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Abstract

■ The fusiform face area (FFA) is defined by its selectivity for
faces. Several studies have shown that the response of FFA to
nonface objects can predict behavioral performance for these
objects. However, one possible account is that experts pay more
attention to objects in their domain of expertise, driving signals
up. Here, we show an effect of expertise with nonface objects
in FFA that cannot be explained by differential attention to objects
of expertise. We explore the relationship between cortical thick-
ness of FFA and face and object recognition using the Cambridge
Face Memory Test and Vanderbilt Expertise Test, respectively. We

measured cortical thickness in functionally defined regions in a
group of men who evidenced functional expertise effects for cars
in FFA. Performance with faces and objects together accounted
for approximately 40% of the variance in cortical thickness of
several FFA patches. Whereas participants with a thicker FFA
cortex performed better with vehicles, those with a thinner FFA
cortex performed better with faces and living objects. The results
point to a domain-general role of FFA in object perception and
reveal an interesting double dissociation that does not contrast
faces and objects but rather living and nonliving objects. ■

INTRODUCTION

Functional brain imaging research has offered strong
support for localized functions in the brain. However, brain
imaging findings often generate debate with respect to the
attribution of specific cognitive functions to patterns of
localized responses (Grodzinsky & Santi, 2008; Shomstein
& Yantis, 2006; Price & Devlin, 2003; Burton, Small, &
Blumstein, 2000). For instance, should we conceive of
the FFA as a specialized module dedicated only to the
processing of faces, with little, if any, role in the process-
ing of other objects (Kanwisher, 2010)? Or can we under-
stand the strong selectivity for faces in FFA as resulting
from expertise with faces, such that other objects with
similar experience would also recruit the FFA (Tarr &
Gauthier, 2000)? Questioning the evidence of domain
specificity in FFA is questioning some of the strongest
evidence of domain specificity in the visual system and
the brain.

Fifteen years past the first experiment reporting exper-
tise effects in FFA after training with novel objects called
Greebles (Gauthier & Tarr, 1997), several studies of
individual variability in FFA BOLD response in real-world
domains suggest that the response of FFA to nonface
objects can predict behavioral performance for these
objects (e.g., McGugin, Newton, Gore, & Gauthier, 2014;
Bilalić, Langner, Ulrich, & Grodd, 2011; Xu, 2005; Gauthier,
Skudlarski, Gore, & Anderson, 2000). Expertise effects

are obtained in the very middle of the FFA (McGugin,
Van Gulick, Tamber-Rosenau, Ross, & Gauthier, 2014),
even in the most highly face-selective voxels in high-
resolution (HR) scans (McGugin,Gatenby,Gore,&Gauthier,
2012). However, other studies have found no correlation
between performance with cars and FFA response (e.g.,
Grill-Spector, Knouf, & Kanwisher, 2004) or failed to rep-
licate the Greeble training effect (Brants, Wagemans, &
Op de Beeck, 2011).1

One concern about expertise effects in the visual sys-
tem is that they may be because of greater attention to
objects of expertise (Harel, Gilaie-Dotan, Malach, &
Bentin, 2010). This account has been challenged by
demonstrations of robust expertise effects in FFA under
conditions that reduce these effects in other visual areas
(McGugin, Newton, et al., 2014; McGugin, Van Gulick et al.,
2014). However, attention is a strong modulator of re-
sponses in visual cortex (Pessoa, Kastner, & Ungerleider,
2003), and it is plausible for people to pay more attention
to objects of expertise (including faces). An attentional
account of expertise effects of functional MRI data is diffi-
cult to rule out entirely.
Here, we turn to the study of the structural correlates

of face and object recognition ability and note that such
expertise effects, whether they are related to functional
effects, could not be explained by attention. Test–retest
reliability of structural MRI data and, specifically, surface
maps of CT are highly reproducible with high intraclass
correlations (Wonderlick et al., 2009), allowing us to
comfortably look at individual differences in regional CT.
Measures of regional brain structure have been successfully1Vanderbilt University, 2Carnegie Mellon University
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associated with performance in a number of domains
(Delon-Martin, Plailly, Fonlupt, Veyrac, & Royet, 2013;
Schwarzkopf, Song, & Rees, 2011; Foster & Zatorre, 2010;
Karama et al., 2009; Wong et al., 2008; Narr et al.,
2007; Hyde, Zatorre, Griffiths, Lerch, & Peretz, 2006; Shaw
et al., 2006; Schneider et al., 2005; Golestani, Paus, &
Zatorre, 2002). These studies demonstrate individual dif-
ferences in brain structure in the same areas where dif-
ferences in BOLD activation are seen, and both types of
brain reorganization are associated with domain-specific
behavioral differences. Accordingly, we may expect CT in
FFA to be related to behavioral face recognition perfor-
mance (McGugin, Gatenby, et al., 2012; Xu, 2005; Grill-
Spector et al., 2004; Kanwisher, McDermott, & Chun, 1997).
In one study with prosopagnosic patients, the right

fusiform gyrus showed reduced gray matter volume rela-
tive to normal controls (Garrido et al., 2009). However,
using healthy participants, recent work (Bi, Chen, Zhou,
He, & Fang, 2014) found a negative correlation between
cortical thickness (CT) in left FFA (lFFA) and improve-
ments in a task involving judging the orientation of
faces. This was not a face recognition task, and so it is
unclear whether face performance should also show
the same negative correlation with CT or follow the gen-
eral trend observed when performance in patients versus
controls is correlated with BOLD response.
We might also expect CT in FFA to be related to object

