Supporting Information

Acyl Fluorides as Efficient Electrophiles for the Copper-Catalyzed Boroacylation of Allenes

Arnaud Boreux, ${ }^{\dagger, \ddagger}$ Kiran Indukuri, ${ }^{\dagger}$ Fabien Gagosz ${ }^{*, \ddagger, \|}$ and Olivier Riant ${ }^{*, \dagger}$$\dagger$ Institute of Condensed Matter and Nanosciences (IMCN), Molecules, Solids and Reactivity (MOST), Universitécatholique de Louvain (UCL), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium.${ }^{\ddagger}$ Laboratoire de Synthèse Organique, UMR 7652 CNRS/Ecole Polytechnique, Route de Saclay, 91128Palaiseau, France.॥ Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada.Corresponding email addresses: fgagosz@uottawa.ca; olivier.riant@uclouvain.beGeneral information 2
Preparation of the allenes 3
Preparation of the acyl fluorides 11
Copper-catalyzed boroacylation of allenes 16
References 39
NMR spectra 41

General information

Copper-catalyzed reactions were performed in a flame-dried Schlenk under argon. THF used in these reactions was purchased from Acros (99.9% extra dry Acroseal ${ }^{\mathrm{TM}}$). Otherwise, THF was distilled over sodium and benzophenone. DCM was distilled over CaH_{2}. Solvents used for work-up were of technical grade. Dppf was purchased from Fluorochem. Benzoyl fluoride was purchased from VWR or Acros. Vinylidenecyclohexane was purchased from SigmaAldrich. 3-Methyl-1,2-butadiene was purchased from TCI. Copper(II) acetate was purchased from Acros. Other commercial reagents were purchased from Acros, Fluorochem, TCI, Sigma-Aldrich, VWR or Alfa-Aesar and used as received. Thin Layer Chromatography were performed on aluminium plates bearing a 0.25 mm of Merck Silica Gel $60 \mathrm{~F}_{254}$, visualized by fluorescence quenching at 254 nm and chemical revelation using acidic solution of paraanisaldehyde or basic solution of potassium permanganate. Flash chromatography was performed using silica gel $60(40-63 \mu \mathrm{~m})$. NMR analysis was performed at room temperature on Bruker 300 MHz or 500 MHz Fourier Transform Spectrometer. Residual solvent peaks of CDCl_{3} were used as internal references: 7.26 ppm for ${ }^{1} \mathrm{H}$ spectra and 77.16 ppm for ${ }^{13} \mathrm{C}$ spectra. ${ }^{19} \mathrm{~F}$ NMR was recorded in CDCl_{3} using $\mathrm{C}_{6} \mathrm{~F}_{6}$ as an external standard. Chemical shifts (δ) are reported in ppm and spin-spin coupling constants (J) are given in Hz . The following abbreviations were used in order to describe de peaks multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintuplet, hex $=$ hexuplet, hept $=$ heptuplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. HRMS spectra were recorded using Thermo Scientific QExactive. Infrared absorptions were recorded as a liquid deposition on a ZnSe crystal on a Shimadzu FTIR 8400 Spectrophotometer.

Preparation of the allenes

Procedure A:

Step 1: The cyclopropanation of the 1,1-distubstituted alkene was carried out according to literature procedures. ${ }^{1,2}$

To a solution of alkene (1.0 equiv) and cetrimonium bromide (0.12 equiv) in dichloromethane ($0.16 \mathrm{~mL} / \mathrm{mmol}$ alkene) was added dropwise aqueous solution of NaOH (4.6 equiv.; 0.5 mL water $/ \mathrm{mmol}$). After $5 \mathrm{~min}, \mathrm{CHBr}_{3}$ (2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.08 \mathrm{~mL} / \mathrm{mmol}$ alkene) was added and left stirring at room temperature for 2-3 days. Water and DCM were added. The aqueous phase was extracted with DCM. The combined organic phases were washed with saturated NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. Purification by flash chromatography on silica gel afforded the pure cyclopropane products.

Step 2: The preparation of the 1,1-disubstituted allenes was carried out according to a literature procedure. ${ }^{2}$

EtMgBr (3.0 M in THF, 1.5 equiv was added dropwise via syringe pump to a solution of cyclopropane (1.0 equiv) in dry THF ($2 \mathrm{~mL} / \mathrm{mmol}$ of cyclopropane) under nitrogen atmosphere at room temperature. The resulting mixture was allowed to stir at room temperature for an additional 30 minutes. Then the reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with diethyl ether ($15 \mathrm{~mL} \times 3$). The combined organic layers was washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel afforded the desired allenes 3 .

(3-Methylpenta-3,4-dien-1-yl)benzene (3a)

Following procedure A starting with (3-methylbut-3-en-1-yl)benzene (36.3 mmol). ${ }^{3}$
Flash chromatography: PE
Overall yield: 55\% of a colourless oil.

[^0]Spectroscopic data are in agreement with those reported in the literature. ${ }^{4}$

2-Bromo-4-methyl-1-((3-methylpenta-3,4-dien-1-yl)oxy)benzene (3d)

This substrate was prepared via a Mitsunobu reaction according to the literature procedure. ${ }^{5}$

To a solution of 3-methylpenta-3,4-dien-1-ol ${ }^{6}$ (1.0 equiv, 5.0 mmol), 2-bromo-4methylphenol (1.44 equiv, 7.2 mmol) and triphenylphosphine (1.5 equiv, 7.5 mmol) in THF $(15 \mathrm{~mL})$ was added diisopropyl azodicarboxylate (1.2 equiv, 6.0 mmol) dropwise at room temperature. The reaction mixture was stirred 14 h and the solvents were evaporated. The crude mixture was dissolved in DCM and filtered on a pad of silica (eluting with $\mathrm{PE}_{\mathrm{E}} \mathrm{Et}_{2} \mathrm{O}$ 97.5:2.5).

Purified by flash chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 99: 1$ to $98: 2$ to $97.5: 2.5$) afforded the pure product as a colourless oil ($385 \mathrm{mg}, 1.44 \mathrm{mmol}, 29 \%$ yield). ${ }^{7}$

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.35(\mathrm{dd}, J=2.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{ddd}, J=8.2,2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\ & 6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{hex}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=7.0 \\ & \mathrm{Hz}, 2 \mathrm{H}), 2.47(\mathrm{tt}, J=6.7,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{t}, J=3.2 \\ & \mathrm{Hz}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 206.4,153.3,133.9,131.6,128.9,113.5,112.1,95.2,74.9,67.9 \\ & 33.0,20.3,19.3 \end{aligned}$
$\begin{aligned} & \text { IR } \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 2979,2930,2866,1960,1732,1607,1495,1470,1441,1387,1284, \\ & 1277,1207,1153,1051,1020,901,849,802 \end{aligned}$
MS (HRMS APCI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{OBr}$: 267.0379 Found: 267.0378

Buta-2,3-dien-2-ylbenzene (3e)

Following procedure A starting with α-methylstyrene.
Flash chromatography: PE
Overall yield: 69% of a colourless oil.

```
'1H NMR (\delta, ppm) 7.43-7.40(m, 2H), 7.36-7.30(m, 2H), 7.23-7.18(m, 1H), 5.03
(300 MHz, CDCl ) (q, J=3.2 Hz, 2H), 2.10 (t,J=3.2 Hz, 3H)
'3`C NMR (\delta, ppm) 209.1, 136.8, 128.5, 126.7, 125.8, 99.9, 77.1, 16.8
(75 MHz, CDCl}3\mathrm{ )
```

Spectroscopic data are in agreement with those reported in the literature ${ }^{8}$

Penta-1,2-dien-3-ylbenzene (3f)

Following procedure A starting with α-ethylstyrene. ${ }^{3}$
Flash chromatography: PE
Overall yield: 29% of a colourless oil.

${ }^{1} \mathbf{H}$ NMR $\left(\delta, \mathrm{ppm}^{2}\right)$	$7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.11$
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$(\mathrm{t}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{ddt}, J=7.4,6.8,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{td}, J=$
	$7.4,0.7 \mathrm{~Hz}, 3 \mathrm{H})$

Spectroscopic data are in agreement with those reported in the literature. ${ }^{9}$

1-Bromo-3-(buta-2,3-dien-2-yl)benzene (3g)

Following procedure A starting with 1-bromo-3-(prop-1-en-2-yl)benzene. ${ }^{3}$
Flash chromatography: PE
Overall yield: 65% of a colourless oil.

$$
\begin{array}{ll}
{ }^{1} \mathbf{H} \text { NMR }(\delta, \mathrm{ppm}) & 7.53(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=6.0,3.0 \\
\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) & \mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{q}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{t}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}) \\
& \\
{ }^{13} \mathbf{C} \text { NMR }(\delta, \mathrm{ppm}) & 209.1,139.2,129.8,129.5,128.8,124.3,122.8,99.1,77.7,16.6 \\
\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) &
\end{array}
$$

Spectroscopic data are in agreement with those reported in the literature. ${ }^{10}$

1-Methoxy-4-(penta-1,2-dien-3-yl)benzene (3h)

Following procedure A starting with 1-(but-1-en-2-yl)-4-methoxybenzene. ${ }^{3}$
Flash chromatography: PE
Overall yield: 47% of a colourless oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm)	$7.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{t}, J=3.0 \mathrm{~Hz},$
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$2 \mathrm{H}), 3.79$ (s, 3H), $2.34-2.44$ (m, 2H), 1.14 (t, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	208.1, 158.5, 128.9, 127.1, 113.9, 106.3, 78.8, 55.4, 22.7, 12.6
MS (HRMS APCI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}: 175.1117$ Found: 175.1117

Dimethyl((3-methylpenta-3,4-dien-1-yl)oxy)(phenyl)silane (3i)

To a solution of 3-methylpenta-3,4-dien-1-ol ${ }^{\text {Erreur }}$: Signet non défini. (1.0 equiv, 5.0 mmol) and triethylamine (2.0 equiv, 10.0 mmol) in $\mathrm{DCM}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added chloro(dimethyl)phenylsilane (1.5 equiv, 7.5 mmol) dropwise. The mixture was stirred 14 h while warming up at room temperature. The reaction was quenched by the addition of water, extracted with DCM (x3), washed successively with $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(sat) }}$, water, $\mathrm{NaHCO}_{3 \text { (sat) }}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure.
Purified by flash chromatography on silica gel (eluent: ${\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 99: 1 \text { to 97:3) afforded the }}^{\text {9 }}$ pure product as a colourless oil ($952 \mathrm{mg}, 4.10 \mathrm{mmol}, 82 \%$ yield).

