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1. Introduction 

Index and index-futures prices are approximately related by the well-known cost-

of-carry model. In practice we often see slight deviations from this no-arbitrage relation, 

that are not arbitraged away immediately. This is caused by transaction costs, interest rate 

risk, worst-case dividend yield policies and short-selling restrictions. The use of less than 

the full basket of stocks also induces risk. Based upon these considerations we expect a 

band around the arbitrage value, in which for an arbitrage position the expected (risk-

adjusted) returns do not exceed the expected costs. 

In the literature (e.g. Ghosh [1993] and Wahab and Lashgari [1993]), it is 

mentioned that, under certain conditions, the futures and spot price are cointegrated. This 

results in an error correction model for the returns in which the futures and index returns 

are explained by past futures and index returns, and the deviation from the arbitrage 

relation in the previous period, which we shall call the error correction term or basis. 

It has been widely documented (e.g. Kawaller, Koch and Koch [1987], Stoll and 

Whaley [1990], Chan [1992] and Koch [1993]) that futures prices tend to lead index 

prices. Thus, most of the time deviations from the no-arbitrage relation will occur when 

the futures react to news first, only later followed by the index. This will be both reflected 

by the significant impact of past futures returns on the current index return, and by the 

error correction term. 

One interpretation of the error correction term is that it reflects the effect of 

arbitragers. If the futures price is too high relative to the index value, they will buy the 

stocks underlying the index and sell the futures contract. If the futures price is too low, 

they will do the reverse, i.e. sell the stocks underlying the index and buy the futures 

contract. These trades drive prices back to the equilibrium, i.e. the error correction term 

back towards zero. A second interpretation is the infrequent trading effect on the index. 

For example Miller, Muthuswamy, and Whaley (1994) investigate the mean-reversion of 

S&P 500's index basis changes, and conclude that infrequent trading causes this mean-

reversion in most cases. First the futures price adjusts to new information, only later 

followed by the index since not every stock trades every short time period. In terms of the 

basis, both arbitrage and infrequent trading therefore cause the same pattern when futures 

lead the index: first the basis becomes nonzero due to a change in the futures price, and 

then it returns stepwise towards zero provided nothing else happens. This paper disen-



tangles these sources of mean reversion. 

It is obvious that due to transaction costs arbitragers will only cause the mean-

reversion when the deviation is large. For smaller deviations the infrequent trading in the 

index will be effective. Both effects make the system non-linear. The impacts of arbitrage 

and infrequent trading will change, dependent on the deviation from the no-arbitrage 

relation. We will, therefore, explore the existence of different zirbitrage regimes. First, we 

investigate the location of possible thresholds, breakpoints indicating a change in the 

pattern of the basis, and possibly also in the relations between the index and futures 

returns, and the error correction term. Second, we will estimate the error correction model 

in each regime. By estimating transaction costs we indicate which thresholds could 

indicate the band around the theoretical futures price in which airbitrage is not profitable. 

This paper is organised as follows. Section 2 describes the cost-of-carry model and 

infrequent trading, and their impact on the basis. Section 3 presents the methodology. The 

data are described in Section 4. Section 5 elaborates upon the results of the Threshold 

Autoregressive model and the Threshold Error Correction model. Finally, Section 6 will 

conclude. 

2. The effect of arbitrage and infrequent trading on the basiii 

The cost-of-carry model is often assumed to describe thie relation between futures 

and index prices: 

F,^ = S*exp[(r,^-q,^)(T-t)], (D 

where F,f is the futures price at time r of a futures contract maturing at T, S, is the current 

value of the index, r,j is the risk-free interest rate on an investment for the period (t,T), 

and q,j is the dividend yield on the index. Following the cost-of-carry relation, we define 

the basis or error correction term as 

z, = \nF,r - ln5, - (r,^ - q,,.)iT-t). (2) 

Three main reasons are given (e.g. MacKinlay and Ramaswamy [1988]) to explain 

why deviations from the arbitrage relation (1) can prolong for some time. First, setting up 

an arbitrage position involves transaction costs. Second, arbitrage is not risk-free. The 

marking to market principle causes interest rate risk. Furthermore, the dividend yield in 



equation (1) is an estimation of future dividends until maturity. In practice worst-case 

dividend policies must be taken into account. Also, arbitrage is often done by using less 

than the full basket of stocks, obviously creating non-representativeness risk. These risks 

are all larger when time to maturity is longer. Third, some market participants have short-

selling restrictions. 

On the other hand, among others Sofianos (1993) reports that often arbitrage 

positions are closed before expiration following profitable mispricing reversals. This 

unwinding option adds value to the arbitrage position. Thus, market participants can set up 

an arbitrage position when the costs still exceed the expected return from the deviation 

from the arbitrage relation. Of course, traders must then take into account the additional 

transaction costs of the early unwinding. 

Equation (1) gives the long-term equilibrium between futures and spot prices. The 

above considerations, however, make it likely that the movement toward the long-term 

equilibrium does not always occur immediately. Only when the deviation from the 

arbitrage relation exceeds a critical threshold, do expected (risk-adjusted) returns exceed 

the expected costs and arbitragers will enter into the market. Thus, there is a band around 

the arbitrage value within which arbitrage is not profitable. 

Many stocks in the index do not trade every minute. Since the index value is based 

upon the last transaction of each individual stock, the index will lag acmal developments 

in the financial markets. When lagging stocks evenmally trade, the index will be updated. 

