as a single 

expression of the form w(z): 

(S8)  w(z) = rd - (rc - rd)z - (k-a)Xc(Ccd - (Ccc - Ccd)z) - kXd(Cdd - (Ccd - Cdd)z) 

We then analyse the selection pressure that each clustering coefficient exerts on cooperation 

using Price’s Equation [4], which states that the change in the average character of a population 

is dZ/dt = cov(w, z).  By inserting equation (S8) (w) into the covariance equation, we obtain: 

dZ/dt = var(z) (rc - rd) - var(z) (k - a)Xc(Ccc - Ccd) - var(z) kXd(Ccd - Cdd) 
(S9)                   = var(z)((rc - rd) - (k - a)XcCcc + kXdCdd + ((k - a)Xc - kXd)Ccd) 
 

 Compare this result to Equation 8 in [5], which assumed discrete-space (but continuous 

time), and weak selection such that rare mutant cooperators M invade resident defectors R.  For 

cost and benefit affecting survival, their selection direction is given by the inclusive fitness 

effect: 

(S10)  DWIF = bD(qo/M  - qo/R) - D(C-B(qM/M  - qM/R)) 

D stands for the partial derivative operator with respect to helping investment at neutrality (small 

effect).  b is the background fecundity, C is cost of helping, and B is the benefit.  By equating the 

local densities Xij=XjCij=qj/i, collecting terms by k and a, and changing the subscripts M=c 

(mutant cooperators) and R=d (resident defectors), Equation S9 becomes: 

(S11)  dZ/dt = var(z)( rM – rR + a(qM/M - qM/R) – k(qx/M - qx/R) 

Further, given qM/i + qR/i = qx/i=1 - qo/i,  
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(S12)  dZ/dt = var(z)( rM – rR + a(qM/M - qM/R) + k(qo/M - qo/R) 

Finally, by equating costs rM - rR =DC, a=DB, and k=b, Equation S12 is identical to Equation 

S10.  Thus, our approach generalizes and simplifies existing results by allowing for any selection 

strength and continuous space and time dynamics.  The terminology of k instead of b also 

highlights the ecologically familiar competitive effect instead of the indirect effect of fecundity 

which in the end translates into competition [5]. 

 

Connection between Clustering Coefficients and Relatedness 

To connect clustering coefficients with the more familiar relatedness metrics in inclusive 

fitness theory [6], we reformulate the main model as a one-locus population genetics model that 

accounts for interaction effects.  The fitness of an individual u is the sum of its intrinsic growth 

probability, expected interaction effect received from each of all other individuals v (av→u), and 

all expected costs incured upon encountering individual v in a small temporal increment Dt, 

taken over an ensemble of realizations of the same configuration: 

(S13)   

Ley zu be the morph or character value of individual u.  The expected changes in the number of 

morph i individuals (Ni) and of all individuals (N) are then 

(S14)   

The change in the morph i frequency pi is: 

(S15)   
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Using equations S13-15, we obtain: 

(S16)   

 

We can convert equation S16 to an inclusive fitness formulation.  We switch the index of 

the interaction effect between pairs from av→u to au→v, such that the effect direction switches 

from what the focal individual u receives to what u initiates. 

(S17)   

 The term (zv – pi)/ (zu – pi) is the correlation form of relatedness, defined for every pair of 

individuals [7]. 

We take the limit of Dt®0 in equation (S17), where N+DN»N, to arrive at a continuous-

time analogue for the change in morph frequency.  For a 2-morph population (with cooperators c 

and defectors d), we associate cost, benefit, and relatedness terms with morph, such that the 

indices now refer to the morph instead of the individual.  We now assume that all individuals of 

a morph i provide the same effect (au→•|uÎi = ai•) to each interacting neighbour without 

discrimination in the small time interval dt.  Specifically, ac•=a - k and ad•=-k.  Subsituting Xij=Cij 

Xj, from equation (S17) we get: 

(S18)   

  

where the relatedness terms are: 
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The Σv≠u... summations from equation (S17) are replaced in equation (S18) by Xi• (average total 

local density around morph i) because both represent the average sum of effects on neighbours 

by one individual.  (1/N)ΣNi... is replaced by pi times the average of the term in the summation.  

There are two relatedness terms, because in this model both cooperators and defectors initiate 

interactions.  The fractions involving clustering coefficients in equation (S19) are the fractions of 

interaction partners that are cooperators.  Relatedness thus effectively normalize clustering 

effects so that there is no a priori dependence of clustering on global densities.  The difference 

between the two relatedness terms and their multiplicands (the total interaction effects), plus the 

difference between the intrinsic growth rates, which are the last bracketed expression in equation 

(S18), is analogous to the inclusive fitness effect [8,9]. 