${ }^{\mathbf{1}} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 4.56$ (hex, $J=3.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.70(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{dq}, J=6.9,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{t}, J=$ $3.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38$ ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13}$ C NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$206.5,138.1,133.6,129.7,127.9,95.4,74.2,61.6,36.6,19.2$,
IR (cm^{-1}, neat)	2957, 2923, 2868, 2370, 2311, 1959, 1772, 1717, 1591, 1427, 1394, $1369,1308,1250,1215,1188,1171,1117,1090,997,916,825,785$ 1369, 1308, 1250, 1215, 1188, 1171, 1117, 1090, 997, 916, 825, 785
MS (HRMS APCI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}^{28} \mathrm{Si}$: $233.1355 \quad$ Found: 233.1355

1-(tert-butyl) 2-(3-methylpenta-3,4-dien-1-yl) pyrrolidine-1,2-dicarboxylate (3j)

This substrate was prepared via a Mitsunobu reaction according to the literature procedure. ${ }^{5}$

 Boc-proline (1.5 equiv, 5.4 mmol) and triphenylphosphine (1.5 equiv, 5.4 mmol) in THF (10 mL) was added diisopropyl azodicarboxylate (1.2 equiv, 4.3 mmol) dropwise at room temperature. The reaction mixture was stirred 6 h and filtered over silica $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. The solvents were then evaporated and purification by flash chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ 7:3 to 6:4) afforded the pure product as a mixture of rotamers (colourless oil, $775 \mathrm{mg}, 2.62$ mmol, 73 \% yield).

${ }^{1} \mathrm{H}$ NMR (δ, ppm)	$4.68-4.60$ (m, 2H), $4.29-4.18$ (m, 3H), $3.59-3.35$ (m, 2H), $2.30-$
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$\begin{aligned} & 2.15(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.41 \\ & (\mathrm{~m}, 9 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm)	206.3, 206.3, 173.2, 173.0, 154.5, 153.9, 94.8, 94.6, 79.9, 79.8, 75.0,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$\begin{aligned} & 74.9,63.0,59.3,59.0,46.6,46.4,32.6,32.6,31.0,30.0,28.5,28.4 \text {, } \\ & 24.4,23.7,18.9,18.9 \end{aligned}$
IR (cm^{-1}, neat)	$\begin{aligned} & 2974,2959,2881,1962,1747,1697,1477,1454,1396,1366,1275 \text {, } \\ & 1256,1157,1119,1088,1032,988,974,918,889,851 \end{aligned}$

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O} 4 \mathrm{~N}: 296.1856 \quad$ Found: 296.1857
(HRMS APCI)

Hexa-4,5-dien-1-ylbenzene (3k)

$$
\begin{gathered}
\mathrm{C}_{12} \mathrm{H}_{14} \\
\mathrm{M}=158.24 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

This substrate was prepared via a Crabbé reaction according to a literature procedure. ${ }^{11}$

Pent-4-yn-1-ylbenzene (1.0 equiv, $34.9 \mathrm{mmol}, 5.00 \mathrm{~g}, 5.3 \mathrm{~mL}$), dicyclohexylamine (1.8 equiv, $62.8 \mathrm{mmol}, 11.39 \mathrm{~g}, 12.5 \mathrm{~mL}$), copper(I) iodide (0.5 equiv, $17.45 \mathrm{mmol}, 3.32 \mathrm{~g}$) and
paraformaldehyde (2.5 equiv, $87.25 \mathrm{mmol}, 2.62 \mathrm{~g}$) were added sequentially in dioxane (150 mL). This mixture was stirred at $100^{\circ} \mathrm{C}$ during 17 h . The reaction mixture was cooled down to room temperature and was filtered over silica (eluting with PE). The solvents were removed under reduced pressure. The crude was filtered again over silica (eluting with PE) and the solvents were evaporated.

Purified by flash chromatography (PE) afforded the pure product as a colourless oil (3.58 g , $22.6 \mathrm{mmol}, 65 \%$ yield).

${ }^{1} \mathbf{H} \mathbf{N M R}(\delta, \mathrm{ppm})$	$7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$4.68(\mathrm{dt}, J=6.6,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.99(\mathrm{~m}$,
	$2 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{~ N M R ~}(\delta, \mathrm{ppm})$	$208.7,142.5,128.6,128.4,125.8,89.8,75.0,35.4,30.9,27.8$
$\left({ }^{\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}\right.$	

Spectroscopic data are in agreement with those reported in the literature. ${ }^{12}$

Nona-1,2-diene (3l)

$$
\begin{gathered}
\mathrm{C}_{9} \mathrm{H}_{16} \\
\mathrm{M}=124.13 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

This substrate was prepared as described in the literature. Erreur ! Signet non défini.
${ }^{1} \mathbf{H} \mathbf{N M R}(\delta, \mathrm{ppm}) \quad 5.09(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=6.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.95$
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{m}, 2 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.85(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\delta, \mathrm{ppm}\right) \quad 208.6,90.3,74.6,31.8,29.3,28.9,28.4,22.8,14.2$
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Spectroscopic data are in agreement with those reported in the literature. ${ }^{12}$

(((5-Methylhexa-3,4-dien-1-yl)oxy)methyl)benzene (3m)

$$
\begin{gathered}
\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O} \\
\mathrm{M}=202.30 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

This substrate was prepared according to a literature procedure. ${ }^{13}$

To a solution of NaH (60% in grease, 1.5 equiv, $2.67 \mathrm{mmol}, 106.8 \mathrm{mg}$) in DMF (10 mL) was added 5-methylhexa-3,4-dien-1-ol (1.0 equiv, $1.78 \mathrm{mmol}, 200.0 \mathrm{mg}, 0.23 \mathrm{~mL}$) dropwise at 0 ${ }^{\circ} \mathrm{C}$. After stirring 20 min at $0^{\circ} \mathrm{C}$, benzyl bromide (1.5 equiv, $1.78 \mathrm{mmol}, 456.7 \mathrm{mg}, 0.32 \mathrm{~mL}$) dropwise and the reaction mixture was stirred overnight while warming up to room temperature. The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with diethyl ether (x3). The organic layers were washed with brine (x3) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were then evaporated and purification by flash chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 97.5 / 2.5$) afforded the pure product as a colourless oil ($282.8 \mathrm{mg}, 1.40$ mmol, 79% yield).

MR (δ, ppm)	$7.36-7.26$ (s, 5H), $5.02-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.52$ (s, 2H), 3.53 (t, J = 6.9
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	Hz, 2H), 2.28 (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.67$ (d, $J=2.9 \mathrm{~Hz}, 6 \mathrm{H})$
${ }^{13}$ C NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$202.5,138.7,128.5,127.8,127.6,95.4,85.4,73.0,70.3,29.9,20.8$

Spectroscopic data are in agreement with those reported in the literature. ${ }^{13}$
(3-Methylbuta-1,2-dien-1-yl)benzene (3n)

To a solution of CuI (3 equiv, $28 \mathrm{mmol}, 5.33 \mathrm{~g}$) and LiBr (3 equiv, $28 \mathrm{mmol}, 2.43 \mathrm{~g}$) in THF $(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise phenylmagnesium bromide (2.8 mol. L^{-1} in $\mathrm{Et}_{2} \mathrm{O}, 3$ equiv, $28 \mathrm{mmol}, 10 \mathrm{~mL}$). After 25 min stirring at $0{ }^{\circ} \mathrm{C}$, 2-methylbut-3-yn-2-yl acetate (1 equiv, $9.33 \mathrm{mmol}, 1.18 \mathrm{~g})$ in solution in THF (15 mL) was added dropwise and the reaction mixture was stirred 2 h at the same temperature. The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with diethyl ether (x3). The organic layers were washed successively with HCl 1 mol.L L^{-1} and water, and were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by flash chromatography on silica gel (eluent: pure PE) followed by Kugelrohr distillation (19 mbar, $120^{\circ} \mathrm{C}$) afforded the desired product as a colourless oil (94% purity (biphenyl as by-product), $736 \mathrm{mg}, 5.11 \mathrm{mmol}, 55 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $(\delta, \mathrm{ppm}) \quad 7.28-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{hept}, J=2.9 \mathrm{~Hz}$, $\left.\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1 \mathrm{H}\right), 1.81(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 6 \mathrm{H})$

```
\mp@subsup{}{}{13}\mathbf{C NMR (\delta, ppm) 203.3, 136.1, 128.6, 126.7, 126.5, 99.3, 92.7, 20.4}
(75 MHz, CDCl}3\mathrm{ )
```

Spectroscopic data are in agreement with those reported in the literature. ${ }^{14}$

Preparation of the acyl fluorides

Procedure B:

All acid fluorides were synthesized using a literature procedure ${ }^{15}$ with little modification.
To a stirred suspension of diethylaminodifluorosulfinium tetrafluoroborate (1.0 equiv) in dichloromethane ($6.25 \mathrm{~mL} / \mathrm{mmol}$ substrate) at room temperature was added the carboxylic acid (1.0 equiv) and triethylamine trihydrofluoride (1.0 equiv). The resulting mixture was stirred under nitrogen for 5 h at room temperature. The reaction was then quenched with a 5% NaHCO_{3} aqueous solution, stirred for 15 minutes, until the effervescence ceased and the resulting mixture was extracted twice using DCM. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude mixture was purified by flash chromatography.

