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Overview of Methods

We use a Bayesian inference approach to estimate model parameters. Assume that a model (in our case
a differential equation model describing how virus concentration changes over time in serum) contains
parameters Θ. The Bayesian approach allows us to include prior knowledge about model parameters in
a systematic fashion. If we have information about Θ (e.g., from experimental evidence) which needs
to be incorporated in our analysis, this is represented as a prior probability distribution P (Θ). Bayes
Rule allows us to incorporate the prior knowledge about parameters, P (Θ), and experimental data, D,
to derive a posterior distribution of parameters:

P (Θ|D) =
P (D|Θ) · P (Θ)

P (D)
(1)

The multi-level hierarchical Bayesian model mimics the hierarchical nature of host phylogeny. There
are three levels in the hierarchical tree representation: individual, species and genus (Fig. 1). Each level
of the tree has an equation describing the distribution of model parameters (differential equation models,
Eqs. 2 - 5 and Eqs. 2 - 4, 6 - 7). The differential equation and hierarchical Bayesian models are explained
in greater detail in the next section.

Our goal is to compare two different hierarchical Bayesian models: a multi-level model that has three
levels of hierarchy (individual, species and genus) (Fig. 1) and an aggregated model with two levels of
hierarchy (all individuals of all species pooled together under a single genus) (Fig. 2). We compare the
accuracy of parameter estimates with respect to ground truth at the individual, species and genus level.
We also experiment with different degrees of variation of parameters between species and within species.

Differential Equation Models of Viral Dynamics and Immune Response

We use two different viral dynamic models to account for the observed plasma viremia. The first model
assumes that infection is target-cell limited in birds, i.e. the concentration of virus reaches a peak and
then declines when few susceptible target cells remain. Models of target cell limited acute infection have
been developed for HIV [1], influenza A virus [2], hepatitis C virus [3], simian immunodeficiency virus [4],
dengue virus [5] and Zika virus [6,7]. Here we use a target cell limited model with an eclipse phase, given
by the following differential equations:

dT

dt
= −βTV (2)

dI1
dt

= βTV − kI1 (3)

dI2
dt

= kI1 − δI2 (4)
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dV

dt
= pI2 − γV − βTV (5)

where T is the density of uninfected target cells, and V is the viral titer in serum. Target cells become
infected by virus at rate βTV , where β is the rate constant characterizing infection. The initial viral titer
and the initial number of target cells are denoted V0 and T0, respectively. The initial density of infected
cells is assumed to be zero. The separation of infected cells into two classes, I1 cells that are infected but
not yet producing virus and I2 cells that produce virus, is similar to that in a model proposed earlier for
influenza infection [2]. This separation increases the realism of the model, since delays in the production
of virus after the time of initial infection are part of the viral life cycle (the eclipse phase). The parameter
1/k is the average transition time from I1 to I2. Productively infected cells (I2) release virus at an average
rate p per cell and die at rate δ per cell, where 1/δ is the average life span of a productively infected cell.
Free infectious virus is cleared at rate γ per infectious unit per day, for example by phagocytosis or loss
of infectivity and is lost by entering cells during the infection process at rate βTV .

The Bayesian model infers (V0,β,p,δ) from the viral titer data.
We also use a more sophisticated model that assumes viral decline is due to an adaptive antibody

(induced IgM) response. Humoral immunity is an essential component of the immune response to WNV,
as neutralizing antibodies limit dissemination of infection [8, 9]. Diamond et al. [9] infected wild type
mice subcutaneously with WNV and measured titers of neutralizing antibody (analyzed in [10]). The
data can be described by the following piecewise linear function:

A(t) =

{

0 , t < ti
η(t− ti) , t ≥ ti

(6)

The level of neutralizing antibody at time t, A(t), measured by the plaque reduction neutralization
test (PRNT) is 0 before time ti and increases linearly with time after that with rate η. We assume that
neutralizing antibody, A, binds virus, V , and neutralizes it with rate constant ρ, so that infectious virus
is lost at rate ρA(t)V . The model including neutralizing antibody consists of Eqs. 2-4 and Eq. 6 with
Eq. 5 replaced by:

dV

dt
= pI2 − γV − βTV − ρA(t)V (7)

The Bayesian model infers (V0,β,p,δ,ρ,ti) from the viral titer data.
The ordinary differential equations describing our viral kinetic models were solved numerically in

Matlab [11]. The Runge-Kutta 4 method of integration was employed. All model parameters and virus
concentration are logged (base 10) in order to stabilize variance and ensure positive estimates from the
Bayesian inference. A sample plot of the target limited model prediction of virus concentration over time
(compared to observed virus concentration data) using one representative set of parameters inferred from
the Bayesian model is shown in Fig. 3.