recognition performance, based on functional effects of
expertise in this region. However, one report found that
expertise with cars was related to gray matter volume in
pFC but not in the fusiform gyrus (Gilaie-Dotan, Harel,
Bentin, Kanai, & Rees, 2012). We chose to revisit this
question because the aforementioned study used a
group-averaged template, as is typical in brain morphom-
etry, to look for brain areas whose structure might be
related to behavior. Even when functional ROIs have
been used in studies looking at brain structure (Bi et al.,
2014), they have typically been group-averaged ROIs.
Within the fusiform gyrus, functional effects of expertise
are spatially limited to two small face-selective areas
(Weiner et al., 2014) and are best revealed in individually
defined ROIs.
We performed CT analyses in individually defined func-

tional ROIs in a sample of 27 men who were recruited to
vary in their expertise for cars. We defined ROIs function-
ally and individually. None of the prior work with CT used
individual functional ROIs. In addition, our structural
scans come from a sample of participants who showed
the expected positive correlation between behavioral
performance with cars and FFA selectivity to cars in a
prior study (McGugin, Van Gulick, et al., 2014). There-
fore, we are able to ask if CT predicts behavioral perfor-
mance in participants whose performance with cars was
related to the BOLD selectivity for cars. Critically, how-
ever, there is no reason why CT should be specifically
related to the object category(ies) used in our separate
functional task. Brain structure could be related to per-

formance with any object category. For this reason, we
used behavioral performance for a variety of object cate-
gories and faces, in a battery of visual learning tasks
(the Vanderbilt Expertise Test, VET; McGugin, Richler,
Herzmann, Speegle, & Gauthier, 2012) and the Cambridge
Face Memory Test (CFMT; Duchaine & Nakayama, 2006).
VET performance for vehicles shows a stronger rela-
tionship with the CFMT in men than women (McGugin,
Richler, et al., 2012). Because of such gender differences
and because the sample we used was composed of men
(gender has too large of an effect on CT to justify including
the three women in the original McGugin, Gatenby, et al.
[2012] study), we decided to index object recognition
performance according to the two principle factors ex-
tracted from a principal component analysis of the VET
results, which, in prior work, also correlated with gender.
The first factor corresponds to living objects (on which
women generally performed better than men), and the
second corresponds to nonliving objects (on which men
generally performed better than women; McGugin,
Richler, et al., 2012). Thus, the behavioral indices of per-
formance used here are the same measures as in several
studies of expertise (McGugin, Newton, et al., 2014;
McGugin, VanGulick, et al., 2014; Curby,Glazek,&Gauthier,
2009; Gauthier, Curby, Skudlarski, & Epstein, 2005; Xu,
2005; Grill-Spector et al., 2004; Rossion, Kung, & Tarr,
2004; Gauthier et al., 2000). We average categories for
which performance tends to be correlated, which may help
detect small effects associated with each category. Because
this study sample was recruited with regard to their car
expertise, we also investigate correlations with car per-
formance alone.

We hypothesized that we would find linear relation-
ships between CT in FFA and performance for both faces
and objects. Importantly, the literature contains examples
of better performance in various domains that are asso-
ciated with either thicker (Foster & Zatorre, 2010; Karama
et al., 2009; Choi et al., 2008; Narr et al., 2007) or thinner
(Jung et al., 2010; Hyde et al., 2007) cortex. For this rea-
son, we do not formulate a prediction for the direction of
the linear relations between performance and local CT,
and we use two-tailed tests.

METHODS

Participants

Twenty-seven healthy right-handed men (age: range =
18–34 years, mean = 26 ± 4.7 years) participated as
volunteers for a larger study that also included three
women, aimed at investigating effects of behavioral
expertise under conditions of visual clutter (McGugin,
Van Gulick, et al., 2014). The current work represents
a new analysis of the structural data that was used in
McGugin, Van Gulick, et al. (2014) only as support for func-
tional analyses. Informed written consent was obtained
from each participant in accordance with guidelines of
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the institutional review board of Vanderbilt University
and Vanderbilt University Medical Center. All partici-
pants received monetary compensation for their partic-
ipation and had normal or corrected-to-normal vision.
One participant was discarded because of outlier perfor-
mance (at or below chance of .33) for six of the eight
object categories in the behavioral memory test.

Behavioral Assessments

All participants completed three behavioral tasks outside
the scanner: the CFMT (Duchaine & Nakayama, 2006),
the VET (McGugin, Richler, et al., 2012), and a sequential
matching expertise test used to quantify individual skill at
matching cars (McGugin, Gatenby, et al., 2012; Curby
et al., 2009; Gauthier et al., 2000, 2005; Xu, 2005; Grill-
Spector et al., 2004; Rossion et al., 2004). See Table 1
for descriptive statistics for all behavioral measures.

In the CFMT, participants study three images (left
one-third profile, frontal view, and right one-third profile)
of the first target face for 3 sec per image, immediately
followed by three test items where participants select the
studied image among two distractors. This introductory
learning phase is repeated for the remaining five target
faces. Participants were then presented with 30 forced-
choice test displays, each containing one target face and
two distractor faces. Participants were instructed to select
the face that matched one of the original six target faces.
The matching faces varied from their original presentation
by means of lighting, pose, or both. Next, participants
were again presented with the six target faces to study,
followed by 24 test displays presented in Gaussian noise.
For a complete description of the CFMT, see Duchaine
and Nakayama (2006).