HRMS spectra of acyl fluorides could not be obtained using standard ionization methods due to the lack of stability of these compounds in these conditions.

[1,1'-Biphenyl]-4-carbonyl fluoride (1b)

Following procedure B starting with [1,1'-biphenyl]-4-carboxylic acid.
Flash chromatography: PE/EtOAc 95:5
Yield: 688 mg (86% yield) of a white solid.
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}(\delta, \mathrm{ppm}) \quad 8.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.63(\mathrm{~m}, 2 \mathrm{H})$,

```
(300 MHz, CDCl 3) 7.41-7.50(m, 3H)
```

${ }^{13} \mathrm{C}$ NMR (δ, ppm)	$157.5\left(\mathrm{~d}, J_{C-F}=341.2 \mathrm{~Hz}\right), 148.2,139.4,132.1\left(\mathrm{~d}, J_{C-F}=3.7 \mathrm{~Hz}\right)$,
$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$129.2,128.9,127.8,127.5,123.6\left(\mathrm{~d}, J_{C-F}=60.7 \mathrm{~Hz}\right)$

${ }^{19}$ F NMR (δ, ppm) 14.9
(282 MHz, CDCl_{3},
$\mathrm{C}_{6} \mathrm{~F}_{6}$)

IR 1936, 1927, 1767, 1720, 1607, 1566, 1487, 1450, 1406, 1342, 1277, $\left(\mathrm{cm}^{-1}\right.$, neat $) \quad 1254,1200,1182,1173,1126,1076,1028,1001,910$.

3,4-Dimethoxybenzoyl fluoride (1c)

Following procedure B starting with 3,4-dimethoxybenzoic acid.

Yield: 560 mg (61% yield) of a white solid.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.71(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J= \\ & 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm)	157.5 (d, $\left.J_{C-F}=340.0 \mathrm{~Hz}\right), 155.1,149.2,126.4\left(\mathrm{~d}, J_{C-F}=2.9 \mathrm{~Hz}\right)$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	117.0 (d, $\left.J_{C-F}=62.1 \mathrm{~Hz}\right), 113.2\left(\mathrm{~d}, J_{C-F}=4.5 \mathrm{~Hz}\right), 110.8,56.3,56.2$
${ }^{19} \mathbf{F}$ NMR (δ, ppm)	12.5
$\begin{aligned} & \left(282 \mathrm{MHz}, \mathrm{CDCl}_{3},\right. \\ & \left.\mathrm{C}_{6} \mathrm{~F}_{6}\right) \end{aligned}$	
$\begin{aligned} & \text { IR } \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 2841,1782,1596,1515,1464,1439,1418,1354,1275,1246,1209 \text {, } \\ & 1190,1167,1142,1132,1065,1038,1013,901,879,858,820 \end{aligned}$

2,4-Dichlorobenzoyl fluoride (1d)

Following procedure B starting with 2,4-dichlorobenzoic acid.
Flash chromatography: PE/EtOAc 95:5
Yield: 645 mg (84% yield) of a white solid.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.94(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=10.0 \text {, } \\ & 5.0 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 153.8\left(\mathrm{~d}, J_{C-F}=341.2 \mathrm{~Hz}\right), 141.8,138.1\left(\mathrm{~d}, J_{C-F}=4.5 \mathrm{~Hz}\right), 134.6(\mathrm{~d}, \\ & \left.J_{C-F}=2.2 \mathrm{~Hz}\right), 132.14\left(\mathrm{~d}, J_{C-F}=3.7 \mathrm{~Hz}\right), 127.8,122.1\left(\mathrm{~d}, J_{C-F}=62.2\right. \\ & \mathrm{Hz}) \end{aligned}$
${ }^{19}$ F NMR (δ, ppm) (282 MHz, CDCl_{3}, $\mathrm{C}_{6} \mathrm{~F}_{6}$)	28.8
$\begin{aligned} & \text { IR } \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 1816,1730,1697,1585,1555,1470,1375,1261,1225,1203,1153, \\ & 1109,1074,999,870 \end{aligned}$

2-Iodobenzoyl fluoride (1e)

Following procedure B starting with 2-iodobenzoic acid.
Flash chromatography: PE/EtOAc 95:5
Yield: 610 mg (61% yield) of a white solid.
${ }^{1} \mathbf{H} \operatorname{NMR}(\delta, \mathrm{ppm}) \quad 8.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $\left.\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1 \mathrm{H}\right), 7.24-7.30(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(\delta, \mathrm{ppm}) \quad 155.4\left(\mathrm{~d}, J_{C-F}=343.5 \mathrm{~Hz}\right), 142.8\left(\mathrm{~d}, J_{C-F}=3.7 \mathrm{~Hz}\right), 135.3,133.5$, $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 128.54,128.48\left(\mathrm{~d}, J_{C-F}=58.5 \mathrm{~Hz}\right), 97.3$

Spectroscopic data are in agreement with those reported in the literature ${ }^{16}$

Methyl 4-(fluorocarbonyl)benzoate (1f)

Following procedure B starting with 4-(methoxycarbonyl)benzoic acid.
Flash chromatography: ${\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}}^{9}: 1$ to $1: 1$
Yield: 422 mg (46% yield) of a white solid.
${ }^{1} \mathbf{H}$ NMR $(\delta, \mathrm{ppm}) \quad 8.18-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.11-8.09(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

```
\({ }^{13}\) C NMR ( \(\delta, \mathrm{ppm}\) ) \(\quad 165.7,156.6\left(\mathrm{~d}, J_{C-F}=345.7 \mathrm{~Hz}\right), 136.1,131.5\left(\mathrm{~d}, J_{C-F}=3.5 \mathrm{~Hz}\right)\),
\(\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 130.2,128.7\left(\mathrm{~d}, J_{C-F}=61.7 \mathrm{~Hz}\right), 52.8\)
```

${ }^{19}$ F NMR (δ, ppm) 16.9
(282 MHz, CDCl_{3},
$\mathrm{C}_{6} \mathrm{~F}_{6}$)
IR 1811, 1717, 1612, 1578, 1502, 1441, 1410, 1256, 1238, 1196, 1109,
$\left(\mathrm{cm}^{-1}\right.$, neat $\quad 1024,1011,959,874,831$

Benzofuran-2-carbonyl fluoride (1g)

Following procedure B starting with benzofuran-2-carboxylic acid.
Flash chromatography: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ 95:5
Yield: 597 mg (73% yield) of a white solid.

${ }^{1}{ }^{1} \mathbf{N M R}(\delta, \mathrm{ppm})$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.76-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=8.4,7.2 \text {, } \\ & 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\begin{aligned} & 157.0,149.5\left(\mathrm{~d}, J_{C-F}=329.9 \mathrm{~Hz}\right), 139.9\left(\mathrm{~d}, J_{C-F}=89.5 \mathrm{~Hz}\right), 129.6 \text {, } \\ & 126.4,124.7,123.7,119.5,112.7 \end{aligned}$
${ }^{19} \mathbf{F}$ NMR (δ, ppm) (282 MHz, CDCl_{3}, $\mathrm{C}_{6} \mathrm{~F}_{6}$)	14.2
IR (cm^{-1}, neat)	$\begin{aligned} & 1801,1738,1699,1614,1556,1541,1477,1443,1350,1327,1294 \text {, } \\ & 1275,1209,1161,1136,1047,929,885,862,837,806 \end{aligned}$

1-Tosyl-1H-indole-3-carbonyl fluoride (1h)

Following procedure B starting with 1-tosyl-1 H -indole-3-carboxylic acid.
Flash chromatography: PE/EtOAc 85:15 to 65:35
Yield: 431 mg (34% yield) of a colorless crystals.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.07-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86 \\ & (\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 2.39(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR ($\left.\delta, \mathrm{ppm}\right)$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 153.4\left(\mathrm{~d}, J_{C-F}=330.7 \mathrm{~Hz}\right), 146.6,135.0,134.2,130.6,127.5,127.4 \text {, } \\ & 127.3,126.4,125.2,121.7,113.7,107.9\left(\mathrm{~d}, J_{C-F}=69 \mathrm{~Hz}\right), 21.8 \end{aligned}$
${ }^{19}$ F NMR (δ, ppm) ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{C}_{6} \mathrm{~F}_{6}$)	27.1
$\begin{aligned} & \text { IR } \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	1801, 1699, 1595, 1541, 1481, 1446, 1379, 1294, 1170, 1134, 1085, 1047, 993, 968, 937, 910, 831