Bayesian Aggregated Model

The aggregated model has individuals of different species. The individuals are aggregated to form a tree
of height 2. The model is shown graphically in Fig. 2 (Left panel).

We denote the number of individuals by n and the number of experimental measurements of virus
concentration on the ith individual by mi. yij(tj) represents the experimental measurements of log-
arithmic virus concentration in serum for the ith individual at times tj(j = 1, 2, 3, ...,mi). For no-

tational convenience, let µ = (log10V0, log10β, log10p, log10δ)
T , θi = (log10V0i, log10βi, log10pi, log10δi)

T ,
Θ = {θi, i = 1..n}, Y = {yij, i = 1..n, j = 1..mi} and fij(θi, tj) = log10Vij(θi, tj) where Vij(θi, tj) denotes
the numerical solution for V (t) in Eq. 5 for the ith individual at time tj.

The Bayesian non-linear mixed effects aggregated model can be written as the following three stages
[12–14]:
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1. Within-individual variation

[yi|θi, σ
2] ∼ Normal(fi(θi), σ

2) (8)

2. Between-individual variation

[θi|µ,Σ] ∼ Normal(µ,Σ) (9)

3. Prior distributions

σ−2 ∼ Gamma(a, b),Σ−1 ∼ Wishart(Ω, ν), µ ∼ Normal(η,Λ) (10)

The Normal, Wishart and Gamma distributions are chosen to simplify calculations [12, 15].

The full conditional distributions for θi, σ
−2, µ and Σ−1 can be written as [12, 15]:

[

θi|σ
−2, µ,Σ, η,Θ, Y

]

∝ exp



−
σ−2

2

mi
∑

j=1

[yij − fij(θi, tj)]
2
−

1

2
(θi − µ)TΣ−1(θi − µ)



 (11)

[

σ−2|µ,Σ,Θ, Y
]

∼ Gamma

(

a+

∑n

i=1 mi

2
, A−1

)

(12)

[

µ|σ−2,Σ,Θ, Y
]

∼ Normal
(

B−1C,B−1
)

(13)

[

Σ−1|σ−2, µ,Θ, Y
]

∼ Wishart
(

D−1, n+ ν
)

(14)

where A = b−1 + 1
2

∑n

i=1

∑mi

j=1 [yij − fij(θi, tj)]
2
, B = nΣ−1 + Λ−1,

C = Σ−1
∑n

i=1 θi + Λ−1η and D = Ω−1 +
∑n

i=1(θi − µ) · (θi − µ)T .
The parameters σ−2, µ and Σ−1 are sampled using a Gibbs sampler and a Metropolis-Hastings

algorithm is used to sample θi (both algorithms are described later).

Bayesian Multi-level Model

The multi-level hierarchical model has groups (species) with individuals in each group. The groups are
arranged hierarchically to form a tree of height 3. The model is shown graphically in Fig. 1 (Left panel).
Let there be m distinct species indexed by k and the number of individuals in the kth group is represented
by nk. Let us represent the number of experimental measurements on the ith individual of the kth species
by mik. yijk(tj) represents the experimental measurements of logarithmic virus concentration in serum
for the ith individual belonging to the kth species at times tj(j = 1, 2, 3, ...,mik).

For notational convenience, we define the individual level distribution (ith individual belonging

to the kth species) by θik = (log10V0ik, log10βik, log10pik, log10δik)
T
. We define the kth species level

distribution by µk = (log10V0,k, log10βk, log10pk, log10δk)
T

and the genus level distribution by η =

(log10V0, log10β, log10p, log10δ)
T
.