The VET (McGugin, Richler, et al., 2012) includes eight
object categories blocked alphabetically: butterflies, cars,
leaves, motorcycles, mushrooms, owls, planes, and wad-
ing birds. For each category, participants studied a display
with images from each of six species/models. For each
test trial, one of the studied targets (identical images for
the first 12 trials or transfer images requiring gener-
alization across viewpoint, size, and settings for the sub-
sequent 36 trials) was presented with two distractors from
another species/model in a forced-choice paradigm. The
target image could occur in any of the three positions,
and participants indicated which image of the triplet was
the studied target. Before beginning the VET, participants
rated themselves on their expertise with all tested cate-
gories (leaves, owls, butterflies, wading birds, mushrooms,
cars, planes, and motorcycles) and also with faces, con-
sidering “interest in, years exposure to, knowledge of,
and familiarity with each category,” where 1 represented
the lowest reported skill level and 9 represented the
highest. See Table 1 for descriptive statistics of self-report
(SR) scores. For a complete description of the VET, see
McGugin, Richler, et al. (2012).

Principal component analysis has demonstrated that the
underlying structure of the eight-category VET is largely
explained by two independent factors that represent living
and nonliving objects. Therefore, we reduced VET perfor-
mance to a living objects score (VET-LV; average of butter-
flies, leaves, mushrooms, owls, and wading birds) and a
nonliving objects score (VET-NL; average of cars, motor-
cycles, and planes).
The matching task has 112 sequential matching trials

for each of the three categories: cars, planes, and birds
(56 unique images/category). On each trial, a first stimu-
lus appeared for 1000 msec, followed by a 500-msec
mask and second stimulus that remained visible until par-
ticipants made a same or different response or 5000 msec
elapsed. Participants judged if the two images showed
cars/planes of the same make and model regardless of
year or birds of the same species.

MRI Acquisition

Scanning was performed using a Philips (Amsterdam, The
Netherlands) 3-T Intera Achieva MRI scanner with an eight-
channel head coil located at the Vanderbilt University Insti-
tute for Imaging Science. HR T1-weighted anatomical
volumes were acquired (repetition time = 8.93 msec; echo
time=4.6msec; flip angle=9°; field of view [FOV]=256×
256; slice thickness = 1 mm, no gap; in-plane resolution =
1 × 1 mm; 170 slices acquired in the sagittal plane). In a
functional localizer run, we used standard gradient-echo

Table 1. Descriptive Statistics

Average CT (SD) Range

rFFA1 2.4 (0.3) 1.53–2.95

rFFA2 2.7 (0.3) 2.17–3.58

Right OFA 2.4 (0.7) 1.75–5.05

Right PHG 2.4 (0.4) 1.38–3.25

lFFA1 2.3 (0.4) 1.43–3.71

lFFA2 2.6 (0.5) 1.44–3.51

Left OFA 2.2 (0.4) 1.21–3.1

Left PHG 2.5 (0.4) 1.8–3.94

Global CT 2.5 (0.3) 1.8–2.9

Age 26 (4.7) 18–34

CFMT_all 0.8 (0.1) 0.57–0.96

VET-LV 0.6 (0.1) 0.47–0.69

VET-NL 0.7 (0.1) 0.40–0.84

Matching bird 1.3 (0.4) 0.56–2.14

Matching car/plane 0.6 (0.7) −0.54 to 2.17

SR-LV 2.2 (1) 1–5.2

SR-NL 4.2 (1.7) 1–7.67
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echo planar T2*-weighted imaging to obtain functional im-
ages (repetition time = 2000 msec; echo time = 35 msec;
flip angle = 79°; FOV= 192× 192; slice thickness = 3mm,
no gap; in-plane resolution = 3 × 3 mm; 34 ascending in-
terleaved slices acquired axially).
The structural scan was processed using Brain Voyager

v2.6 (Maastricht, The Netherlands, www.brainvoyager.
com). First, steps were taken to prepare the brain for au-
tomatic correction of intensity inhomogeneities; the im-
age background was cleaned, the brain was extracted,
and the bias field was estimated and removed. The cere-
bellum and brainstem were manually removed for each
brain. After automatic intensity inhomogeneity correc-
tion, the gray matter and white matter intensities were
centered around intensity values of 100 and 160, respec-
tively. Brains were then Talairach normalized and inter-
polated to 0.5 × 0.5 × 0.5 mm resolution. The white/
gray matter boundary was segmented, after which the
gray matter/cerebrospinal fluid boundary (corresponding
to the pial surface or the outer boundary of the cortex)
was labeled.
For the functional localizer scan, all images were presented

with an Apple Macintosh computer running MATLAB (The
MathWorks, Natick, MA) using the Psychophysics Toolbox
extension (Santa Barbara, CA, Brainard, 1997; Pelli, 1997).
Stimuli were displayed on a rear-projection screen using
an Eiki LC-X60 LDP projector with a Navitar zoom lens
(Rancho Santa Margarita, CA). Seventy-two grayscale im-
ages (36 faces, 36 objects) were used in a 1-back detection
task with 18 alternating blocks of faces or objects (16 im-
ages shown for 1 sec) and a 2-sec fixation at the
beginning and end of each block. Sensitivity did not dif-
fer for face and object blocks: hit rate and false alarm rate,
face = 0.92 and 0.008 and object = 0.93 and 0.004.
After the functional localizer scan, participants com-

pleted eight runs using different combinations of images
and tasks (see McGugin, Van Gulick, et al., 2014, for full
details). To verify the face selectivity of the ROIs in this
subset of participants, we analyzed only the first two of
these experimental runs to obtain an independent mea-

sure of face selectivity in the ROIs defined in the functional
localizers. These runs showed single objects presented in
isolation in a blocked fMRI design with a 1-back repetition
task of face, car, or butterfly images.