Ferrocenoyl fluoride (li)

$$
\begin{gathered}
\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FFeO} \\
\mathrm{M}=232.03 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure B starting with ferrocenecarboxylic acid.
Flash chromatography: PE/EtOAc 95:5
Yield: 1.78 g (93\%) of a red color solid.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$4.83(\mathrm{t}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{q}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 5 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 163.2\left(\mathrm{~d}, J_{C-F}=332.2 \mathrm{~Hz}\right), 73.4,71.3\left(\mathrm{~d}, J_{C-F}=2.2 \mathrm{~Hz}\right), 70.6,63.8 \\ & \left(\mathrm{~d}, J_{C-F}=70.5 \mathrm{~Hz}\right) \end{aligned}$
${ }^{19}$ F NMR (δ, ppm) (282 MHz, CDCl_{3}, $\mathrm{C}_{6} \mathrm{~F}_{6}$)	24.4
$\begin{aligned} & \mathbf{I R} \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 1798,1452,1411,1375,1354,1317,1267,1142,1107,1072,1030 \text {, } \\ & 1001,912,893,825 \end{aligned}$

Copper-catalyzed boroacylation of allenes

Standard procedure for the optimization of the reaction conditions

A flame-dried Schlenk was loaded with the copper catalyst (0.05 equiv, 0.015 mmol) and the ligand. After 3 vacuum/argon cycles, THF (0.5 mL) was added until the solids were dissolved. To the obtained blue/green solution was added TMSONa (1 M in THF, 1.0/1.2 equiv, $0.30 / 0.36 \mathrm{mmol}$). Bispinacolatodiboron 2 ($1.0 / 1.2$ equiv (same than TMSONa), $0.30 / 0.36 \mathrm{mmol}$) in solution in THF (0.5 mL) was added to the resulting yellow solutions and the mixture immediately turned into a brown slurry. The allene $\mathbf{3}$ (1.0 equiv, 0.3 mmol) and the acyl fluoride 1 (1.5 equiv, 0.45 mmol) were simultaneously added in solution in THF (0.5 mL). The mixture was stirred for 3 h at room temperature. The reaction mixture was filtered through silica (eluent: $\mathrm{Et}_{2} \mathrm{O}+1 \% \mathrm{NEt}_{3}$) and the solvents were removed under reduced pressure. 3,4,5-trimethoxybenzaldehyde was added as an internal standard and the yield was determined using ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Optimization of the copper source

 1a 1.5 equiv			5 mo ol\%) 2 equ , 3 h.	 4a
	Entry	[Cu] source	n	Yield (\%)
	1	$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$	5	61
	2	CuOAc	5	<3
	3	$\mathrm{Cu}(\mathrm{OAc})_{2}$	7.5	73
	4	CuI	5	<3
	5	$\mathrm{CuF}\left(\mathrm{PPh}_{3}\right)_{3} \cdot 2 \mathrm{MeOH}$	5	73
	6	$(\mathrm{dppf}) \mathrm{CuDBM}$	0	5
	7	$[(\mathrm{dppf}) \mathrm{CuCl}]_{2}$	0	55

Optimization of the ligand with $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$ as a standard copper source

Test of the other parameters

Scope of the reaction: procedure C:

A flame-dried Schlenk was loaded with anhydrous copper(II) acetate (0.05 equiv, 0.025 $\mathrm{mmol}, 4.5 \mathrm{mg}$) and 1,1'-bis(diphenylphosphino)ferrocene (0.06 equiv, $0.030 \mathrm{mmol}, 16.6 \mathrm{mg}$). After 3 vacuum/argon cycles, THF (0.8 mL) was added until the solids were dissolved. To the obtained blue/green solution was added TMSONa (1 M in THF, 1.2 equiv, $0.6 \mathrm{mmol}, 0.6$ mL). The resulting yellow solution was cooled down to $0{ }^{\circ} \mathrm{C}$ in a water/ice bath. Bispinacolatodiboron 2 (1.2 equiv, $0.6 \mathrm{mmol}, 152.4 \mathrm{mg}$) in solution in THF (0.8 mL) was added and the mixture immediately turned into a brown slurry. The allene $\mathbf{3}$ (1.0 equiv, 0.5 mmol) and the acyl fluoride $\mathbf{1}$ (1.5 equiv, 0.75 mmol) were simultaneously added in solution in THF (0.8 mL).

Procedure C_{1} : The mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$.
Procedure C_{2} : The mixture was stirred for 18 h while warming up to room temperature.

The reaction mixture was filtered through silica (eluent: $\mathrm{Et}_{2} \mathrm{O}+1 \% \mathrm{NEt}_{3}$) and the solvents were removed under reduced pressure. Purification by flash chromatography on silica gel afforded the desired product 4.

2-Methyl-2-phenethyl-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1one (4a)

Following procedure C_{1} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Yield: 155.1 mg (80% yield) of a slightly yellow oil.

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\delta, \mathrm{ppm})$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35$
	$\begin{aligned} & 7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, \\ & J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.27- \end{aligned}$
	$2.21(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	203.9, 142.9, 137.7, 131.7, 129.6, 128.5, 128.4, 128.0, 127.8, 125.8,
	81.7, 54.8, 40.2, 31.1, 24.6, 24.4, 24.0
	(quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)
IR (cm^{-1}, neat)	2978, 2928, 1680, 1597, 1578, 1497, 1447, 1412, 1371, 1354, 1315,
	1271, 1242, 1213, 1167, 1140, 1103, 1029, 1003, 967, 945

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~B}: 391.2439 \quad$ Found: 391.2440
(HRMS APCI)

2,2-Dimethyl-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-one (4b)

$$
\begin{gathered}
\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BO}_{3} \\
\mathrm{M}=300.20 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{1} starting with 0.5 mmol 3-methyl-1,2-butadiene (3b), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).
Flash chromatography: pentane/Et $\mathrm{O}_{2} \mathrm{O} 95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.

Yield: 107.5 mg (72% yield) of a yellow oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.98$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}$, 12 H)
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	204.6, 137.2, 131.6, 129.7, 127.9, 126.3, 83.7, 51.4, 26.8, 24.5 (quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)
IR (cm^{-1}, neat)	$\begin{aligned} & 2976,1682,1597,1578,1466,1447,1410,1371,1352,1313,1256 \text {, } \\ & 1213,1167,1140,1103,1013,1003,968,937,876,849 \end{aligned}$
MS (HRMS APCI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~B}: 301.1970$ Found: 301.1969

Phenyl(1-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclohexyl)methanone (4c)

Following procedure C_{1} starting with 0.5 mmol vinylidenecyclohexane (3c), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Yield: 124.6 mg (73%) of a colourless oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.96 \\ & (\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-22(\mathrm{~m}, 2 \mathrm{H}), \\ & 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}) \end{aligned}$
${ }^{13}$ C NMR (δ, ppm) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 205.3,138.4,131.1,129.3,129.1,127.8,83.7,56.1,34.8,26.0,24.7 \text {, } \\ & 23.2 \\ & \text { (quaternary carbon next to boron could not be observed because of } \\ & \text { quadrupolar coupling effects) } \end{aligned}$
$\begin{aligned} & \mathbf{I R} \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 2955,1674,1597,1578,1447,1421,1371,1346,1310,1275,1225 \text {, } \\ & 1197,1134,1076,1051,1030,987,968,951,876,851 \end{aligned}$
MS (HRMS ESI)	Calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{NaB}$: 363.2102 Found: 363.2099

2-(2-(2-Bromo-4-methylphenoxy)ethyl)-2-methyl-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-one (4d)

$$
\begin{gathered}
\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BBrO}_{4} \\
\mathrm{M}=499.25 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{1} starting with 0.5 mmol 2-bromo-4-methyl-1-((3-methylpenta-3,4-dien-1-yl)oxy)benzene (3d), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Flash chromatography: pentane/Et $\mathrm{t}_{2} \mathrm{O} 95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: 199.7 mg (79%) of a slightly yellow oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm)	$7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.99$
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$(\mathrm{ddd}, J=8.3,2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=$
	$2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=9.7,8.1,5.8 \mathrm{~Hz}$,
	$1 \mathrm{H}), 3.92(\mathrm{ddd}, J=9.7,8.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.24$
	$(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H})$

${ }^{13} \mathbf{C}$ NMR $(\delta, \mathrm{ppm}) \quad 203.2,153.3,136.9,133.7,131.9,131.2,129.8,128.8,128.4,128.1$, $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 113.2,111.8,83.8,66.3,53.5,37.5,24.6,24.5,24.4,20.3$
(quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)

IR 2976, 2935, 1678, 1605, 1578, 1495, 1468, 1447, 1412, 1371, 1354,
(cm^{-1}, neat)

MS 1316, 1275, 1252, 1213, 1182, 1140, 1103, 1049, 1003, 966, 866, 851, 800
(HRMS APCI)

2-Methyl-1,2-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-one (4e)

Following procedure C_{1} starting with 0.5 mmol buta-2,3-dien-2-ylbenzene ($\mathbf{3 e}$),
bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Yield: 120.1 mg (66% yield) of a white solid.
${ }^{1} \mathbf{H} \operatorname{NMR}(\delta, \mathrm{ppm}) \quad 7.45-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=2.5 \mathrm{~Hz}$,

```
(300 MHz, CDCl 3) 1H), 1.87(s, 3H), 1.32 (s, 6H), 1.31 (s, 6H)
```

```
\mp@subsup{}{}{13}\mathbf{C NMR (\delta, ppm) 204.2, 141.6, 137.2, 131.6, 129.5, 128.7, 128.3, 128.0, 127.2, 127.0,}
(75 MHz, CDCl}3) 83.4,61.3, 25.2, 24.6, 24.2
    (quaternary carbon next to boron could not be observed because of
    quadrupolar coupling effects)
IR 2982, 1672, 1614, 1597, 1578, 1458, 1447, 1410, 1371, 1350, 1304,
(cm-1, neat) 1248, 1215,1143,1113,1099, 1068, 1028, 1001,968
```