Miller, Muthuswamy and Whaley (1994) point out that as a result of this infrequent 

trading phenomenon, reported basis changes will appear to be negatively correlated. Here, 

we will focus on the basis itself, which is stationary due to the cointegrating relation 

between futures and spot prices, ff futures prices lead spot prices, deviations will original­

ly occur after a change in the futures price, only later followed by the index. Thus, we 

expect the same pattern caused by infrequent trading as well as by arbitrage. An example 

of this pattern is given in Figures la and lb. 

The negative correlation between basis changes found by Miller, Muthuswamy and 

Whaley indicates that the effect of a decrease (increase) after an increase (decrease) in the 

basis level is larger than the subsequent movements of the basis in the same direction due 

to the step-wise adjustment of the index. For the basis level we obviously will find 

positive correlation, as consecutive basis observations will be most of the time either 



positive or negative. Here, however, we are interested in changes in this positive autocor­

relation pattern. If arbitragers enter into the market when the deviation from zero of the 

basis is large enough, the next observations of the basis will move rapidly towards zero. 

This will also happen to a lesser extent when deviations are large (but not large enough to 

allow for arbitrage) and infrequent trading effects start to play a role. On the other hand, 

the basis will not change very much when deviations from zero are small. Suppose the 

true model for the basis is an AR(1). Then we expect this AR(1) coefficient to be close to 

one when deviations are small, reflecting that consecutive basis observations do not 

change very much. The AR(1) coefficient will be much smaller when deviations are large 

as to reflect the mean-reversion towards zero. 

The above considerations lead to the conclusion that a linear AR(p) model will not 

be the correct model for the basis. The coefficients will depend on the magnitude of the 

basis. For this reason we will estimate a Threshold Autoregiessive (TAR) model. This 

non-linear model incorporates a number of thresholds and in every regime a different AR 

model will apply with increasingly smaller coefficients the further out we get. This could 

also have consequences for the error correction model, which we will therefore estimate 

per regime. 

3. Methodology 

In this section we will discuss the threshold autoregressive (TAR) model. Since 

arbitragers will only enter into the market when the deviation of the basis from zero is 

large, the AR coefficients will be different in different regimes. This is exactly the way 

the TAR model works. It detects from the data deviations in tlie pattern of the basis, and 

provides a method to estimate the critical thresholds from the data. 

3.1. Threshold autoregressive (TAR) model 

For the basis, given by (2), a TAR model will be estimated. More formally, 

Z,=<^f-t'^?Z,,-eT r._,<z,.,<r., (3) 
1-1 

where 7=1, ..., k and the threshold lag J is a positive integer. The thresholds are -«> -r^ < 



r, < ... < r^= oo. {E<J>} is i.i.d. (0,a^'^). 

The characteristics of the basis, z„ depend on the regime the error correction term 

is in. We suppose that the basis is the stationary error correction term from the cointe-

gration between the non-stationary prices in (1). This will be tested formally in Section 5. 

The process can still be stationary if in the central regime the error correction term follows 

a random walk. Chan, Petruccelli, Tong and Woolford (1985) derive conditions for which 

the process is still stationary. This is certainly the case if in all other regimes around the 

central regime the process is stationary. Even in case of a very wide band this is still true. 

Tsay (1989) gives four main steps to estimate a TAR model like (3). The proce­

dure is described in detail in the Appendix. In the first step the AR order p is selected 

using the Partial Autocorrelation Function (PACF) given in equation (A3). Furthermore, 

the set S of possible threshold lags d has to be selected, preferably by economic theory. 

The threshold lag gives an indication of the speed within which the market reacts to 

deviations from the no-arbitrage relation. In the second step arranged autoregressions for a 

given p and every element d of S are estimated. The data under consideration are sorted 

out from low to high based upon z,.j. Next, for the first b observations an AR(p) model is 

estimated. Then the AR(p) model is estimated for the first b+\ observations, b+2 obser­

vations et cetera. Each time, the last residual is stored. Finally, these residuals are 

regressed upon the same variables as in the AR(p) model (p lags of z,) (equation (A5)). In 

case of linearity, the associated F-test (equation (A6)) from this last regression will be low 

indicating that the lagged z's have no impact anymore on the residuals. If, however, the F-

test is (too) high, linearity is rejected. In that case a TAR model is superior to the linear 

model. By comparing the F-tests for several d, the optimal delay-parameter d* is chosen 

by maximising the F-statistic. In the third step, the threshold values are located using 

scatterplots. The t-values from the arranged autoregressions in step two are plotted against 

the threshold variable z,^*. In the case of linearity, these t-values will converge to their 

true value. In the case of non-linearity, however, at the threshold values the t-values will 

deviate from their path. Thus, by using scatterplots, we can see how many threshold 

values rj there are likely to be and what value they approximately have. In step four the 

AR order and the threshold values are refined, if necessary, in each regime by using linear 

autoregression techniques. 



3.2. Threshold error correction model (TECM) 

Balke and Fomby (1993) explore a general approach, ciilled threshold cointegrati-

on. They apply their method to the market determined Fed Funds rate and the Discount 

rate which is set by the Federal Reserve. The method divides the data into groups 

according to the deviation from the arbitrage value. The thresholds for the group including 

the exact arbitrage value then presumably reflect the band around the arbitrage value, in 

which arbitrage is not profitable. In our case this is obviously not necessarily true. In fact, 

it will probably only be the case for the outer regimes. The central regimes could also 

reflect differences due to infrequent trading. 