Data Analysis

The HR T1-weighted structural scans were normalized to
Talairach space. Functional data were analyzed using Brain
Voyager (www.brainvoyager.com) and in-house MATLAB
scripts. Preprocessing included registration to the original
(nontransformed) structural scan, slice scan time correc-
tion (cubic spline), 3-D motion correction (trilinear/sinc
interpolation), and temporal filtering (high-pass criterion
of two cycles per run) with linear trend removal.

ROIs were defined using the face > object contrast
from the face localizer scan (Table 2). For ROI analyses,
no spatial smoothing was applied to the CT maps. We
localized bilateral ROIs that responded more to faces than
objects in the posterior fusiform gyrus (FFA1), middle fusi-
form gyrus (FFA2; Weiner, Sayres, Vinberg, & Grill-Spector,
2010; Pinsk et al., 2009), and occipital face area (OFA) and
more to objects than faces in the parahippocampal gyrus
(PHG). To verify the face selectivity of these regions using
functional data independent from the localizer, we exam-
ined the BOLD response to faces relative to a butterfly
baseline (cars were not used because several participants
were car experts). As expected, there was a larger response
to faces versus butterflies in bilateral FFA1, FFA2, and OFA
and the opposite effect in object-defined regions in the
PHG (Table 2).

All ROIs were initially defined based on the 1-mm (inter-
polated) statistical maps using a fixed millimeter spread
of activation to ensure consistency with reported sizes of
these functional ROIs in the literature as well as consistency
across participants (Table 1). However, to ensure that the
signal was weighted per functional voxel, ROIs were sub-
sequently downsampled to functional (3-mm) resolution.
Any functional voxel containing one or more 1-mm voxel
from the initial ROI was considered to be part of the final

Table 2. Localization of ROIs

N
Mean Talairach Coordinates for
Peak Face-selective Voxel ± SD

Face Selectivity
(Face–Butterfly; 95% CI)

t Test of Mean Face Selectivity:
t Statistic (p Value)

rFFA1 26 40, −59, −23 (4, 8, 5) 0.31 [0.22, 0.40] 6.95 (<.0001)

rFFA2 24 40, −38, −22 (3, 7, 4) 0.28 [0.23, 0.34] 9.58 (<.0001)

Right OFA 24 29, −84, −23 (9, 7, 7) 0.17 [0.09, 0.26] 4.02 (.0004)

Right PHG 27 27, −55, −19 (3, 6, 4) −0.23 [−0.26, −0.19] −11.40 (<.0001)

lFFA1 27 −39, −59, −24 (4, 8, 5) 0.19 [0.12, 0.26] 5.00 (<.0001)

lFFA2 24 −40, −40, −24 (4, 7, 6) 0.18 [0.13, 0.23] 6.72 (<.0001)

Left OFA 23 −34, −80, −24 (9, 8, 5) 0.18 [0.08, 0.28] 3.55 (.0015)

Left PHG 27 −29, −53, −19 (4, 7, 4) −0.27 [−0.31, −0.22] −11.64 (<.0001)
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ROI, thus leading to larger final ROIs relative to those
initially defined. Functional voxels that were members of
multiple initial ROIs were dropped from all final ROIs. This
latter qualification avoided partial-volume effects with
regard to functional region membership.

In addition to our functionally defined ROIs, we ana-
tomically defined an additional four regions in the pre-
central and frontal gyri to correspond to the regions
where car expertise effects were reported in Gilaie-Dotan
et al. (2012). We had no means to define this region func-
tionally. The location and extent of these regions was
fixed across all participants (see Table 4 legend).

To test whether CT varied as a function of ROI size and
distance from the peak of face selectivity, we defined four
additional clusters for bilateral FFA1 and FFA2 in each
individual. First, we localized the peak face-selective voxel
of each ROI based on the localizer scan. We computed
mean CT from this peak voxel, in addition to the 4, 16,
and 60 contiguous voxels around this peak, after the
spread of face–object activation.

For all ROIs, we computed the partial correlation be-
tween the mean CT over all voxels with each VET factor,
regressing out the other VET factor as well as global CT
and age, because CT has been shown as highly sensitive
to age (Shaw et al., 2008). Zero-order correlations and
partial correlations for each ROI are presented in Table 3.
All correlations between CT and behavioral performance
were tested for bivariate outliers, which were denoted as
points whose externally studentized residual was >3.5 or
<−3.5. Partial correlations are reported in Table 3.

To perform group-level statistical data analyses on
CT maps, we used an advanced, HR, cortical matching
approach (Frost & Goebel, 2012; Goebel, Hasson, Harel,
Levy, & Malach, 2004; Goebel, Staedtler, Munk, & Muckli,
2002) to align brains using cortex curvature information
(i.e., the gyral/sulcal folding patterns). Cortex-based align-
ment operates in several phases during which individual
hemispheres are morphed into spheres providing a para-
meterizable surface suited for across-participant non-
rigid alignment. Alignment proceeds iteratively following
a coarse-to-fine matching strategy, moving from highly
smoothed curvature maps to minimally smoothed maps
(Frost & Goebel, 2012; Goebel, Esposito, & Formisano,
2006; Goebel et al., 2002, 2004).
Cortex-based alignment was used to compute average

thickness maps across participants. Although CT mea-
surements are performed in volume space in individual
brains, they are performed in surface space for group
analyses to benefit from cortical alignment.
During the segmentation procedure, all structural data

sets were upsampled from the 1.0-mm isovoxel acquisi-
tion resolution to 0.5-mm isovoxel resolution using sinc
interpolation. For whole-brain group analyses only, indi-
vidual CT maps were smoothed by a factor of 2 times the
size of the upsampled voxel, using 1-mm FWHM. These
smoothed maps were subsequently used as input in a
group correlation analysis.
We used a corrected two-tailed alpha of .05 for whole-

brain analyses. These analyses seeking areas where CT
correlated with VET-LV, VET-NL, and CFMT performance