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~B}: 363.2126 \quad$ Found: 363.2123
(HRMS APCI)

2-Ethyl-1,2-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-one (4f)

$$
\begin{gathered}
\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BO}_{3} \\
\mathrm{M}=376.30 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{1} starting with 0.5 mmol penta-1,2-dien-3-ylbenzene ($\mathbf{(3 f}$), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Flash chromatography: pentane/Et ${ }_{2} \mathrm{O} 95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: $114.9 \mathrm{mg}(61 \%)$ of a slightly yellow oil.

```
'1H NMR (\delta, ppm) 7.43-7.17(m, 10H), 5.83(d, J=2.3 Hz, 1H), 5.05 (d, J=2.2 Hz,
(300 MHz, CDCl 3) 1H), 2.43(dq, J=14.5,7.3 Hz,1H), 2.29(dq, J=14.9, 7.5 Hz, 1H),
    1.30(s, 6H), 1.30 (s, 6H), 0.87 (t, J=7.4 Hz, 3H)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\({ }^{13} \mathbf{C}\) NMR ( \(\delta, \mathrm{ppm}\) ) \\
\(\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
\end{tabular} & \[
\begin{aligned}
& \text { 203.8, 141.7, 137.4, 131.6, 129.5, 128.7, 128.6, 128.0, 127.6, 127.0, } \\
& 83.2,65.5,28.2,25.0,24.8,10.5 \\
& \text { (quaternary carbon next to boron could not be observed because of } \\
& \text { quadrupolar coupling effects) }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
IR \\
( \(\mathrm{cm}^{-1}\), neat)
\end{tabular} & 2976, 1668, 1614, 1597, 1578, 1447, 1408, 1371, 1352, 1296, 1273, 1234, 1215, 1180, 1138, 1111, 1082, 1081, 1034, 1009, 968, 881, 860, 841 \\
\hline
\end{tabular}
```

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~B}: 377.2283 \quad$ Found: 377.2282
(HRMS ESI)

2-(3-Bromophenyl)-2-methyl-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-

 3-en-1-one (4g)

$\mathrm{M}=441.17 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Following procedure C_{1} starting with 0.5 mmol 1 -bromo-3-(buta-2,3-dien-2-yl)benzene ($\mathbf{3 g}$), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Yield: 112.4 mg (51% yield) of a white solid.

${ }^{1}$ H NMR (δ, ppm) $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$7.54-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 4 \mathrm{H}), 5.76$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, 6 H), 1.29 ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (δ, ppm) $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\begin{aligned} & \text { 203.4, 144.2, 136.8, 131.8, 131.1, 130.4, 130.2, 129.4, 128.2, 127.3, } \\ & \text { 127.1, 123.0, 83.5, 61.1, 25.2, 25.0, 24.2 } \\ & \text { (quaternary carbon next to boron could not be observed because of } \\ & \text { quadrupolar coupling effects) } \end{aligned}$
$\begin{aligned} & \text { IR } \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	1674, 1614, 1593, 1564, 1474, 1447, 1410, 1371, 1348, 1306, 1271, $1244,1215,1163,1142,1107,1059,997,912,912,868,847$
MS (HRMS APCI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{BBr}: 441.1232$ Found: 440.1231

2-Ethyl-1-(4-methoxyphenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-one (4h)

Following procedure C_{1} starting with 0.5 mmol 1 -methoxy-4-(penta-1,2-dien-3-yl)benzene (3h), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Yield: 120.2 mg (60%) of a yellow oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm)	$7.42-7.20$ (m, 7H), $6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.83$ (d, J = 2.3 Hz, 1H),
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 5.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, \\ & 6 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & \text { 204.1, 158.5, 137.7, 133.4, 131.4, 129.9, 129.5, 128.0, 127.5, 114.0, } \\ & 83.2,64.9,55.3,28.1,25.0,24.8,10.5 \\ & \text { (quaternary carbon next to boron could not be observed because of } \\ & \text { quadrupolar coupling effects) } \end{aligned}$
$\begin{aligned} & \mathbf{I R} \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 2982,2939,2839,1666,1609,1578,1510,1464,1447,1410,1371 \text {, } \\ & 1354,1296,1252,1111,1034,1011,968,945,881,864,825 \end{aligned}$
MS (HRMS ESI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O} 4 \mathrm{~B}: 407.2389$ Found: 407.2389

2-(2-((Dimethyl(phenyl)silyl)oxy)ethyl)-2-methyl-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-

 dioxaborolan-2-yl)but-3-en-1-one (4i)

Following procedure C_{1} starting with 0.5 mmol dimethyl((3-methylpenta-3,4-dien-1yl)oxy)(phenyl)silane (3i), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Yield: 133.7 mg (58% yield) of a yellow oil.

${ }^{\mathbf{1}} \mathrm{H}$ NMR (δ, ppm)	$7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.02$
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dt}, J=10.3,7.2$
	$\mathrm{Hz}, 1 \mathrm{H}), 3.51(\mathrm{dtt}, J=10.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}$,
	$3 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 0.31(\mathrm{~s}, 6 \mathrm{H})$

${ }^{13} \mathbf{C ~ N M R ~ (\delta , ~ p p m) ~}$	$203.2,138.1,137.3,133.6,131.6,129.6,129.6,127.9,127.9,127.5$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$83.7,60.0,53.3,40.7,24.5(2 \mathrm{C}), 24.4,-1.73,-1.66$ (quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)
	$2970,2332,1680,1597,1578,1447,1427,1412,1371,1354,1315$, IR $\left(\mathrm{cm}^{-1}\right.$, neat $)$
	$1252,1215,1188,1142,1115,1084,1043,1003,966,949,849,827$

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{BSi}: 465.2628$ Found: 465.2632
(HRMS APCI)

tert-butyl pyrrolidine-1,2-dicarboxylate (4j)

$$
\begin{gathered}
\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{BNO}_{7} \\
\mathrm{M}=527.46 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{1} starting with 0.5 mmol 1 -(tert-butyl) 2-(3-methylpenta-3,4-dien-1-yl) pyrrolidine-1,2-dicarboxylate ($\mathbf{3 j}$), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Yield: 113.3 mg (43% yield) of a yellow oil.

${ }^{1}$ H NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.90-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.12-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.91- \\ & 5.90(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.06 \\ & (\mathrm{~m}, 3 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}, \text { major), } 1.50(\mathrm{~s}, 3 \mathrm{H}, \\ & \text { minor), } 1.44-1.39(\mathrm{~m}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 12 \mathrm{H}, \text { minor), } 0.96(\mathrm{~s}, 12 \mathrm{H}, \\ & \text { major) } \end{aligned}$
${ }^{13}$ C NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	202.9, 173.2 (major, C_{a}), 172.9 (minor, C_{a}), 154.5 (minor, C_{b}), 154.0 (major, C_{b}), 137.0 (major, C_{c}), 137.0 (minor, C_{c}), 131.9 (major, C_{d}), 131.8 (minor, C_{d}), 129.7, 128.5 - 128.4 (m), 128.0, 83.9 (major, C_{e}), 83.8 (minor, C_{e}), 79.9 (major, C_{f}), 79.8 (minor, C_{f}), 62.4 (major, C_{g}), 62.3 (minor, C_{g}), 59.3 (major, C_{h}), 59.0 (minor, C_{h}), 53.4 (minor, C_{i}), 53.3 (major, C_{i}), 46.7 (minor, C_{j}), 46.4 (major, C_{j}), 36.9 (minor, C_{k}), 36.8 (major, C_{k}), 30.9, 29.9, 28.6 (minor, C_{1}), 28.5 (major, C_{1}), 24.6 24.3, 23.9 - 23.8 (m) (quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)
$\begin{aligned} & \text { IR } \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 2989,1745,1682,1597,1578,1539,1447,1393,1354,1317,1260 \text {, } \\ & 1165,1088,1093,996,918,878,851 \end{aligned}$

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{NB}: 528.3129 \quad$ Found: 528.3128
(HRMS ESI)

1,5-Diphenyl-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)pentan-1-one (4k)

$$
\begin{gathered}
\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BO}_{3} \\
\mathrm{M}=390.32 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{1} starting with 0.5 mmol hexa-4,5-dien-1-ylbenzene ($\mathbf{3 k}$), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Only a small fraction of the product could be obtained pure after flash chromatography over silica. An NMR yield using 3,4,5-trimethoxybenzaldehyde was determined (see spectrum below).

```
'1H NMR (\delta, ppm) 7.98-7.95(m, 2H), 7.52-7.47(m, 1H), 7.42-7.37(m, 2H), 7.27-
(500 MHz, CDCl }\mp@subsup{)}{3}{)}\quad7.23(\textrm{m},2\textrm{H}),7.18-7.15(m,3H),5.92(d,J=2.4 Hz, 1H), 5.67 (d
J=2.0 Hz, 1H), 4.29-4.25(m,1H), 2.68-2.60(m, 2H), 2.00-
1.95 (m, 1H), 1.73-1.63 (m, 3H, H), 1.27 (s, 6H), 1.25 (s, 6H)
\mp@subsup{}{}{13}\mathbf{C NMR (\delta, ppm) 200.8, 142.6, 137.1, 132.7, 131.9, 128.8, 128.5, 128.4, 128.3, 125.7,}
(75 MHz, CDCl 3) 84.0, 50.1, 36.0, 32.5, 29.6, 24.9, 24.8
(quaternary carbon next to boron could not be observed because of
quadrupolar coupling effects)
IR 3057, 2964, 2920, 2851, 1718, 1684, 1597, 1446, 1356, 1343, 1250,
(cm-1, neat) 1217,1134,1078,966
```

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~B}: 391.2439 \quad$ Found: 391.2441
(HRMS ESI)

1-Phenyl-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) vinyl)octan-1-one (4l)

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{BO}_{3} \\
& \mathrm{M}=356,31 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Because of the low stability of this compound in the presence of silica gel or alumina, a modified procedure was used: the obtained product was directly oxidized into the corresponding ketone, which was isolated and characterized.