For every group we will estimate an error correction model. In this model futures 

and index returns are explained by past futures and index returns, and the deviation from 

the arbitrage relation in the previous period. If the threshold values are established from 

the TAR model for the basis, the following error correction model for the returns will be 

estimated for each regime: 

^ln^,.r = ^. - E <t>..*AlnF,.,, - 5 : e,.*Aln5,., - Y.z,., - £,, ^"^^ 
k'l k'l 

L, L, 

Aln5,,, = c, + 5 : <t),..AlnF,.,, + 52 e,,Aln5,., + y.z,., * e,,, (5) 
k-l k-l 

where F,j is the futures price at time t of a futures contract with maturity date T, S, is the 

value of the index at time t, and A is the difference operator, e.g. 

AlnF,r = lnF,j - lnF,.yp 

We expect that the effect of the error correction term in the regime reflecting the 

band around the arbitrage value will be much smaller than in the other regimes. Further­

more, there could be differences in the impact of arbitragers in the lower and upper 

regimes, since the lower regimes involve short-selling of stocks. Finally, the lead-lag 

coefficients between the futures and spot returns might be different across the regimes. 



4. Data 

We give an empirical example for the S&P 500 index and index-futures contract 

maturing in June and December 1993. The data set is provided by the Futures Industry 

Institute Data Center in Washington. The S&P 500 index is calculated every 15 seconds 

during the opening hours of the New York Stock Exchange (NYSE), i.e. 8:30 through 

15:00 Chicago time. For the index-fumres, traded at the Chicago Mercantile Exchange 

(CME), transaction prices are available with a time stamp to the nearest second. 

From these data we calculate one-minute returns, using every minute the latest 

available price. Thus, 390 prices a day are constructed unless, of course, trading started 

later than 8:30 or ended before 15:00. In cases of no trading in a minute, the last available 

price is used. From every day we disregard the first 10 observations, since a lot of stocks 

do not trade in the very beginning of the trading. The returns are calculated as the 

difference of the natural logs of the prices. We do this for every day, getting 379 (or less) 

returns per day. This way, when stacking several days, overnight returns are avoided. 

To calculate the basis we use the daily U.S. discount rate, the rate applied between 

banks, which did not change much during this period (e.g. the 1-month rate was between 

3.01 and 3.12 percent for the whole period). Since dividends are paid when the stock 

market is closed, the remaining average of the basis (without dividends-adjustments) per 

day should approximately reflect these dividends and we need only a daily adjustment. We 

use the dividends reported in the S&P 500 Information Bulletin published by Standard and 

Poors to get the basis in equation (2). This is of course an approximation since we are 

using realised dividends, but it is the best estimate we have. 

We will estimate the model in (4) and (5) for a whole month rather than for a 

single day. Thus, we hope to detect the structural characteristics and avoid one-time events 

affecting the results. 

5. Results 

We will perform the TAR analysis for the months May (June 1993 contract) and 

November (December 1993 contract). For both months, the futures price and index value 

are cointegrated. The formal tests are given in Table 1. 

The results indicate that for both months the futures and index prices have a unit 

root (prices non-stationary, returns stationary), which is the first condition for coin-

8 



tegration. For both months a linear combination exists between the futures and index 

prices, which is stationary. Thus, the futures and index prices are cointegrated. The 

cointegration vectors are not significantly different from (1,-1). After adjusting the 

cointegration relationship using (1,-1) with the interest rate and dividends, the basis as 

defined by equation (2) is still stationary as can be seen from the bottom line of Table 1. 

5.1. Location of the thresholds 

Step J: AR order and set of threshold lags 

We will now estimate the threshold values of the TAR model for the error 

correction term. First, the AR order p is selected using the PACF in (A2), resulting in p=7 

and /7=4 for May and November, respectively. Next, we have to select the set S of 

posisible threshold lags d. In 1976 the Super Designated Order Turnaround (DOT) system 

was developed by the NYSE. This system is an automated order-processing system that 

electronically links member-firm order rooms to the market makers on the exchange. A 

NYSE member is guaranteed execution and reporting within 3 minutes. Since arbitrage 

opportunities will be observed almost inmiediately, we will use 5 = {1, 2, 3, 4}. 

Step 2: Non-linearity test and the optimal threshold lag 

For the four possible rf's the arranged autoregressions are estimated. The F-statistics in 

(A6) associated with the regression of the residuals in (A5) of these arranged autoregres­

sions are reported in Table 2. 

The results indicate that linearity is rejected for all threshold lags d, while this is 

most clear for d=\. Thus, we set d* equal to one for both months. 

Step 3: Number and location of thresholds 

In the third step following the method of Tsay (1989), we need to establish the 

number and the location of the threshold values. For this purpose we use the arranged 

autoregressions based upon z,^*- For the constant and for the lags of Zp the t-values can 

then be plotted against the threshold variable z,̂ ». In our case of non-linearity we expect to 

see unexpected deviations in the t-values after trespassing a candidate threshold. Since we 

look for more than one threshold we look at the t-values, sorting from low to high and 

from high to low. The reason for this is that, when trespassing a threshold at the end of 



the arranged autoregressions, already most of the data will be included reducing the 

effect'. We also plotted the coefficients from the arranged autoregressions against the 

threshold variable. As we will see, especially the t-values of the AR(1) coefficient become 

so large, that deviations are not observable anymore. From Section two, however, we 

expect to clearly see changes in the AR(1) coefficient in particular. 

For May the t-values and coefficients for the constant and the first four lags of the 

basis are given in Figures 2a through 2j sorting the data according to z,., from low to high. 

In Figures 3a through 3j the data are sorted according to z,., from high to low. 

