

Faculté d'ingénieurie biologique, agronomique et environementale

Unité d'écophysiologie et d'amélioration végétale

Water dynamics in the soil-plant environment

Which plant's features regulate the uptake?

Guillaume Lobet, Yangmin Kim and Xavier Draye

Groupe de contact FNRS - 02 April 2009

Outline

- Lab presentation
- Theoretical background
- Methodology and first experiments
- Perspectives

Lab presentation

- Plant genetics and genomics
- Crop physiology
- Biomass valorization
- Structural and functional modeling

Water dynamics in the soilplant environment

Theoretical background

- Water movement
- Resistances
 - Apoplastic barriers
 - Aquaporins
 - Long distance signaling
- Root architecture

Water movement - I

- Water potential gradient
- Soil-Plant-Atmosphere Continuum (SPAC)

- Analogy with electric network
- Some resistances are regulated

Water movement - I

- Water potential gradient
- Soil-Plant-Atmosphere
 Continuum (SPAC)

- Analogy with electric network
- Some resistances are regulated

Water movement - 2

- Different pathways
 - Apoplastic
 - Symplastic
 - Transcellular
- Composite model of root water uptake
 - high evaporation → apoplastic
 - low evaporation → cell-to-cell

from Steudle, 2000

Water movement - 2

- Different pathways
 - Apoplastic
 - Symplastic
 - Transcellular
- Composite model of root water uptake
 - high evaporation → apoplastic
 - low evaporation → cell-to-cell

from Steudle, 2000

Resistances

Apoplastic barriers -

 Influence the radial resistance of roots

At the endodermis and exodermis

From Enstone et al., 2003

Apoplastic barriers -

 Influence the radial resistance of roots

At the endodermis and exodermis

From Hachez et al., 2006

Apoplastic barriers - 2

Primary wall

- Casparian band
- lignin
- block ions

Secondary wall

- Suberin lamellae
- suberin
- block water

Tertiary wall

- cellulose
- mechanical role

From Lüttge et al, 1994

Aquaporins

- Water channel
- Increase the membrane water permeability
- Can be regulated actively
- Present in key tissues

From Hachez et al., 2002

Long distance signaling

- Signal from the root to the shoot in case of water stress
- Trigger the closure of the stomata
- Actors:
 - ABA
 - pH
 - Hydraulic signal

Architecture

- Importance of the architecture during the uptake
- Needs matching between root and water localization
- Importance of the root type and age

From Ge et al., 2000

Water dynamics in the soilplant environment

Methodology

- Aims
- Experimental platform
- Models
- First experiments

Aims

- Analyze the water uptake dynamics in an explicit 3D soil-plant continuum
- Analyze the quantitative contribution of various features which influence the water uptake:
 - Architecture
 - Apoplastic barriers
 - Aquaporins
 - Long distance signaling

Experimental platform

- Maize grown in rhizotrons
- Light transmission imaging
- Observation of the water uptake dynamics

Models

PlaNet-Maize

- Plant architecture
- Plant growth
- Transports

Models

PlaNet-Maize

- Plant architecture
- Plant growth
- Transports

Models

R-SWMS

- Water transfers
- Root hydraulic architecture
- Soil hydrodynamics

- Localized uptake
- Downward movement
- Quick drying of substrate

- Downward movement
- Quick drying of substrate

- Localized uptake
- Downward movement
- Quick drying of substrate

- Localized uptake
- Downward movement
- Quick drying of substrate

- Localized uptake
- Downward movement
- Quick drying of substrate

Water dynamics in the soilplant environment

Perspectives

Perspectives

- Aquaporins
 - ZmPIP2:5
- Architecture
 - _ Irt I
 - Excisions
- Long distance signaling
 - Partial Root Zone Drying
 - ABA deficient mutants

- Improvements
 - Infrared light
 - Ground penetrating radar
 - Plastination

Perspectives

- Aquaporins
 - ZmPIP2:5
- Architecture
 - _ |rt|
 - Excisions
- Long distance signaling
 - Partial Root Zone Drying
 - ABA deficient mutants

- Improvements
 - Infrared light
 - Ground penetrating radar
 - Plastination

Water dynamics in the soil-plant environment

Acknowledgments

Université catholique de Louvain

François Chaumont
Charles Hachez
Qing Ye
Mathieu Javaux
Valentin Couvreur

University of Nottingham

Malcom Bennett Rosemary Dyson Leah Band

University of Lancaster

Ian Dodd

INRA

Loïc Pagès François Tardieu Christophe Godin

Thank you for you attention.