2-Hexyl-1-phenylbutane-1,3-dione (5l)

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \\
& \mathrm{M}=246.35 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

A flame-dried Schlenk was loaded with anhydrous copper(II) acetate (0.05 equiv, 0.025 mmol, 4.5 mg) and 1, 1 '-bis(diphenylphosphino)ferrocene (0.06 equiv, $0.030 \mathrm{mmol}, 16.6 \mathrm{mg}$).

After 3 vacuum/argon cycles, THF (0.8 mL) was added until the solids were dissolved. To the obtained blue/green solution was added TMSONa (1 M in THF, 1.2 equiv, $0.6 \mathrm{mmol}, 0.6$ mL). The resulting yellow solution was cooled down to $0{ }^{\circ} \mathrm{C}$ in a water/ice bath. Bispinacolatodiboron 2 (1.2 equiv, $0.6 \mathrm{mmol}, 152.4 \mathrm{mg}$) in solution in THF (0.8 mL) was added and the mixture immediately turned into a brown slurry. Nona-1,2-diene $\mathbf{3 1}$ (1.0 equiv, $0.5 \mathrm{mmol}, 62.1 \mathrm{mg}$) and benzoyl fluoride (1.5 equiv, $0.75 \mathrm{mmol}, 81 \mu \mathrm{~L}$) were simultaneously added in solution in THF (0.8 mL). After 3 h stirring at $0{ }^{\circ} \mathrm{C}$, water (2.4 mL) and NaBO_{3} (5 equiv, $2.5 \mathrm{mmol}, 249.5 \mathrm{mg}$) were added and the mixture was vigorously stirred at room temperature for $3 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(sat) }}$ were added and the layers were separated. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by flash column chromatography (${\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 95: 5 \text {) afforded the }}^{\mathrm{O}}$) pure product as a slightly yellow oil ($88.5 \mathrm{mg}, 0.362 \mathrm{mmol}, 72 \%$ yield).

${ }^{1} \mathbf{H}$ NMR (δ, ppm) $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$7.99-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.42$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}$, $1 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.86-0.83(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13}$ C NMR (δ, ppm) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 204.6,196.6,136.7,133.8,129.0,128.8,63.7,31.6,29.3,29.2,27.9 \\ & 27.8,22.6,14.1 \end{aligned}$
$\begin{aligned} & \mathbf{I R} \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 2959,2928,2856,1720,1674,1597,1580,1448,1356,1283,1265 \text {, } \\ & 1211,1180,1161,1117,1076,1001,970,914 \end{aligned}$
MS (HRMS ESI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}: 247.1693$ Found: 247.1691

(E)-6-(Benzyloxy)-2,2-dimethyl-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)hex-3-en-1-one (4m)

$$
\begin{gathered}
\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BO}_{4} \\
\mathrm{M}=434.38 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{1} starting with 0.5 mmol (((5-Methylhexa-3,4-dien-1yl)oxy)methyl)benzene (3m), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Flash chromatography: pentane/Et $\mathrm{t}_{2} \mathrm{O} 95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: 55.8 mg (26% yield) of a colourless oil.
The stereochemistry was determined by H-H NOESY correlation.

For the only observed isomer, the NOESY spectrum showed a correlation between the vinylic proton and the gem-dimethyl protons. This product was assigned to the (E)-isomer.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.92-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 8 \mathrm{H}), 6.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\ & 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.42 \\ & (\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 12 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & \text { 205.0, 138.9, 138.8, 137.1, 131.4, 129.9, 128.5, 127.8, 127.7, 127.6, } \\ & 83.4,72.8,70.2,52.0,31.9,27.5,24.8 \\ & \text { (quaternary carbon next to boron could not be observed because of } \\ & \text { quadrupolar coupling effects) } \end{aligned}$
$\begin{aligned} & \text { IR } \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 2978,2928,2893,1722,1678,1624,1597,1466,1447,1416,1371, \\ & 1360,1304,1250,1213,1169,1140,1099,1018,970,910 \end{aligned}$
MS (HRMS APCI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~B}: 435.2702$ Found: 435.2703

(E)-2,2-Dimethyl-1,4-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-

 one (4n)

Following procedure C_{1} starting with 0.5 mmol (3-methylbuta-1,2-dien-1-yl)benzene (3n), bis(pinacolato)diboron (2) and benzoyl fluoride (1a).

Flash chromatography: pentane/Et ${ }_{2} \mathrm{O} 97.5: 2.5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: 30.0 mg (16% yield) of a colourless oil.
The stereochemistry was determined by H-H NOESY correlation.

For the only observed isomer, the NOESY spectrum showed a correlation between the vinylic proton and the gem-dimethyl protons. This product was assigned to the (E)-isomer.

$\mathbf{1} \mathbf{H} \mathbf{N M R}(\delta, \mathrm{ppm})$	$8.00-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$,
	$1.50(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H})$

${ }^{13}$ C NMR (δ, ppm) 204.6, 139.0, 138.4, 136.6, 131.7, 130.1, 128.2, 128.1, 128.0, 127.5, ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 84.1, 52.4, 27.5, 25.1 (quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)

IR 3026, 2976, 2939, 2930, 1724, 1674, 1609, 1597, 1576, 1495, 1464, $\left(\mathrm{cm}^{-1}\right.$, neat) $\quad 1447,1389,1373,1348,1310,1252,1211,1167,1140,1111,1076$, 1011, 974, 920, 883, 854, 829

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~B}: 377.2883 \quad$ Found: 377.2883
(HRMS APCI)

1-([1,1'-Biphenyl]-4-yl)-2-methyl-2-phenethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)but-3-en-1-one (4o)

$$
\begin{gathered}
\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{BO}_{3} \\
\mathrm{M}=466.42 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following procedure C_{1} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and [1,1'-biphenyl]-4-carbonyl fluoride (1b).

Flash chromatography: PE / EtOAc $95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$
Yield: 184.0 mg (79% yield) of a white solid.

, ppm)	$7.50-7.45$ (m, 2H)
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	7.37 (m, 1H), $7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.15$ (d, $J=$
	$2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (ddd, $J=12.4,9.7,7.2$
	Hz, 1H), $2.46-2.24(\mathrm{~m}, 3 \mathrm{H}), 1.57$ (s, 3H), 1.03 (s, 6H), 1.03 (s, 6H)
${ }^{13}$ C NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	203.3, 144.3, 142.9, 140.2, 136.3, 130.2, 129.0, 128.5, 128.4, 128.1,
	$127.9,127.3,126.6,125.8,83.7,54.8,40.3,31.1,24.6,24.4,24.0$.
	(quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)

```
IR 2974, 2926, 1676, 1603, 1560, 1485, 1448, 1412, 1354, 1313, 1273,
(cm-1, neat) 1248, 1215,1178,1167,1140,1113, 1030, 1007, 966, 912, 878, 851,
835
```

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{~B}: 467.2754 \quad$ Found: 467.2755
(HRMS ESI)

1-(2,3-Dimethoxyphenyl)-2-methyl-2-phenethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

 2-yl)but-3-en-1-one (4p)

$$
\begin{gathered}
\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BO}_{5} \\
\mathrm{M}=450.37 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{1} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and 3,4-dimethoxybenzoyl fluoride (1c).
Flash chromatography: Pentane/Et $\mathrm{E}_{2} \mathrm{O} 95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: 122.7 mg (55\% yield) of a white solid.

Following procedure C_{2} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and 2,4-dichlorobenzoyl fluoride (1d).
Flash chromatography: pentane/Et $\mathrm{E}_{2} \mathrm{O} 95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: $97.1 \mathrm{mg}(42 \%)$ of a yellow oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$7.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 7 \mathrm{H}), 6.09(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.78(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.99(\mathrm{~m}$, $1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & \text { 206.2, 142.6, 138.0, } 135.4,132.0,130.2,129.9,129.0,128.5,128.4 \text {, } \\ & 126.1,125.9,83.8,57.0,38.9,30.8,24.8,24.7,21.1 \\ & \text { (quaternary carbon next to boron could not be observed because of } \\ & \text { quadrupolar coupling effects) } \end{aligned}$
$\begin{aligned} & \text { IR } \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	$\begin{aligned} & 2980,1693,1583,1553,1497,1456,1418,1371,1350,1311,1265 \text {, } \\ & 1229,1215,1167,1136,1105,1059,962,851,824 \end{aligned}$
MS (HRMS ESI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{BCl}_{2}$: 459.1661 Found: 459.1661

1-(2-Iodophenyl)-2-methyl-2-phenethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-

3-en-1-one (4r)

Following procedure C_{2} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and 2-iodobenzoyl fluoride (1e).