Threshold candidates should be indicated by changes in the pattern of the t-values 

and in the coefficients. An exception are changes in the pattern at the moment the t-values 

are smaller than 1.96 indicating non-significance at the 5% level. We also should be 

careful at the start when we have a small amount of observations (we start the arranged 

autoregressions with the first 15 observations). 

For the negative values of the basis (Figures 2a through 2j) we observe as possible 

candidates (approximately) -0.16 (t-values constant become significant, while there is a 

drop in the coefficient; the latter can also be observed from the AR(1) coefficient in 

Figure 2d), -0.14 (starting a steady rising pattern in both the constant and AR(1) coeffici­

ent), -0.10 and -0.06 (being a local maximum and absolute minimum, respectively, in 

Figure 2a). The figures of the second and third lag do not contribute any candidates, since 

the t-values indicate they are not significant. From Figure 2i we see that the fourth lag is 

only significant around -0.15 and -0.13, the coefficient showing a large drop around -0.13. 

On the positive side (Figures 3a through 3j) reading the figures from the right to 

the left, we observe as possible candidates 0.20 (the constant becomes significant and the 

coefficient drops clearly), 0.18 and 0.19 (peaks in both plots, from 0.18 starting to 

decrease towards zero). The same candidates apply from the AR(1) t-values and coef­

ficients. From Figure 3e it is noticeable that from the significant level around 0.10 the t-

values move rapidly towards zero until 0.07. From the last figures (3g trough 3j) only the 

Suppose there are two thresholds on either side of the average. Suppose we arrange the observations from 
low to high and we find the threshold at observation 1000. This will give a clear deviation in the path of t-ratios. 
If, however, the second threshold is at, say, observation 6000, the deviation will be less clear. The reason for this 
is that the previous t-ratio was already based upon 6000 observations, and as a result for example SO extra 
observations will only slightly deviate the path of the t-ratios. Therefore we also estimate the arranged 
autoregressions from high to low to have a closer look at the second threshold. 
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AR(4) coefficient is significant around 0.07. 

For November the t-values and coefficients of the constant, and the four lags of the 

basis are given in Figures 4a through 4j and Figures 5a through 5j for sorting according to 

z,., from low to high and high to low, respectively. 

For the negative values of the basis (Figures 4a through 4j), we observe as possible 

threshold candidates -0.19 (a clearly changing point for all the coefficients and the 

constant although for some of them in the non-significant area), -0.15 (a clear turning 

point in most figures as well), and -0.10 (peak in both constant plots, turning point for the 

AR(2) t-values and coefficients although more towards -0.09; the latter also account; for 

the AR(3) and AR(4) plots). 

On the positive side (Figures 5a through 5j) we observe as possible candidates 0.26 

(maximum in the constant plot although in the non-significant area, minimum for the 

AR(1) coefficient, and a sharp rise in the plots for the fourth lag), 0.22 (from this point on 

the constant and the AR(1) coefficient start to converge, a sharp drop in the AR(2) plots, 

and a turning point in the fourth lag, although the latter is closer to 0.21). Closer to zero it 

is difficult to point out any clear candidate taking into account the significance of the 

coefficients. 

Step 4: Refine the threshold candidates 

The third step should also involve the establishment of the number of thresholds. 

Clearly, this is difficult as so far there exists no formal test for this. Since our primary 

interest is to find the band around the arbitrage value in which arbitragers will not enter 

into the market, we apply the following procedure: 

(i) Find two thresholds from the candidates which are far enough from zero as to 

reflect candidates for the no-arbitrage band 

(ii) Find two thresholds between zero and the outer thresholds for investigating 

changes in the pattern involving infrequent trading 

For both steps we will use a grid search using the criterion of the least sum of squared 

errors. Fixing the number of regimes at five, we can optimise tlieir location by adding the 

sum of squared errors of all the regimes and minimise this. For the grid search of the 
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outer regimes we take into account the observed candidates, while for the other two 

thresholds we search the whole area. The reason for this is that we do not expect that 

infrequent trading will change radically at a certain point, but we think that the pattern 

might be different at a certain distance from zero. 

To start with the month May, we observed as candidate on the outer negative side -

0.16. A grid search in this area gives the optimal threshold -0.158. On the outer positive 

side we observed as candidates 0.18, 0.19 and 0.20. A grid search in this area provides the 

optimal threshold 0.204. Next, we use a grid search for the entire area between -0.158 and 

0.204 for two other thresholds. The sum of squared errors (SSE) criterion results in the 

thresholds -0.073 and 0.072. 

For November we observed as candidate on the most negative side -0.19. The grid 

search in this area provides the threshold -0.186. On the outer positive side we observed 

as candidates 0.21, 0.22 and 0.26. A grid search results in the threshold 0.212. The SSE 

criterion for the area in between these two thresholds results in the thresholds -0.090 and 

0.062. 

The above results are summarised in Table 3. Table 3 also gives the number of 

observations in every regime. We see that there is only a small number of observations in 

the outer regimes. To give an indication whether arbitrage would be possible in these outer 

regimes, while it is not likely in the other regimes, we calculate the bandwidth in terms of 

index-points. The average value of the index in May 1993 was equal to 445.25, while in 

November 1993 it was 462.89. The bandwidth in May is 0.362 (0.204+0.158) percent, or 

1.61 index-points. In November the bandwidth is 0.398 (0.212+0.186) percent, or 1.84 

index-points. If the bandwidth is symmetrical around the arbitrage value, then this would 

mean a deviation of 0.805 index-points in May and 0.92 index-points in November that 

would trigger arbitrage^. 