Table 3. Correlations across Variables

VET-LV VET-NL CFMT Match-Bird Match-Car/Plane

VET-LV –

VET-NL .27 –

CFMT .11 .3 –

Match-bird .12 −.06 −.16 –

Match-car/plane −.35 .55 .1 .1 –

rFFA1 .04 .28 −.46 .17 .26

rFFA2 −.07 .42 −.1 .07 .43

lFFA1 −.5 .17 −.3 .14 .58

lFFA2 −.68 .05 −.18 −.11 .53

rOFA −.25 .02 −.11 .03 .24

lOFA −.3 −.08 −.31 .14 .1

rPHG .05 .24 .21 .13 .16

lPHG −.18 −.05 −.11 .21 .22

(Top) Zero-order correlations among behavioral variables: VET-LV, VET-NL, perceptual matching test with birds (Match-bird), average of perceptual
matching test with cars and planes (Match-car/plane), and memory for faces (CFMT). (Bottom) Partial correlations between behavior and regional CT
with participant age and global CT regressed out. (Note that regressing out age alone did not qualitatively change the results.) Significant correlations
( p < .05) are indicated in bold. We applied false discovery rate corrections (Benjamini & Hochberg, 1995) to each ROI for the three tests entered
into multiple regression analyses—VET-LV, VET-NL, and CFMT (Table 5); the VET-NL correlation in rFFA2 failed to pass threshold.
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failed to reveal significant clusters of activation.Whole-brain
analyses are inherently less powerful than ROI analyses
both because of correction for multiple comparisons and
the greater variance expected when participants are com-
pared in regions aligned according to gross anatomical
rather than functional landmarks.

CT

CT measurements in Brain Voyager QX are based on the
Laplace method ( Jones, Buchbinder, & Aharon, 2000).
Three tissue classes are identified in the anatomical image
based on a voxel’s intensity value, i: cerebral spinal fluid
(i < 75), gray matter (75 ≤ i ≤ 125), and white matter
(i > 125). For each gray matter voxel, a streamline is
calculated—using a small step size of 0.1 and trilinear
interpolation—by following a gradient in one direction
and then the opposite direction to obtain a thickness mea-
sure for that gray matter voxel.
Measurement of CT of individual segmented cortical

hemispheres is performed first in volume space but can
be projected on the surface with the help of gradient
maps. See Table 1 for descriptive statistics.

RESULTS

Relationship between Performance and CT

Just as living and nonliving performance scores were
computed, so were living and nonliving SR scores. SR
scores of experience for living and nonliving categories
were significantly correlated (r= .48), and the only signif-
icant correlation between SR and performance was that
SR for nonliving objects negatively predicted VET-LV

(r=−.45). These results are consistent with prior reports
that SRs generally do a poor job predicting performance
(McGugin, Gatenby, et al., 2012), probably because we
have limited opportunity to compare our perceptual skills
with those of others. In addition, SRs did not correlate
significantly with CT in any ROI.

Table 3 provides correlations between our behavioral
measures of performance with faces (CFMT) and living
(VET-LV) and nonliving (VET-NL) object categories as
well as the partial correlations that involve measures of
CT in the various ROIs (we first regressed age and global
CT out of the CT values within each ROI; see Figure 1
and Table 1 for CT averages and spreads). (Figure 1 shows
the distribution of raw scores for CFMT and VET.) Per-
formance with faces and nonface objects showed no sig-
nificant correlation in this sample, although each measure
was reliable (Cronbach’s alpha: VET-LV = .89, VET-NL =
.91) and showed considerable variability (Table 1).

Table 3 also presents the partial correlations between
performance measures and CT across functional ROIs.
The only significant effects were found in the FFAs
(Figures 2 and 3). The only significant positive correlation
for VET was in right FFA2 (rFFA2), where CT was related
to VET-NL (r = .42; Figure 2). To correspond to the VET
scores, we grouped the matching performance for cars
and planes (r = .57), whereas birds was the only living
category. Matching performance for cars/planes was cor-
related with VET-NL (r = .55) and showed a similar pos-
itive correlation with CT in rFFA2 (r = .43). Matching
cars/planes produced the same positive correlation in
the lFFAs, an effect that was not seen for VET scores
(even when restricted to cars and planes, the correlations
with the two lFFAs are both .24). We can only speculate
that it is possible that the requirements of the matching

Figure 1. Dotplot depicting
the behavioral performance
in the CFMT (represented by
the face stimulus) and the
VET, grouped into VET-LV
(butterflies, leaves, mushrooms,
owls, and wading birds) and
VET-NL (cars, motorcycles,
and planes) categories. Each
dot represents the accuracy
of a given participant, and
the horizontal bars represent
the mean accuracy across
participants for a given
category. The scatterplot to
the right shows the relationship
between standardized measures
of VET-LV and VET-NL.
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task tap better into left hemisphere representations, but
this conjecture would have to be investigated.

In contrast to these positive correlations for cars/planes,
VET-LV showed significant negative correlations with CT
in the two lFFA ROIs (Figure 3). Performance on the CFMT
was negatively correlated with CT in rFFA1 (Figure 2). The
matching task for birds did not correlate with CT in any
area, although the only negative correlation was observed
in the lFFA2 where the relationship with VET-LV was also
most negative.