Flash chromatography: pentane/Et $t_{2} \mathrm{O} 95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: 128.0 mg (50% yield) of a colourless sticky oil.

$$
\begin{array}{ll}
{ }^{1} \text { H NMR }(\delta, \mathrm{ppm}) & 7.87(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28- \\
\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) & 7.25(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J= \\
& 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.16- \\
& 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H})
\end{array}
$$

```
\mp@subsup{}{}{13}\mathbf{C NMR (\delta, ppm) 208.1, 144.9, 142.9, 140.5, 130.5, 129.4, 128.6, 128.4, 127.7, 127.0,}
(125 MHz, CDCl }\mp@subsup{)}{3}{}\quad125.8,93.1, 83.8, 56.6, 39.6,31.1, 24.9, 24.8, 21.5
(quaternary carbon next to boron could not be observed because of
quadrupolar coupling effects)
IR 2324,1690, 1607, 1558, 1541, 1497, 1456, 1418, 1371, 1352, 1313,
(cm-1, neat) 1275,1259,1140,1016,966, 851,764
```

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{BI}: 517.1407 \quad$ Found: 517.1409
(HRMS ESI)

Methyl-4-(2-methyl-2-phenethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-

 enoyl)benzoate (4s)

Following procedure C_{2} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and methyl 4-(fluorocarbonyl)benzoate (1f).

Yield: $101.8 \mathrm{mg}(45 \%)$ of a yellow solid.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$\begin{aligned} & 8.03-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.14 \\ & (\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.58- \\ & 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), \\ & 1.03(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$
${ }^{13}$ C NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 203.6,166.6,142.7,141.4,132.4,129.3,129.2,128.6,128.5,128.5 \text {, } \\ & 125.8,83.9,55.0,52.5,40.1,31.0,24.6,24.5,23.7 \end{aligned}$ (quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)
$\begin{aligned} & \mathbf{I R} \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	3078, 3030, 2976, 2935, 1726, 1682, 1605, 1568, 1497, 1454, 1434, $1414,1353,1315,1275,1238,1215,1190,1167,1138,1105,1030$, 1018, 966, 906, 878
MS (HRMS ESI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~B}: 449.2495 \quad$ Found: 449.2495

1-(Benzofuran-2-yl)-2-methyl-2-phenethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)but-3-en-1-one (4t)

$$
\begin{gathered}
\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BO}_{4} \\
\mathrm{M}=430.34 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{2} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and benzofuran-2-carboxylic acid (1g).

Yield: 83.4 mg (39% yield) of a white solid.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30- \\ & 7.23(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.19(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, \\ & J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.30- \\ & 2.24(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & \text { 194.0, 154.9, 151.8, 142.8, 128.5, 128.4, 128.3, 127.8, 127.1, 125.8, } \\ & \text { 123.7, 123.2, 114.0, 112.4, 83.8, 54.2, 39.4, 31.0, 24.5, 24.5, } 23.2 \\ & \text { (quaternary carbon next to boron could not be observed because of } \\ & \text { quadrupolar coupling effects) } \end{aligned}$
$\begin{aligned} & \mathbf{I R} \\ & \left(\mathrm{cm}^{-1}, \text { neat }\right) \end{aligned}$	3078, 3057, 3032, 2976, 2935, 2928, 1732, 1676, 1612, 1545, 1497, $1447,1412,1371,1354,1315,1271,1213,1157,1136,1115,1030$, 991, 966, 949, 918, 876
MS (HRMS ESI)	Calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{BNa}$: 453.2209 Found: 453.2209

2-Methyl-2-phenethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(1-tosyl-1H-indol-

 3-yl)but-3-en-1-one (4u)

Following procedure C_{2} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and 1-Tosyl-1 H-indole-3-carbonyl fluoride (1h).

Flash chromatography: (PE/EtOAc 95:5 to 85:15) $+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: 134.4 mg (46% yield) of semi solid.

${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}(\delta, \mathrm{ppm})$	$8.38-8.35(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=$
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.09$

$(\mathrm{m}, 3 \mathrm{H}), 6.19(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-$ $2.49(\mathrm{~m}, 1 \mathrm{H}), 2.43-4.37(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 2 \mathrm{H})$, $1.53(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}), 0.85(\mathrm{~s}, 6 \mathrm{H})$

${ }^{13} \mathbf{C} \mathbf{N M R}$ (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 199.7,145.6,142.8,135.0,134.1,131.5,130.3,129.5,128.5,128.4 \text {, } \\ & 128.1,127.2,125.8,125.5,124.7,123.7,119.3,112.9,83.7,55.4, \\ & 39.8,30.9,24.34,24.28,23.5,21.7 \end{aligned}$ (quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)
IR (cm^{-1}, neat)	$\begin{aligned} & 1718,1666,1596,1535,1444,1411,1377,1353,1313,1210,1174 \text {, } \\ & 1135,1099,1085,983,968,910,871,846,811 \end{aligned}$
MS (HRMS ESI)	Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{34} \mathrm{H}_{39} \mathrm{BNO}_{5} \mathrm{~S}$: 584.2637 Found: 584.2641

2-Methyl-2-phenethyl-1-ferrocenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-

1-one (4v)

$$
\begin{gathered}
\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BFeO}_{3} \\
\mathrm{M}=498.25{\mathrm{~g} \cdot \mathrm{~mol}^{-1}}^{\text {a }}
\end{gathered}
$$

Following procedure C_{2} starting with 0.5 mmol (3-methylpenta-3,4-dien-1-yl)benzene (3a), bis(pinacolato)diboron (2) and ferrocenoyl fluoride (1i).

Flash chromatography: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 95: 5+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: 153.6 mg (62% yield) of an orange-red solid.

${ }^{1} \mathbf{H ~ N M R ~}(\delta, \mathrm{ppm})$	$7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$5.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dt}, J=2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dt}, J=$
	$2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dtd}, J=7.0,2.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 5 \mathrm{H})$,
	$2.45-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.62$
	$(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H})$

${ }^{13} \mathbf{C}$ NMR (δ, ppm) $\quad 209.0,143.2,128.5,128.4,126.2,125.6,83.4,78.2,71.6,71.2,71.1$, $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 70.9,70.0,55.7,39.3,31.0,24.8,24.7,24.0$
(quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)

IR $1663,1607,1497,1454,1439,1412,1371,1354,1313,1298,1259$, $\left(\mathrm{cm}^{-1}\right.$, neat) $\quad 1215,1165,1140,1107,1053,1028,1003,968,947,891,870,847$, 824

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{BFe}: 499.2103$ Found: 499.2105
(HRMS ESI)

2,2-Dimethyl-1-ferrocenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-one

(4w)

$$
\begin{gathered}
\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BFeO}_{3} \\
\mathrm{M}=408.13 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Following procedure C_{2} starting with 1.5 mmol 3-methyl-1,2-butadiene (3b), bis(pinacolato)diboron (2) and ferrocenoyl fluoride (1i).

Flash chromatography: $\left({\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}}^{9}: 1\right.$ to $\left.85: 15\right)+1 \% \mathrm{Et}_{3} \mathrm{~N}$.
Yield: 481.2 mg (79% yield) of an orange-red solid.

${ }^{1} \mathbf{H} \operatorname{NMR}(\delta, \mathrm{ppm})$	$5.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.76(\mathrm{~m}$,
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$2 \mathrm{H}), 4.36-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 5 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 12 \mathrm{H})$

${ }^{13} \mathbf{C}$ NMR (δ, ppm) $\quad 209.2,125.1,83.4,78.1,71.4,70.9,69.9,51.8,26.5,24.7$
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (quaternary carbon next to boron could not be observed because of quadrupolar coupling effects)

IR 2972, 1734, 1668, 1466, 1439, 1412, 1371, 1352, 1313, 1267, 1211,
$\left(\mathrm{cm}^{-1}\right.$, neat) $\quad 1142,1107,1055,1003,968,943,891,862,843,822$
MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{BFe}$: 409.1632 Found: 409.1633
(HRMS ESI)

Tests with aliphatic acyl fluorides

Entry	Acyl fluoride ($\mathrm{R}=$)	Conditions	Results	
			Conversion of 3a	Products
1	-Су	$0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	Complete	Only hydroboration product observed
2	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	~ 60-70\%	Ratio product/ hydroboration product $1: 0.6$
3		$0^{\circ} \mathrm{C}$ to rt, 18 h	~ 40-50\%	Hydroboration product mainly observed

Oxidation of the vinylboron moiety: procedure D :

To a solution of 4 (1 equiv, 0.2 mmol) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 1: 1$ was added NaBO_{3} (5 equiv, 1.0 $\mathrm{mmol}, 99.8 \mathrm{mg}$) and the mixture was vigorously stirred at room temperature for $2 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(sat) }}$ were added and the layers were separated. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by flash column chromatography $\left(\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}\right)$ afforded the pure product.

2-Methyl-2-phenethyl-1-phenylbutane-1,3-dione (5a)

Following procedure D starting with 0.2 mmol 2 -methyl-2-phenethyl-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-one (4a).