The bid-ask spread for a typical stock in the S&P 5(X) index is 0.125. With, for 

example, an average share price of 40 dollars, the average percentage spread would be 

0.3125 percent. If the cash index level is half way between the bid and ask levels, half the 

bid-ask spread would be incurred as a cost. With the average index level in May of 

^This does not necessarily mean that all observations in the outer regimes will trigger ari}itrage. Some of them 
may well be the result of infrequent trading. In practice arbitragers will compute the S&P index level using the 
bid or ask prices to observe a 'true' arbitrage opportunity. 
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445.25, this would mean a transaction cost of 0.5*0.003125*^W5.25 or 0.70 index-point. 

For a futures contract half the spread is 0.05 index-point. Thus, costs due to the spread are 

in this example 0.75 index-point. For November this is 0.77 index-point. On top of these 

costs an arbitrager will have to pay commission fees. The latter costs will, however, be 

small for a member firm of the New York Stock Exchange. If a position is hold until 

expiration, then there are extra costs due to the spread. The above argument, however, did 

not consider the early unwinding option. Considering the number of observations in the 

outer regimes, we expect that for an arbitrage position started several weeks before 

maturity, such an early unwinding possibility will quite likely occur. 

5.2. The TAR model 

With the thresholds found in the previous section, we can now estimate the AR 

model per regime. The results for May and November are given in Table 4. For May we 

see that the AR(1) coefficient is the smallest in the outer regimes reflecting rapid remm 

towards zero when arbitrage is presumably possible. The middle regime has the highest 

AR(1) coefficient. The two regimes around the middle regime have a somewhat lower 

coefficient than in the middle regime. Since arbitrage is not likely to be possible in these 

regimes, this effect can be ascribed to the infrequent trading effect which has obviously a 

larger impact when there is some deviation from the arbitrage relation. This deviation 

could be caused by new information coming into the market moving the futures prices 

only later followed by the index due to infrequent trading. 

For November we see a similar pattem, with the only exception that the AR(1) 

coefficient is very large in regime 5. We already observed from Figure 5d that the pattem 

found in all other figures of the AR(1) coefficient (from a certain point a steady conver­

gence) was not present here. A possible reason is that the infrequent trading effect was 

quite severe in this case. 

5.3. The Threshold Error Correction model 

We can now estimate for each regime the error correction model given by 

equations (4) and (5). The results for the regimes 2, 3, and 4 aie reported in Tables 5 and 

6 for May and November, respectively. For May we observe a clear lead of the futures 

market on the spot market in all three regimes. In regime 2, where futures prices are rela-

13 



lively low compared to index prices, the coefficients of the lagged futures returns in the 

index equation are approxi-mately twice the magnitude of the coefficients in the other two 

regimes. If futures lead the spot, then this regime is reached in cases of negative news 

entering the market, seemingly increasing the infrequent trading effect (if this is one of the 

main causes the futures market leads the spot market). The error correction term is mainly 

significant for the index returns, also indicating the lead of the futures prices. The impact 

of the deviation of the arbitrage relation on the current index returns is clearly larger in 

regime 2 and 4 than in the middle regime. 

Estimating the ECM for the outer regimes using only 1 lag of the index and futures 

return to save on the degrees of freedom, we find no significant impact of the error 

correction term, but the sign is correct and the magnitude nearly twice as large as in 

regimes 2 and 4. The large coefficient (0.551 and 0.426 for regime 1 and 5, respectively) 

of the lagged index return in the index equation indicates that part of the observations in 

the outer regimes are due to infrequent trading (thus they do not reflect arbitrage oppor­

tunities). 

For November we find similar results as for May. Again the futures market seems 

to lead the spot market, and the coefficients of the lagged futures returns in the index 

equation are approximately twice as large in regime 2. The shorter lead can be partly 

ascribed to the much lower number of observations in this regime. As opposed to May, in 

November we find some significant impact the other way around, i.e. a lead of the spot 

market on the futures market. For the error correction term we again find that the 

magnitude of the coefficients is larger in regimes 2 and 4 than in regime 3. For the outer 

regimes the clearly significant lagged spot return in the index equation (coefficient 0.488) 

and the much smaller coefficient of the error correction term confirm our conclusion that 

the different behaviour of the upper outer regime in November is due to a relative large 

number of infrequent trading cases outside the no-arbitrage band. 

7. Conclusioii 

The threshold error correction model allows us to explicitly model the behaviour of 

arbitragers. Index-futures arbitrage only occurs when the deviation from the arbitrage 

relation is large enough to offset the difference between the costs (and risks) and the 

expected return including the early unwinding option. The threshold autoregression 
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approach provides the band in which arbitrage is presumably not profitable, or at least not 

for a large group of arbitragers. One difficulty is that the infrequent trading effect of the 

index imposes the same pattern on the basis: first we observe a deviation from the; no-

arbitrage relation, and then the basis moves back towards zero. Arbitrage opportunities 

cause this pattern only at a deviation of the no-arbitrage relation at which the expected 

return is positive. For the infrequent trading effect the change in the pattern will occur 

more gradually the further away the basis is from zero. The results indicate that also in the 

case that arbitrage is not possible, the pattern is different in the regimes next to the central 

regime. 

The error correction models for the regimes show thai: the impact of the futures 

market on the spot market is larger when the basis is negative, and that the deviation from 

the no-arbitrage relation becomes more important for the cunrent returns the further the 

futures price is away from its theoretical value. 
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Appendix: Tsay's method for TAR models 

In this appendix we describe Tsay's (1989) method to establish the threshold lag and the threshold values. The model we 
want to estimate is the following: 

2, =<f^'-E<t'i'V,--e^' 0-.^^,^<'-;> ^̂ ^̂  
i-i 

where j=\ k, with * the number of icgimes, and d the threshold lag. The thresholds are 
-oo=r„<r,<...<r,=~. The AR order of the model is p. 