Interestingly, even when we restrict our analyses to con-
sider thickness in the single maximally face-selective voxel,
the pattern observed at the larger sized ROIs remains in
lFFA1 (rVET-LV = −.49) and in rFFA2 (rVET-NL = .39). Other
effects, however, were considerably reduced, including
that of VET-LV in lFFA2 (rVET-LV = −.30) and of CFMT in
rFFA1 (rCFMT = −.22). In addition to these ventral areas,
we explicitly probed for frontal effects by defining four
areas in the frontal and precentral gyri of all participants.
These four ROIs were placed in regions showing CT effects
of car expertise in prior work (Gilaie-Dotan et al., 2012).
Only one region in the right superior frontal gyrus (rSFG)
showed a positive correlation between behavioral perfor-
mance (VET-LV) and regional CT (r = .41; Table 4).

Finally, in contrast to our functionally and anatomically
defined ROI results, whole-brain correlation analyses
performed at the group level in average brain space did
not reveal any significant effects between behavior
and CT, even at a liberal threshold. Note that maps in
Figures 2C and 3C depict average CT across all partici-
pants irrespective of behavior. Because of individual
differences in CT, as well as error in cortical registration,
these group maps do not reflect the full range of CT
variability found in individual participants.

Multiple Regressions on CT

Performance with faces and objects was not strongly
related, and as such, it is possible that they account for
different parts of the variance in CT. We conducted
multiple regressions to assess how much variance in CT
these variables could explain together in each ROI. All
three predictors (CFMT, VET-LV, and VET-NL) were en-
tered simultaneously in a multiple regression. The results
for the four FFA ROIs are shown in Table 5, including
the zero-order correlations (Table 3) for comparison with
the partial correlations (note that they are not strictly

Figure 2. (A) Scatterplots showing the significant partial correlations (regressing out participant age and global CT) between behavioral
performance on faces (CFMT; left) and behavioral performance on nonliving object categories (VET-NL; right) with regional CT in rFFA1 and
rFFA2, respectively. Colored points in the scatterplots correspond to the individual inflated hemispheres shown in B. (B) Four inflated right
hemispheres, selected to demonstrate the most extreme (thickest or thinnest) FFA cortices as depicted by the scatterplots in A. Participant-specific
maps of CT are overlaid on the corresponding inflated hemispheres, with functionally defined face-selective (FFA1/FFA2/OFA) and object-
selective (PHG) ROIs outlined on top of the CT map. (C) Group-averaged CT map overlaid on the group-averaged inflated right hemisphere,
with group-averaged coordinates for the center of rFFA1, rFFA2, and rOFA overlaid. Also labeled are the occipital temporal sulcus (OTS) and
collateral sulcus (CoS). The dashed box represents the FOV for the hemispheres represented in B.

288 Journal of Cognitive Neuroscience Volume 28, Number 2



speaking zero order because age and global CT were
regressed out, but they do not take into account any of
the other behavioral measures). Neither the full models
nor the partial correlations were significant in the other
non-FFA functionally defined ROIs.

These analyses allow us to ask how much unique vari-
ance is explained by each of the three measures. Although
the simple correlations reveal that VET-NL was a signifi-
cant predictor of CT only in rFFA2, when VET-LV and
CFMT are partialed out, both the rFFA1 and lFFA1 also
show the same positive correlation. This means that one
or both of the other variables was suppressing this rela-
tion. We identified the suppressor by removing each var-
iable in turn from the regressions. In the rFFA1, this
suppressor variable was CFMT, and adding VET-LV had
little influence on the VET-NL predictor. In the lFFA1,
both of the other predictors were necessary for VET-NL
to reach significance. In contrast, VET-LV remained a pre-
dictor in these multiple regressions, similar to when it was
used as the sole behavioral predictor, in two areas: VET-LV
accounted for unique variance (a negative correlation) in
CT for both lFFA1 and lFFA2. Finally, there was unique
variance in CT accounted for by the CFMT in both the
rFFA1 and lFFA1.

Figure 3. (A) Scatterplots showing the significant partial correlations (regressing out participant age and global CT) between behavioral performance
on living object categories (VET-LV) with regional CT in lFFA1 (left) and lFFA2 (right). Colored points in the scatterplots correspond to colored bars
above the individual inflated hemispheres represented in B. (B) Four inflated left hemispheres, selected to demonstrate the most extreme
(thickest or thinnest) FFA cortices as depicted by the scatterplots in A. Participant-specific maps of CT are overlaid on the corresponding
inflated hemispheres, with functionally defined face-selective (FFA1/FFA2/OFA) and object-selective (PHG) ROIs outlined on top of the CT map.
(C) Group-averaged CT map overlaid on the group-averaged inflated left hemisphere, with group-averaged coordinates for the center of
lFFA1, lFFA2, and lOFA overlaid. Also labeled are the occipital temporal sulcus (OTS) and collateral sulcus (CoS). The dashed box represents
the FOV for the hemispheres represented in B.