Let Θ = {θik, i = 1..nk, k = 1..m}, Y = {yijk, i = 1..nk, j = 1..mik, k = 1..m} and fijk(θik, tj) =
log10Vijk(θik, tj) where Vijk(θik, tj) denotes the numerical solution for V (t) in Eq. 5 for the ith individual
(belonging to the kth species) at time tj .

We write this Bayesian non-linear mixed effects multi-level model as the following four stages:
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1. Within-individual variation

[yik|θik, σ
2
k] ∼ Normal(fik(θik), σ

2
k) (15)

for the ith individual belonging to the kth species.

2. Between-individual variation

[θik|µk,Σk] ∼ Normal(µk,Σk) (16)

3. Between species variation

σ−2
k ∼ Gamma(a, b),Σ−1

k ∼ Wishart(Ω, ν), µk ∼ Normal(η,Λ) (17)

for the kth species. The Normal, Wishart and Gamma distributions are chosen to simplify calcu-
lations.

4. Genus level prior distributions

η ∼ Normal(x, y),Λ−1 ∼ Wishart(p, q) (18)

Fig. 1 (right panel) represents these equations graphically in a plate diagram. In a graphical model like
Fig. 1 (right panel), for any node u, we can represent the remaining nodes by U−u and the full conditional
distribution P (u, U−u) is ∝ P (u|parents[u]) ·

∏

w∈children[u] P (w|parents[w]) [16]. The full conditional

distribution for u contains a prior component (from the parents of u) and a likelihood component (from
each child of u).

Following the principle above and simplifying, we derived the full conditional distributions for θik,
σ−2
k , µk, Σ

−1
k , η and Λ−1:

[

θik|σ
−2
k , µk,Σk, η,Λ

−1,Θ, Y
]

∝ exp



−
σ−2
k

2

mik
∑

j=1

[yijk − fijk(θik, tj)]
2

−
1

2
(θik − µk)

TΣ−1
k (θik − µk)

(19)

[

σ−2
k |µk,Σk, η,Λ

−1,Θ, Y
]

∼ Gamma

(

a+

∑n

i=1 mik

2
, A−1

k

)

(20)

[

µk|σ
−2
k ,Σk, η,Λ

−1,Θ, Y
]

∼ Normal
(

B−1
k Ck, B

−1
k

)

(21)

[

Σ−1
k |σ−2

k , µk, η,Λ
−1,Θ, Y

]

∼ Wishart
(

D−1
k , nk + ν

)

(22)

[

η|σ−2
k , µk,Σ

−1
k ,Λ−1,Θ, Y

]

∼ Normal (z, Z) (23)

[

Λ−1|σ−2
k , µk,Σ

−1
k , η,Θ, Y

]

∼ Wishart (E, q +m) (24)

where Ak = b−1+ 1
2

∑nk

i=1

∑mik

j=1 [yijk − fijk(θik, tj)]
2
, Bk = nkΣ

−1
k +Λ−1, Ck = Σ−1

k

∑nk

i=1 θik +Λ−1η

, Dk = Ω−1 +
∑nk

i=1(θik − µk) · (θik − µk)
T , Z =

(

U−1 + y−1
)−1

, z = Z
(

U−1u+ y−1x
)

and E−1 =
p−1 +

∑m

k=1(µk − η) · (µk − η)T .
The parameters σ−2

k , µk, Σ−1
k , η and Λ−1 are sampled using a Gibbs sampler and a Metropolis-

Hastings algorithm is used to sample θik (both algorithms are described later).
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Metropolis-Hastings Sampler

We use two popular MCMC algorithms known as the Metropolis-Hastings sampler and the Gibbs sampler.
We use these algorithms to sample from the posterior distribution P (Θ|D). Let Θ(t) represent the state
of the Markov chain at iteration t of the algorithm. The Metropolis-Hastings sampler uses a proposal
distribution q(Θ|Θ(t−1)) to generate a candidate point, Θ∗, that is conditioned on the previous state of
the sampler, Θ(t−1). In the next step, the algorithm either accepts or rejects the candidate point based
on an acceptance probability:

α = min(1,
P (Θ∗)

P (Θ(t−1))
·
q(Θ(t−1)|Θ∗)

q(Θ∗|Θ(t−1))
) (25)

The Metropolis-Hastings algorithm is as follows:

1. Set t = 1

2. Generate an initial value u, and set Θ(t) = u

3. Repeat

t = t+ 1

Generate a candidate Θ∗ from the proposal distribution q(Θ|Θ(t−1))

Evaluate the probability of acceptance, α = min(1, P (Θ∗)
P (Θ(t−1))

· q(Θ(t−1)|Θ∗)
q(Θ∗|Θ(t−1))

)

Generate a x from a Uniform(0,1) distribution

If x ≤ α, accept the candidate solution and set Θt = Θ∗, else set Θt = Θ(t−1)

4. Until t = required number of iterations

The Metropolis-Hastings sampler has the advantage of not requiring knowledge of the normalizing
constant, P (D). In our case the parameter Θ is multi-variate and has different components corresponding
to the different ODE model parameters. We accept or reject the candidate solution involving all com-
ponents as a block simultaneously. This is known as a block-wise updating scheme. A component-wise
updating scheme updates each component in turn and independently of each other.

We use the Metropolis-Hastings sampler to sample the ordinary differential equation model parameters
θi (Bayesian aggregated model) and θik (Bayesian multi-level model).

Gibbs Sampler

The Gibbs sampler is an algorithm in which all samples are accepted and hence is computationally more
efficient than the Metropolis-Hastings sampler. However, the Gibbs sampler can only be applied in the
case when we know the full conditional distribution of each component of the parameter Θ conditioned
on all other components.

As an illustrative example, we show the workings of the Gibbs sampler for the joint two-component
distribution g(θ1, θ2). The Gibbs sampler can be used if we can derive the distribution of each component

conditioned on the other, i.e. in this case the conditional distributions g(θ1|θ2 = θ
(t)
2 ) and g(θ2|θ1 = θ

(t)
1 ).

The Gibbs sampler for the case of two-components is as follows:

1. Set t = 1

2. Generate an initial value u = (u1, u2), and set Θ(t) = u
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3. Repeat

t = t+ 1

Sample θ
(t)
1 from the conditional distribution g(θ1|θ2 = θ

(t−1)
2 )

Sample θ
(t)
2 from the conditional distribution g(θ2|θ1 = θ

(t)
1 )

4. Until t = required number of iterations

We update each component sequentially in turn (systematic-scan Gibbs sampler). In the Bayesian
aggregated model, the parameters σ−2, µ and Σ−1 are sampled using a Gibbs sampler. In the Bayesian
multi-level model, the Gibbs sampler is used to sample the parameters σ−2

k , µk, Σ
−1
k , η and Λ−1.

Our approach is to use the Metropolis-Hastings sampler within the Gibbs sampler; this involves using
the computationally efficient Gibbs update steps whenever the full posterior conditional distributions
are known and using Metropolis-Hastings acceptance steps when the full conditional distribution is not
available.
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Figure Legends

Figure 1. Left Panel: Multi-level hierarchical model with two groups. Each group has three individuals.
Also shown are the genus, species and individual levels. Right Panel: Plate diagram for the multi-level
hierarchical model. The plate denotes iteration of parameters and the number enclosed in the plate shows
the number of iterations.

Figure 2. Left Panel: Aggregated model with two groups combined. Each group has three indi-
viduals. Also shown are the genus, species and individual levels. Right Panel: Plate diagram for the
aggregated model. The plate denotes iteration of parameters and the number in the plate shows the
number of iterations.

Figure 3. A sample prediction of the ODE model given by Eqs. 2-5 for plasma virus concentration
(in log10 PFU/mL) over time post infection (blue) and experimental data on virus concentration (red).
Data show viremia of great-horned owls from [17].
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Figure 1. Left Panel: Multi-level hierarchical model with two groups. Each group has three
individuals. Also shown are the genus, species and individual levels. Right Panel: Plate diagram for the
multi-level hierarchical model. The plate denotes iteration of parameters and the number enclosed in
the plate shows the number of iterations.
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Figure 2. Left Panel: Aggregated model with two groups combined. Each group has three individuals.
Also shown are the genus, species and individual levels. Right Panel: Plate diagram for the aggregated
model. The plate denotes iteration of parameters and the number in the plate shows the number of
iterations.
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