Tsay suggests the following procedure to estimate p, d and the thresholds: 
Step 1 

Select the AR order p and the set of possible threshold lags S. For this purpose the partial autocorrelation function (PACF) of 
z, may be used. This function is calculated by estimating 

1 

z, = "("o * E t>,z,-/ * e, ^^^ 
/•I 

for increasing order q and test the significance of (|),. This coefficient is called the qth partial autocorrelation coefficient, say (ji,,,. As a 
model for the data-generating process we choose an AR(p) model such dial 

, . *Ofor q=p (A3) 
w = 0 for q>p 

The 0„ are approximately normally distributed with mean zero and variance 1/N for <p>p, when: N is the sample size. This can be used 
to check the significance of ({)„. 

The set S of possible threshold lags can be chosen by own practical feeling about wliat will be the lag length of the reaction 
of the market towards the deviations. 

Step 2 
For a given p and every element of S arranged autoregressions are fitted and the threshold nonUnearity test is performed. 
Suppose we have the AR(/>) model for z,. We refer to (Zpl,z,.,,...,z,.,) as a case of data for the AR{p) model. An arranged 

autoregression is an autoregression with cases rearranged, based on the values of a particular regressor. For the TAR model (Al), 
arranged autoregression becomes useful if it is arranged according to the threshold variable z,.̂ . Consider for example the case ks'3. For 
a given TAR model with N observations, the threshold variable z,^ may assume values [Zt,...,Zfm} where h equals max{ 1, p+l-d). Let n„ 
be the time index of the nth smallest observation of (z«,....Zw.̂ ). We then can rewrite (Al) as 

= <t>̂" - E <fr v . - - <'-. '/"^ 
/•I 

z.. = <t>̂ '̂ * E ^f\ ..-.• * < l . '/ L<n^U (A4) 
i- i 

= <l'r*E<f;\ . .- ,*<'. ifn>U 

where L satisfies z^< r, < z„ and U satisfies Z, < r, < z^ . This is an arranged autoregression with the first L cases in the first 
regime, the second U-L cases in"the second regime and the rest "in the third regime. This way the data points are grouped so that all of 
the observations in a group follow the same linear AR model. We need to find the threshold values r, and r,. Since the threshold values 
are unknown, however, one must proceed sequentially. The least squares estimates (̂ i" are consistent for i|i!'* if there are sufficiently 
large numbers of observations in the first regime. In this case, the predictive residuals are white noise asymptotically and orthogutial to 
the regressors. On the other hand, when n arrives at or exceeds L the predictive residual for th; observations with time index n,r>i-î  is 
biased because of the model change at this time. Hence, the predictive residual is a function of the regressors. Consequently, the 
orthogonality between the predictive residuals and the regressors is destroyed once the recursive autoregression goes on to the 
observations whose threshold values exceeds r,. 

The procedure then is as follows. Equation (A2) for cases rearranged according to tlie threshold variable z,^ is estimated for 
the first m cases. Then every time the next case enters into the estimation. Each time the last n»idual is stored. These residuals ore the 
predictive residuals. For the standardised residuals we then estimate 

e ^ = e„ + F e , z ^. + e ^ ^^^ 
1*1 

for n=m-f 1 N-d-h-t-1, and compute the associated F statistic 
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FM - ' S ^ ' - g^''"^'" (A6) 
Y,tViN-d-m-p-h) 

where the summations are over ail of the observations in (AS) and e, is the least squares residual of (AS). If the F-statistic exceeds the 
critical value of the F distribution with p+1 and N-d-m-p-h degrees of freedom, linearity is rejected. We then prefer a TAR model. The 
optimal threshold lag tf is then selected as to maximise the F-statistic. 

Step 3 
For given p and </*, locate the threshold values by using scatterplots. For the above described procedure to calculate the 

predictive residuals, the arranged autoiegression is estimated every time. The t-values of every AR-coefficient and the constant are also 
stored together with the value of the threshold variable z,.̂ . from the last observation included in the regression. We then use the 
scatterplots of the t-values of the constant and the AR-coefficients against the threshold variable. The idea behind this plot is the 
following. When we have a linear model, the t-values show the significance of the coefficient, and when the coefficient is significant, 
the t-ratios converge gradually and smoothly to a fixed value as the recursion continues. This is also the case in a TAR model until the 
recursion reaches a threshold r. Then the estimate of the parameter starts to change and the t-ratio begins to deviate. In effect, the t-ratio 
starts to turn and. perhaps, changes direction at the threshold value. Therefore the plots give insight on the possible number of thres­
holds and their location. 