Table 4. Partial Correlations across Behavioral Measures and
Anatomically Defined Volumes Matched with Those in Which
Car Expertise Effects on CT Were Observed in Gilaie-Dotan
et al. (2012)

VET-LV VET-NL CFMT

l aIFG −.13 −.13 .24

r iPC .19 .22 −.08

rMFG −.07 −.22 −.11

rSFG .41 .14 .28

Regions were defined based on the Montreal Neurological Institute co-
ordinates (transformed to Talairach using MATLAB; The MathWorks,
Natick, MA) and sizes reported in Gilaie-Dotan et al. (2012; Table 1)
and were identical for all participants. Regions included left anterior
inferior frontal gyrus (l aIFG): Tal (−42, 32,−1), volume (174mm3); right
inferior precentral sulcus (r IPC): Tal (47, 1, 2), volume (520 mm3); rSFG:
Tal (12, 53, 10), volume (47 mm3); and right middle frontal gyrus (r MFG):
Tal (29, 18, 37), volume (27 mm3). Behavioral measures included VET-LV,
VET-NL, and faces (CFMT). We find a significant correlation between VET-
LV and CT in the rSFG region, after we regress out the influence of global
CT and age (r = .41, p = .028).
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Relationship between Functional and
Structural Effects of Expertise

The functional results for the present data set were pre-
sented in McGugin, Van Gulick, et al. (2014) and revealed
a significant relationship between the BOLD response to
cars relative to faces in both FFAs of both hemispheres,
and when the BOLD response to birds was used as a
baseline, there were significant effects of car expertise
in rFFA2 and both lFFAs.

Our finding that behavior for different categories can
be related to the CT in the same area in different ways

illustrates how difficult it would be to make predictions
between such relative functional responses and CT mea-
surements. The same ROI can yield many different re-
sponses for the same category depending on the task,
whereas structural effects are stable and can reflect simul-
taneously the independent influence of many familiar
categories.
Nonetheless, to test whether there was a link between

the structural effects of CT and the functional BOLD-
based effects of car expertise in McGugin, Van Gulick,
et al. (2014), we correlated across participants the CT
and the Michelson contrast ratios for cars (or faces) relative

Table 5. Multiple Regressions in the FFAs

CT in rFFA1 (Age and Global CT Partialed Out)

n = 25, RSq-adj = 33.2%

B SE t p Partial r Zero-order r

Intercept −0.0092 0.0402 −0.229 .821

CFMT −0.1540 0.0445 −3.46 .002 −.60* −.46*

VET-LV −0.0005 0.0741 −0.007 .995 .00 .04

VET-NL 0.1720 0.0655 2.63 .016 .50* .28

CT in rFFA2 (Age and Global CT Partialed Out)

n = 26, RSq-adj = 13.7%

B SE t p Partial r Zero-order r

Intercept 0.0033 0.0653 0.051 .960

CFMT −0.0846 0.0694 −1.22 .238 −.10 −.27

VET-LV −0.0632 0.1261 −0.501 .622 −.07 −.11

VET-NL 0.2620 0.1058 2.48 .023 .42* .49*

CT in lFFA1 (Age and Global CT Partialed Out)

n = 23, RSq-adj = 39.9%

B SE t p Partial r Zero-order r

Intercept 1.1785 0.5287 2.23 .036

CFMT −1.4826 0.6598 −2.25 .035 −.43* −.30

VET-LV −0.4517 0.1261 −3.58 .002 −.61* −.50*

VET-NL 0.2858 0.1119 2.56 .018 .48* .17

CT in lFFA2 (Age and Global CT Partialed Out)

n = 23, RSq-adj = 42.5%

B SE t p Partial r Zero-order r

Intercept 0.4692 0.5963 0.787 .44

CFMT −0.5700 0.7413 −0.769 .45 −.17 −.18

VET-LV −0.6236 0.1486 −4.2 .00 −.69* −.68*

VET-NL 0.1380 0.1277 1.08 .29 .24 .05
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to birds ((Car − Bird) / (Car + Bird) and (Face − Bird) /
(Face + Bird)) in each FFA ROI (four standard resolution
voxels). These functional responses were not significantly
correlated with CT in any of the FFA ROIs (see Table 6).
The largest effect size is observed in the relationship be-
tween CT and the face response in rFFA1 (r = −.33, p =
.12), which is in the same direction as the relation between
CFMT and CT in this ROI. Future studies should consider
functional responses to more object categories and the
use of an unfamiliar object category as a baseline (so that
effects can be investigated for each familiar category
independently).

DISCUSSION

We investigated how performance with objects and faces
relates to CT in several individually defined functional
ROIs. Our use of functionally defined ROIs afforded
greater sensitivity over standard methods that are based
on anatomical averaging. Gilaie-Dotan et al. (2012) also
looked at individually defined FFAs and found no relation
between CT and car expertise, although their sample was
smaller (15 participants for rFFA). Several other differ-
ences could explain why we found effects and they did
not; for example, we defined separate anterior and pos-
terior FFAs and measured behavioral performance for
more object categories. Our results suggest that, when
the peaks of face selectivity are defined functionally,
structural effects may be observed within very small re-
gions centered on these peaks. We found a positive cor-
relation between performance with nonliving objects and
CT in FFA, whereas the relationship for faces and living
objects with CT, when found, was negative. These CT re-
sults are generally consistent with past functional results
in linking FFA specialization to nonface recognition, but
the directions of the effects were unexpected. In addi-
tion, we found no evidence of a relation between BOLD
responses to cars and faces (relative to birds) and CT in
FFA ROIs, but future work should consider using a non-
familiar category as baseline to look at the relation be-
tween each familiar category and CT measurements.
To our knowledge, this is the first study looking at CT

separately in the anterior and posterior parts of human
FFA (Weiner et al., 2010; Pinsk et al., 2009). We found
that behavioral performance with faces has a greater con-
tribution to CT in posterior parts of the FFA bilaterally.
However, in none of the FFA ROIs did we find a relation-
ship with face performance and not with object perfor-

mance. The current results present little evidence that
any part of the FFA complex is selectively related to face
but not object recognition.