Rc is equivalent to nearest-neighbour relatedness under neutrality (with qx/M = qx/R =qx/x), 

which can be expressed as (qM/M - qM/R)/qx/x [10].  We can rearrange equations (S18), plug in Rc 

in terms of q, and substitute the indices M=c and R=d to resemble the the inclusive fitness result 

of equation (S10): 

(S20)  dp/dt = p(1-p)((rM - rR + (qM/M - qM/R)ac. + qx/RRdad.) 

Again, ac•=a - k and ad•=-k, so equation (S20) can be rearranged as: 

(S21)  dp/dt = p(1-p)((rM - rR + a(qM/M - qM/R) + k(qM/R - qM/M + qx/RRd)) 

 Comparing equations (S10) and (S21), we can deduce that Rd is equivalent to (qR/R - qR/M)/qx/x, 

which is exactly nearest-neighbour relatedness with the R and M indices switched.  This equation 

for Rd also matches the definition we independently derived in equation (S19).  Note that Rd 

includes the defector clustering term (Cdd = qR/R), which is in the inclusive fitness formulation 
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(equations (S10) or (S21)) embedded in the term associated with k or b, the competition or 

“ecological cost” term [5].  Thus, defector clustering already appeared distinctively from 

cooperator clustering in previous literature, but it was not isolated on its own. 

 

Weak Selection and Large Populations 

If we assume that selection is weak, a neutral dimorphic finite population consisting of 

any two morphs (such as cooperators and defectors) will take on any possible configuration 

given the population size N (1 cooperators vs. N-1 defectors, 2 cooperators vs. N-2 defectors, 

etc.).  In a mutation-selection process (with any mutation rate), it is known that selection is 

expected to favour the morph that, averaged over all possible configurations, has a frequency 

above ½ [11].   Simple Monte-Carlo simulations (1E5 samples for each population size) shows 

that as the population size increases, the portion of times that the frequency of one morph is 

different from ½ (defined as less than 0.475 or more than 0.525, or outside the 95% confidence 

interval of 1/2) decreases.  At around a population size of 2000, the neutral dimorphic population 

drifts to a morph frequency of 1/2 almost all of the time.  Thus, for populations bigger than 2000, 

it is sufficient to infer the direction of selection from investigating how morph frequency changes 

around 1/2; equivalently, this is when Xc= Xd= Xi in a population of cooperators and defectors. 

Table	1.	Simulation	of	fraction	of	times	that	the	morph	frequency	in	a	neutral	dimorphic	population	is	different	
from	½	(<0.475	or	>0.525)	as	a	function	of	population	size	(N).		For	each	population	size,	1E5	random	
configurations	were	used	to	obtain	the	fractions.	

population 
size (N) 

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

fraction of 
morph 
frequency 
different 
from 1/2 

0.500 0.625 0.727 0.803 0.860 0.708 0.535 0.417 0.269 0.111 0.0233 0.00123 1.00E-5 0 
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Simulation 

The simulation model, implemented in Matlab, is a discretization of the local interaction model 

of equation (1).  At each time step, cooperation and competition from neighbours in each of the 

36x36 patches affects birth probabilities, while death and movement events occur at constant 

probabilities.  We set rd=0.1, rd-rc=0.01 (cost), a=0.05 (benefit), and k=0.1 (competition), each 

being an expected change in density per observation time T in each cell of the habitat.  Growth 

was implemented as the sum of binomial random birth and death events for all individuals at 

each update.  Cost, benefit, and competition affected the birth rate, and the death rate was set at 

0.1.  The cost-free local movement rate was set at 0.2, 0.3, or 0.6 crossings between patch per 

observation time.  These movement rate variations effectively change the potential interaction 

scale and test the robustness of clustering effect measurements made at a fixed (patch) scale.  

The movement direction was random - unless the chosen direction was a boundary, in which 

case the individual stayed.  The simulation process is illustrated in Fig. S3, and a time series is 

presented in Fig. S4.  For movement rate of 0.3, the correlation between cooperator frequency 

and population density, and the correlation between cooperator clustering and defector clustering 

are plotted in Fig. S5.  Similar results were obtained from movement rates of 0.2 and 0.6 (Fig. S6 

& S7). 
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Figures 

 

Figure S1. AIC (scale inverted with smallest values at the top) and portions of variance in cooperator frequency and total 
population density explained by clustering coefficients measured at different scales.  The short horizontal line crossing the 
AIC curve represents the AIC obtained from using initial cooperator and defector densities as predictors. 