Step 4 
Refme the AR order and threshold values, if necessary, in each regime by using linear autoregression techniques. To refine 

the threshold values a grid search can be applied in a range considered reasonable from the scatterplots. A possible criterion is the sum 
of squared errors of all the regimes together, for example the sum of the squared residuals in equation (A4) in case of three regimes. 
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Table 1 
Augmented Dickey Fuller tests on spot and futures prices, and cointegration 

levels (i) 
(ii) 

differences (i) 

cointegration' 

vector 

basis^ 

Futures 

-0.96 
-1.21 

-48.0 

-16.9 

1 

May 

-16.81 

Index 

-1.15 
-1.48 

-24.5 

-16.8 

-1.03 

November 

Futures 

-1.83 
-1.78 

-37.6 

-17.7 

1 

-16.67 

Index 

-2.44 
-2.39 

-15.1 

-17.7 

1.00 

critical 
value 

-2.86 
-3.41 

-2.86 

-3.30 

-2.86 

The following equations are estimated using OLS: 

P.-P.-^ = 00 *.e,*p,., + Et'.*(^,-,-^,-M) ^ ̂ u (i) 

PrP,-^ = \ ^ 6,*P,., 4 Y, $,*(/',.,-P,.,.,) + Y*r + e„ (ii) 

For both the levels and the first differences, the t-values of 9, are reported. Critical values 
are given in the last column. The null hypothesis of non-stationarity is rejected if the t-
value of 9, is below the critical value. 
' P„ = c + KP2, + z, is estimated, first with the futures price as dependent variable 

(column futures), second with the index value as dependent variable (column 
index). For the resulting error term z,, equation (i) is estimated. The t-value of 9, is 
reported here. 

^ For the basis given in equation (2) equation (i) is estimated. The t-value of 9, is 
reported here. 
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Table 2 
Tsay Test for Threshold Nonlinearity for the difference between the index-futures price 
and the index value 

threshold 

1 

2 

3 

4 

lag d' 

May '93 

10.48 

9.42 

4.70 

2.13 

F-statistic^ 

November '93 

6.34 

3.08 

5.27 

3.88 

The data set is sorted out from low to high based upon z,.̂  
The degrees of freedom are p for the denumerator (7 for May and 4 for November) 
and the number of observations for the numerator (7053 in May and 7689 in 
November) The 5% (1%) critical value equals 3.84 (6.63) and 3.00 (4.61) for May 
and November, respectively. 

Table 3 
Boundaries and number of observations of each regime 

May 1993 

Thresholds # obs 

November 1993 

Thresholds # obs 

Regime 1 

Regime 2 

Regime 3 

Regime 4 

Regime 5 

( -oo ;-0.158] 

(-0.158;-0.073] 

(-0.073; 0.072] 

( 0.072; 0.204] 

( 0.204; oo ) 

45 

787 

4794 

1391 

36 

( -oo ;-0.186] 

(-0.186;-0.090] 

(-0.090; 0.060] 

( 0.060; 0.212] 

(0.212; oo) 

19 

225 

4463 

2890 

92 

% <=> 



Table 4 
Results of the TAR model 

Panel A: May 1993 

Regime 1 

constant 

Zt-l 

Z,.2 

Z.-3 

ZM 

2.5 

Z..6 

Zt.7 

Panel B: 

constant 

z,.i 

Z,.2 

Z.-3 

z,^ 

-0.597 
(-1.33) 

0.573 
(2.30) 

-0.0852 
(-0.46) 

-0.279 
(-1.21) 

0.440 
(1.80) 

-0.592 
(-3.12) 

0.469 
(1.79) 

-0.0825 
(-0.34) 

November 1993 

0.0572 
(0.89) 

0.544 
(1.76) 

0.732 
(1.84) 

-0.0173 
(-0.034) 

-0.0811 
(-0.23) 

The model estimated is 

z, = <t»^' - t^Tz.,^ef 

-0.00641 
(-1.07) 

0.761 
(11.45) 

-0.0296 
(-0.59) 

0.0460 
(0.94) 

-0.0256 
(-0.50) 

0.0473 
(0.94) 

-0.0316 
(-0.64) 

0.123 
(3.23) 

0.0102 
(0.77) 

0.705 
(5.83) 

0.313 
(3.75) 

-0.203 
(-2.54) 

0.181 
(2.56) 

' • ; - i^Z, -r f<^- . 

0.000206 
(0.52) 

0.931 
(55.17) 

-0.00476 
(-0.25) 

-0.0154 
(-0.82) 

0.0119 
(0.65) 

0.000344 
(0.019) 

0.00157 
(0.086) 

0.0164 
(1.19) 

0.00255 
(6.06) 

0.892 
(51.56) 

0.0124 
(0.65) 

-0.00612 
(-0.32) 

0.0220 
(1.53) 

0.00733 
(2.17) 

0.900 
(24.44) 

-0.00146 
(-0.039) 

-0.0527 
(-1.41) 

-0.0793 
(-2.04) 

0.0732 
(1.95) 

-0.0164 
(-0.42) 

0.0680 
(2.43) 

0.00859 
(4.87) 

0.855 
(36.23) 

0.0251 
(0.98) 

-0.00972 
(-0.38) 

0.0118 
(0.62) 

0.104 
(1.31) 

0.557 
(1.91) 

-0.370 
(-1.93) 

0.113 
(0.52) 

0.104 
(0.36) 

0.180 
(0.53) 

-0.142 
(-0.54) 

-0.160 
(-0.81) 

-0.0309 
(-0.81) 

0.962 
(5.64) 

-0.165 
(-1.20) 

-0.186 
(-0.12) 

0.315 
(2.54) 

where 7=1, ..., 5 and the threshold lag d equals 1. The thresholds are -<» =rQ < ;•; < ... < r^ °°. For May we have 
r,=-0.158, rj=-0.073, r3=0.072, and r<=0.204. For November we have r,=-0.186, r2=-0.090, r3=0.062, and 
r,=0.212. 
T-values are given in parentheses. 
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Table 5 
Error correction model for the index and index-futures in May 1993. 

c 

•t-, 

^2 

«t>3 

•t"* 

^5 

<t>6 

<t)7 

<t>8 

<t>9 

<t>10 

< t> l l 

<t>12 

Qi 

e, 
63 

Y 

adjR' 