Our results could be a function of the specific sample
used in this study (male participants, selected on the
basis of high or low SR of car expertise). In prior work,
the relation between performance with faces and dif-
ferent object categories was found to be mediated by
gender (McGugin, Richler, et al., 2012). In that work,
women outperformed men on the VET-LV factor,
whereas men performed better on the VET-NL factor
(in this case, vehicles). When age and holistic process-
ing of faces were partialed out, the unique variance
explained by each VET factor was correlated with the
CFMT, only for the gender-congruent category. Thus,
it would be prudent not to generalize the present re-
sults to women: It is possible, albeit only a speculation,
that the results in a sample of women might be a mirror
image of those obtained here for men, with perfor-
mance for living objects positively correlated with CT
but performance for nonliving objects negatively cor-
related with CT. This may also be predicted on the basis
of several studies reporting that women show an advan-
tage on verbal tasks with living objects and men show
an advantage for nonliving objects (Capitani, Laiacona,
& Barbarotto, 1999; Laws, 1999; Laiacona, Barbarotto,
& Capitani, 1998; McKenna & Parry, 1994).

Another consideration is that the functional definition
of the FFA was based on a typical localizer that compared
images of faces with images of manmade objects (tools,
appliances, items of clothing, etc). Prior work has sug-
gested that the location of the FFA is not impacted by
the type of baseline (Berman et al., 2010), but we do
not know of work that has compared localization based
on a living-versus-nonliving comparison. We have no
reason to believe that our results would vary if a different
localizer was used, especially those effects that were
essentially the same in a one-voxel ROI versus a 60-voxel
ROI.

Our findings of a negative correlation between CT and
face recognition converge with recent results showing
that CT in the FFA was negatively correlated with learning
performance on a face orientation judgment task (Bi
et al., 2014). We found such a relationship in the rFFA1
(CT negatively correlated with face performance on the
CFMT), whereas the previous work only found the effect
in the lFFA (note that this learning study did not separate
the two FFAs and used group-averaged ROI definitions).
We also found that CT in both parts of the lFFA was neg-
atively related to performance with living objects. Thus,
our work considerably extends the Bi et al. finding to face
recognition performance and suggests that such a nega-
tive correlation may not be specific to the lFFA or to
performance with faces. It does not, however, provide
insight into the biological mechanism that underlies this
negative relationship. Negative correlations with perfor-
mance have been attributed to synaptic pruning resulting

Table 6. Correlations of Functional Selectivity for Faces with
CT in Each ROI (at a Size of Four 3-mm3 Voxels)

rFFA1 rFFA2 lFFA1 lFFA2

fMRI C-B .04 −.11 .13 −.06

fMRI F-B −.33 −.12 −.15 .29

No correlations reached significance at p < .05.
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in the loss of nonpreferred cortical connections in favor
of those that support frequently used skills (Gogtay et al.,
2004; Sowell et al., 2004; Giedd et al., 1999). Another
possible account is that the observed reduction in mea-
sured gray matter reflects an increase in myelination such
that white matter growth encroaches upon what was
classified as gray matter (Paus, 2005). This is consistent
with recent results showing that fractional anisotropy of
the white matter tracts from FFA to the anterior temporal
lobe correlates with face recognition ability (Gomez
et al., 2015). It is possible that, in our sample, those with
thinner cortices also had larger white matter tracts con-
necting FFA to anterior areas.

By themselves, none of these accounts are sufficient to
explain why the effect differs from the positive relation-
ship obtained with nonliving objects. We obtained posi-
tive and negative relationships with performance in the
same participants in the same areas, which may seem sur-
prising, but the multiple regression analyses suggest that
the different effects are independent. One possible expla-
nation is that performance with these different categories
reflects different ages of acquisition for experience indi-
viduating objects (arguably faces and perhaps also living
objects, earlier than vehicles), with different mechanisms
of plasticity operating at these different times. Face rec-
ognition could be learned early in life when pruning of
large fiber tracts is taking place (Bourgeois, Jastreboff, &
Rakic, 1989). In contrast, the recognition of vehicles could
be learned much later in life and, as such, may show thick-
ening of cortex as in learning of skills in adulthood (e.g.,
Mårtensson et al., 2012; Maguire, Woollett, & Spiers,
2006).

The relationships we show are not causal: Performance
with a category would not cause CT, nor would CT cause
performance, but rather, it is more plausible that experi-
ence with a category would cause both performance and
CT. These are conjectures that should be explored in
future research.

Critically, we find that nonface recognition can be
predicted by CT in the FFA, an effect that cannot be
accounted for by attention and providing further evi-
dence that this region is important for nonface object
processing. This should not be taken to suggest that
other regions in the brain are not also involved in the
ability to recognize objects and could also be shaped
structurally by such experience. We found only limited
replication of the prefrontal areas where CT correlated
with car expertise in prior work, but unlike in FFA, we
did not have individual functional ROIs to rely on. The
effects of experience on brain structure may be variable
and require methods that allow for spatial displacement
of ROIs across individuals (see also Pinel et al., 2014).
Finally, the structural effects of expertise have an inter-
esting advantage over the more standard functional exper-
tise effects: It could lead to a relatively faster accumulation
of evidence across different laboratories, as a VET battery
(free and available from authors) can be easily adminis-

tered to participants in the laboratory or online, before
or after their participation in any study with a functional
FFA localizer.
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Note

1. The Grill-Spector et al. study used antique cars in the
scanner when participants were modern car experts (see
Bukach, Phillips, & Gauthier 2010), and the Brants et al. study
did not provide behavioral evidence for the same qualitative
changes in perception as the original study.
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