 

 

Figure S2. Bootstrapped linear regression slopes (effects) of standardized cooperator frequency on standardized 
clustering coefficients (Cij/std(Cij)) measured at different spatial scales.  Ccc, Ccd, Cdd are clustering coefficients among 
cooperators, between cooperators and defectors, and among defectors.  The circles indicate the effect means, and the size 
of the circles indicate the scales in microns (4, 5, 6, 7, 10, 20, 40, 80, 160, 320, 640, 1280).  The thick bars indicate the 25th 
and 75th percentiles, and the whiskers indicate the 2.5th and 97.5th percentiles of the effect estimates according to 10000 
bootstrap resamples of the data. 
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Figure S3. Simulation process chart for each location z in the 36x36 habitat.  Thick boxes indicate distinct locations (z+1 is 
any neighbouring location of z).  Thin boxes are state variables, and diamonds are events.  Connectors flowing out are 
modifiers to the rates (binomial probabilities) that the events they point to occur.  Rates are subscripted * to indicate that 
they are 1/100 of the model parameters as part of the discretization procedure.  Solid connectors out of events indicate 
that the process continues if the events occured, whereas dashed connectors indicate the process continues if the events 
did not occur.  Each update uses state variables from time T to project their values at T+ΔT.  

 

 
Figure S4. Four snapshots from a simulation time series with a movement rate of 0.3.  Green (light) indicates locations 
where cooperator clusters dominate, and magenta (dark) indicates where defector clusters dominate.  Global densities of 
cooperators (Xc) and defectors (Xd) are plotted as thick lines (scaled to the left axis), while local clustering coefficients 
(among cooperator clustering Ccc, between-morph clustering Ccd, and among defector clustering Cdd) are plotted as thin 
lines (scaled to the right axis). 
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Figure S5. a, Cooperator frequencies versus total population densities in an individual-based simulation with movement 
rate=0.3 (n=40).  The relationship was positive (slope=0.27, S.E.=0.063, F2,38=19, p=1.2e-4, R2=0.33). b, The relationship 
between cooperator and defector clustering was negative (slope=-0.0308, S.E.=0.0065, F2,38=22, p=3.5e-5, R2=0.37).  The 
dotted lines represent the 95% confidence bounds.  c, Bootstrapped linear regression slopes (effects) of cooperator 
frequency on standardized clustering coefficients (Cij/std(Cij)) were obtained by measuring clustering within patch.  The 
regression model predicts (R2) 0.86 of cooperator frequency outcomes, and 0.62 of population density outcomes. 

 

 

 

Figure S6. a, Cooperator frequencies versus total population densities in an individual-based simulation with movement 
rate =0.2 (n=40).  The relationship was positive (slope=0.27, S.E.=0.036, F2,38=55, p=7.0e-9, R2=0.59). b, The relationship 
between cooperator and defector clustering was negative (slope=-0.086, S.E.=0.027, F2,38=10, p=0.0030, R2=0.21).  The 
dotted lines represent the 95% confidence bounds. c, Bootstrapped linear regression slopes (effects) of cooperator 
frequency on standardized clustering coefficients (Cij/std(Cij)) were obtained by measuring clustering within patch.  The 
regression model predicts (R2) 0.86 of cooperator frequency outcomes, and 0.72 of population density outcomes.  In all 
bootstraps, cooperator clustering is negatively associated with cooperator frequency, while defector clustering is 
positively associated. 
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Figure S7. a, Cooperator frequencies versus total population densities in an individual-based simulation with movement 
rate =0.6 (n=40).  The relationship was positive (slope=0.41, S.E.=0.056, F2,38=53, p=9.9e-9, R2=0.58). b, The relationship 
between cooperator and defector clustering was negative (slope=-0.0095, S.E.=0.0036, F2,38=6.9, p=0.013, R2=0.15).  The 
dotted lines represent the 95% confidence bounds. c, Bootstrapped linear regression slopes (effects) of cooperator 
frequency on standardized clustering coefficients (Cij/std(Cij)) were obtained by measuring clustering within patch.  The   
The regression model predicts (R2) 0.81 of cooperator frequency outcomes, and 0.66 of population density outcomes.  In 
all bootstraps, cooperator clustering is negatively associated with cooperator frequency.  Defector clustering is positively 
associated with cooperator frequency (p=0.0032, one-sided test). 
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