Regime 2 
-0.158<z,.,<-0.073 
772 observations 

A\nF,j 

.000002 

-.157' 

-.0282 

-0.0692 

.000305 

.023 

Aln5, 

.00106* 

.0856" 

.230° 

.164' 

.144' 

.141' 

.134' 

.0714* 

.0597' 

.0471" 

.0408' 

.0391"= 

.0573' 

-.0308 

-.0493 

-.134' 

.00106* 

.263 

Regime 3 
-0.073< z,., <0.072 
4809 observations 

MnF,j 

.000001 

-.0431' 

.0229 

.0389" 

.0258' 

-.0233 

-.000129 

.003 

Aln5, 

.000001 

.0417* 

.104' 

.106* 

.0787' 

.0615* 

.0445' 

.0502* 

.0267* 

.0287' 

.0196* 

.0125" 

.00958 

-.0530* 

-.0185 

.000130* 

.121 

Regime 4 
0.072< z,., < 0.204 
1391 observations 

AlnF,, 

-.000049 

-.0383 

.0141 

-.00349 

-.0571' 

.0159 

-.137" 

.000728" 

.007 

AlaS, 

-.000084* 

.0400* 

.117' 

.0883' 

.0917* 

.0474' 

.0108 

.0328' 

.00950 

.0287" 

.0738" 

.000999* 

.208 

The following model is estimated for each regime, with L„ L,, L, and L4 based on significant coefficients: 

i, i^ 

AlnF,r = €,*"£ <t>f.tAlnF,.,̂  + Y. %.i^^^S.-k * IF^.-S * ^F.,' 
t-i t-i 

i , t. 

A'n^,.r = <̂ . * E ^s.k^^^f'.-^T * E e..*^!"^,-* * Y,Vi * h,' 
*-i t-i 

where AlnF^̂  ̂ (^ ^"^i ^^ ^^ futures and index return at time t, respectively, z, is the diff̂ erence between the natural 
logs of the futures price and the index value. 
*,'', and' correspond to significance levels of 1%, 5%, and 10%, respectively. 
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Table 6 
Error correction model for the index and index-futures in November 1993. 

para­
meter 

c 

<t). 

4>2 

<t)3 

<t>4 

<t>5 

^6 

<t)7 

<t>8 

<t'9 

<t>10 

<l>l l 

<t>12 

<t>13 

e, 
e, 

63 

64 

65 

Y 

adjR' 

Regime 2 
-0.186<z,.;<-0.090 
225 observations 

AlnF,7-

.000068 

-.256' 

.107 

-.142" 

.0382 

.315" 

.000712 

.119 

Aln5, 

.000079 

.0811" 

.121" 

.123' 

-.00509 

-.00967 

.282" 

.181" 

.155"= 

.00115" 

.234 

Regime 3 
-0.090< z,., <0.062 
4463 observations 

MnF,j 

.000007' 

.00406 

.118' 

.0104 

.0676" 

.0865' 

-.000209' 

.008 

Aln5, 

-.000120' 

.0473' 

.0514' 

.0561' 

.0533' 

.0470' 

.0204' 

.0347' 

.0307' 

.0126' 

.0232' 

.0178' 

.0152" 

.0137" 

.0221 

.0303" 

.0453' 

.0278' 

.000386' 

.119 

Regime 4 
0.062<z,., <0.212 

2890 observations 

AlnF,,-

.000039" 

-.0393' 

.0169 

.0154 

.0519' 

.0889" 

-.000473' 

.008 

Aln5, 

-.000034' 

.0307' 

.0699' 

.0671' 

.0428' 

.0337' 

.0219" 

.0814* 

.0730' 

.0418" 

.0402" 

.0181 

.000441' 

.137 

The following model is estimated for each regime, with L„ Lj, L3 and L4 basnd on significant coefficients: 

ti t, 

^In/'-.r = Cf -̂  E <ff.*Aln ,̂-*.r ^ E %A^^S.-, * Y^V. * h..' 

Aln5,^ = c, + 5 : <t),.*AlnF,^, + "£ e,.*Aln5,., + Y,z,., * e,.,. 
*-i t-i 

where AlnFjr and AlaS, are the futures and index return at time t, respectively, z, is the difference between 
the natural logs of the futures price and the index value. 
', ", and ' correspond to significance levels of 1%, 5%, and 10%, respectively. 
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Fig la: Supposed pattern after positive news Fig lb: Supposed pattern after negative news 
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Fig 4g: Scatterplot t-values z,.3 
Sorted from low to high 
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Fig 4h: Scatterplot coefficients Zt.3 
Sorted from low to high 
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Fig 4i: Scatterplot t-values z,^ 
Sorted from low to high 
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Fig 4j: Scatterplot coefficients z,^ 
Sorted from low to high 
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Fig Sa: Scatterplot t-values constant 
Sorted from high to low 
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Fig Sb: Scatterplot coefficients constant 
Sorted from high to low 
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Fig Sc: Scatterplot t-values z,., 
Sorted from high to low 
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Fig Sd: Scatterplot coefficients z,., 
Sorted from high to low 
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Fig Se: Scatterplot t-values z,.. 
Sorted from high to low 
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Fig Sf: Scatterplot coefficients z,.. 
Sorted from high to low 
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Fig 5g: Scatterplot t-values z,.j 
Sorted from high to low 
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Fig Sh: Scatterplot coefficients z,.. 
Sorted from high to low 
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Fig Si: Scatterplot t-values z,̂  
Sorted from high to low 

Fig Sj: Scatterplot coefficients z,^ 
Sorted from high to low 
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