Flash chromatography: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 9: 1$ to $8: 2$
Yield: 44.0 mg (78% yield) of a slightly yellow oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 7.83-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.27- \\ & 7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.20 \\ & (\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (δ, ppm) ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & \text { 208.1, 199.3, 141.6, 136.0, 133.2, 129.0, 128.9, 128.6, 128.4, 126.2, } \\ & 65.0,37.6,30.3,27.3,20.1 \end{aligned}$
IR (cm^{-1}, neat)	$\begin{aligned} & 2918,2849,1712,1670,1597,1580,1497,1447,1375,1356,1246, \\ & 1205,1180,1157,1097,1078,1001,986,955 \end{aligned}$

MS Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}: 281.15266 \quad$ Found: 281.1535
(HRMS APCI)

1-(1-Benzoylcyclohexyl)ethan-1-one (5c)

Following procedure D starting with 0.2 mmol phenyl(1-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclohexyl)methanone (4c).

Flash chromatography: Pentane/Et $\mathrm{E}_{2} \mathrm{O} 96: 4$
Yield: 40.6 mg (88% yield) of a slightly yellow oil.

${ }^{1} \mathbf{H} \mathbf{N M R}(\delta, \mathrm{ppm})$	$7.72-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 2.25-$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$2.20(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H})$,
	$1.50-1.30(\mathrm{~m}, 4 \mathrm{H})$

${ }^{13} \mathbf{C}$ NMR ($\left.\delta, \mathrm{ppm}\right) \quad 208.4,200.6,137.0,132.7,128.6,128.6,66.6,31.9,26.8,25.6,22.5$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Spectroscopic data are in agreement with those reported in the literature. ${ }^{17}$

Suzuki coupling: procedure E:

The Suzuki coupling was carried out according to a literature procedure. ${ }^{18}$

A flame-dried Schlenk was loaded with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.05$ equiv, $0.01 \mathrm{mmol}, 11.6 \mathrm{mg})$, aryl halide (1.3 equiv, 0.26 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, 0.6 mmol , 195.5 mg). After 3 vacuum/argon cycles, dried and degassed DME (2.0 mL) was added, followed by vinylboron 4 (1 equiv, 0.2 mmol) in solution in DME $(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for the indicated time. After dilution with EtOAc, the reaction mixture was filtrated on silica (EtOAc) and concentrated under reduced pressure. Purification by flash chromatography afforded the desired coupling product.

Methyl 4-(1-(1-benzoylcyclohexyl)vinyl)benzoate (6c)

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3} \\
& \mathrm{M}=348,43 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Following procedure E starting with 0.2 mmol phenyl(1-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclohexyl)methanone $\mathbf{4 c}$ and methyl 4-bromobenzoate.
Flash chromatography: ${\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 95: 5} 95$
Yield: 50.7 mg (73% yield) of a colourless oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$7.94-7.91(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.26(\mathrm{~m}$, $2 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.18(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}(\delta, \mathrm{ppm})$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 204.3,167.0,153.1,146.4,139.0,131.7,129.3,129.1,128.9,128.7 \text {, } \\ & 128.4,118.1,57.2,52.2,34.9,25.8,22.8 \end{aligned}$
IR (cm^{-1}, neat)	2918, 2856, 1720, 1676, 1607, 1597, 1578; 1504, 1452, 1435, 1400, 1311, 1275, 1227, 1180, 1155, 1115, 1053, 1030, 1018, 986, 970, 912, 883, 862, 833, 814

MS
Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{3}: 349.1798$
Found: 349.1798
(HRMS APCI)

1-([1,1'-Biphenyl]-4-yl)-2-methyl-2-phenethyl-3-(4-(trifluoromethyl)phenyl)but-3-en-1-one

(6o)

$$
\begin{aligned}
& \mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O} \\
& \mathrm{M}=484.56 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Following procedure E starting with 0.135 mmol 1 -([1,1'-biphenyl]-4-yl)-2-methyl-2-phenethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-one 40 and 4bromobenzotrifluoride.

Flash chromatography: ${\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 98: 2}^{9}$
Yield: 51 mg (78% yield) of a colourless sticky oil.

${ }^{1} \mathbf{H}$ NMR (δ, ppm)	$8.17(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.31(\mathrm{~m}, 7 \mathrm{H})$,
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$,
	$2.64-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.59$
	$(\mathrm{~s}, 3 \mathrm{H})$

${ }^{13} \mathbf{C}$ NMR (δ, ppm) $\quad 202.1,152.6,145.1,145.0,142.1,139.9,136.2,130.0,129.5,129.1$, $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 128.5,128.4,128.3,127.3,127.0,126.1,125.3\left(\mathrm{q}, J_{C-F}=3.75 \mathrm{~Hz}\right)$, 122.4, 118.1, 56.4, 40.4, 30.8, 24.2

```
19F NMR ( }\delta,\textrm{ppm})\quad-62.
(282 MHz, CDCl}3\mathrm{ ,
C6F6)
```

IR 1672, 1602, 1487, 1456, 1404, 1325, 1242, 1166, 1122, 1066, 1016,
$\left(\mathrm{cm}^{-1}\right.$, neat $) \quad 973,916,848$
MS
Calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{O}: 485.2087$

Found: 485.2085
(HRMS APCI)

References

(1) Edwards, A.; Ryabchuk, P.; Barkov, A.; Rubina, M.; Rubin, M. Tetrahedron: Asymmetry, 2014, 25, 15371549.
(2) Yang, X.; She, Y.; Chong, Y.; Zhai, H.; Zhu, H.; Chen, B.; Huang, G.; Yan, R. Adv. Synth. Catal. 2016, 358, 3130-3134.
(3) Prepared via a Wittig reaction from the corresponding ketone. Standard Wittig procedure: Movahhed, S.; Westphal, J.; Dindaroğlu, M.; Falk, A.; Schmalz, H.-G. Chem. Eur. J. 2016, 22, 7381-7384.
(4) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 83, 15254-15255.
(5) Tani, Y.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2014, 136, 17706-17709.
(6) This allenol was prepared according to a literature procedure: Stoll, A. H.; Blakey, S. B. J. Am. Chem. Soc. 2010, 132, 2108-2109.
(7) The low yield of this reaction is not due to the reaction itself but to the difficulties in separating the desired product from the other components of the crude mixture.
(8) Kippo, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2011, 13, 3864-3867.
(9) Li, Q.-H.; Liao, J.-W.; Huang, Y.-L.; Chiang, R.-T.; Gau, H.-M. Org. Biomol. Chem. 2014, 12, 7634-7642.
(10) Jang, H.; Jung, B.; Hoveyda, A. H. Org. Lett. 2014, 16, 4658-4661.
(11) Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763-1765.
(12) Song, G.; Wang, B.; Nishiura, M.; Hou, Z. Chem. Eur. J. 2015, 21, 8394-8398.
(13) Wang, H.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 7318-7322.
(14) Zhang, H.; Fu, X.; Chen, J.; Wang, E.; Liu, Y.; Li, Y. J. Org. Chem. 2009, 74, 9351-9358.
(15) Beaulieu, F.; Beauregard, L.-P.; Courchesne, G.; Couturier, M.; LaFlamme, F.; L'Heureux, A., Org. Lett. 2009, 11, 5050-5053.
(16) Stanek, K.; Koller, R.; Togni, A. J. Org. Chem. 2008, 73, 7678-7685.
(17) Adam, W.; Heidenfelder, T.; Sahin, C. Synthesis, 1995, 9, 1163-1170.
(18) Moure, A. L.; Mauleón, P.; Arrayás, R. G.; Carretero, J. C. Org. Lett. 2013, 15, 2054-2057.

NMR spectra

3a

[^1]

1d

1d

			1	1	1	1	1	,			1	1		1	1	1	1	1	1	1			1
30	220	210	200	190	180	170	160	150	140	130	120	$1 \begin{aligned} & 110 \\ & 1(\mathrm{ppm}) \end{aligned}$	100	90	80	70	60	50	40	30	20	10	0

3f

3f

$3 g$

3 g

3h

3h

$3 i$

$3 i$

3j

3j

[^2]

31

31

3n

(+ 6\% biphenyl)
3n

$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ f 1(\mathrm{ppm})\end{array}$

1b

1c

1d

$1 e$

$1 e$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1 h

数
$\stackrel{\infty}{\stackrel{\infty}{1}}$

1h

I HI

4b

4b

4c

4c

4d
$\begin{array}{llllllllllllllllllllllllllllll}30 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$4 g$
g

4h

$4 i$

(7)

$\begin{array}{lllllllllllllllll}30 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

4m

4n

40
$\begin{array}{llllll}220 & 210 & 200 & 190 & 180 & 170\end{array}$
$160 \quad 150$
140
$120 \underset{\mathrm{fl}(\mathrm{ppm})}{110} 100$

$4 q$

[^3]

4u

$4 u$

4v

m
m m m
0
0
0
+

 $\longrightarrow \stackrel{\rightharpoonup}{69}$

5a

5a

[^0]: ${ }^{1} \mathrm{H}$ NMR $(\delta, \mathrm{ppm}) \quad 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.62(\mathrm{hex}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 2 \mathrm{H})$, $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 2.28-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{t}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H})$
 ${ }^{13} \mathbf{C}$ NMR (δ, ppm) 206.3, 142.3, 128.5, 128.4, 125.9, 98.3, 74.7, 35.3, 34.0, 19.1

[^1]:

[^2]: $210 \quad 200 \quad 190$
 $180 \quad 170$
 $150 \quad 140$
 $120 \quad 110{ }_{\mathrm{fI}(\mathrm{ppm})}^{100} 90$

[^3]:

