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1 Overview

This supplemental file provides the following:

• A discussion of the R function available in the mixtools package (Benaglia et al., 2009), including

possible improvements that could be made to the mixturegram.

• Details about and additional results for all simulation settings discussed in the main text.

• Additional model selection results and mixturegrams for the quasar data and the DLBCL data

analyzed in the main text.

• Construction of the mixturegram and analysis for two other well-known datasets — the Old

Faithful geyser data (Azzalini and Bowman, 1990) and the Hidalgo stamp data (Izenman and

Sommer, 1988).

∗D. S. Young (derek.young@uky.edu) is an Assistant Professor and Chenlu Ke is a PhD student, Department of
Statistics, University of Kentucky, Lexington, KY. Xiaoxue Zeng is a Fraud Data Analyst, Apple Inc., Austin, TX.
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2 Discussion of R Function and Possible Improvements

A function to produce a mixturegram is available in the R package mixtools (Benaglia et al., 2009):

mixturegram(data, pmbs, method = c("pca", "kpca", "lda"), all.n = FALSE,

id.con = NULL, score = 1, iter.max = 50, nstart = 25, ...)

Below is a description of the arguments in the above function:

• data: This is the user’s data, which must either be a vector or a matrix. If a matrix, then the

rows correspond to the observations.

• pmbs: This is a list of length (K − 1) such that each element is an n× k matrix of the posterior

membership probabilities. These are obtained from each of the “best” estimated k-component

mixture models, k = 2, . . . , K.

• method: The dimension reduction method used. "PCA" implements principal components anal-

ysis. "KPCA" implements kernel principal components analysis. "LDA" implements reduced rank

linear discriminant analysis.

• all.n: A logical specifying whether the mixturegram should plot the profiles of all observations

(TRUE) or just the K-profile summaries (FALSE). The default is FALSE.

• id.con: This is an argument that allows one to impose some sort of (meaningful) identifiability

constraint so that the mixture components are in some sort of comparable order between mixture

models with different numbers of components. If NULL, then the components are ordered by the

component means for univariate data or ordered by the first dimension of the component means

for multivariate data.

• score: This is the value for the specified dimension reduction technique’s score, which is used for

constructing the mixturegram. By default, this value is 1, which is the value that will typically

be used. Larger values will result in more variability displayed on the mixturegram. Note that

the largest value that can be calculated at each value of k > 1 on the mixturegram is p+ k− 1,

where p is the number of columns of data.
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• iter.max: The maximum number of iterations allowed for the k-means clustering algorithm,

which is passed to the kmeans function. The default is 50.

• nstart: The number of random sets chosen based on k centers, which is passed to the kmeans

function. The default is 25.

• ...: The ellipsis allows for additional arguments that can be passed to the underlying plot

function.

Note that the above arguments reflect the version of the mixturegram() function published in

mixtools at the time of the writing of this manuscript. We anticipate publishing future versions of

this function that will afford greater flexibility for the user. We briefly discuss a couple of future

improvements that we are considering.

One improvement for the mixturegram() function is to build it using the ggplot2 graphics (Wick-

ham, 2009). Development of the mixtools package began around 2005 and used base R for the graph-

ical components. A general improvement for mixtools is to retrofit the graphical capabilities of the

package using ggplot2, which will also allow for improved graphics when plotting the mixturegram.

Another consideration is to provide some intermediary functionality with the mixturegram()

function to better understand how the different cluster means separate. This could be accomplished

by checking how a group of variables in the Wk matrix (defined in Step 2 of the mixturegram)

contribute to the separability of the cluster means.1 An option could be included where one is able

to obtain pairwise scatterplots of the variables in W∗
k and then color-code the points based on the

clustering results, thus allowing a visual assessment of which variable(s) are possibly contributing to

the mixture structure.

3 All Simulation Results

We first present the parametric forms for all of the distributions used in the simulations discussed in

the main text. In the following, N (), Np(), G(), and P() are the univariate normal, p-variate normal,

1Recall that the clustering performed within the mixturegram is used to assign observations a particular color for
plotting.
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gamma, and Poisson distributions, respectively.

• Well-Separated Components:

– Model 1 : 4-Component Mixture of Univariate Normals

0.30N (−12, 1) + 0.30N (−3, 1) + 0.20N (3, 1) + 0.20N (12, 1)

– Model 2 : 3-Component Mixture of Poissons

0.30P(3) + 0.30P(40) + 0.40P(90)

– Model 3 : 5-Component Mixture of 5-Variate Normals

0.20N5





−5

−5

−5

−5

−50


,



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




+ 0.20N5





400

40

40

40

40


,



27 25 20 11 5

25 29 23 13 9

20 23 29 20 15

11 13 20 27 22

5 9 15 22 28





+ 0.20N5




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−40

−40

−40

−400


,


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6 11 10 6 3
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0 3 4 7 11




+ 0.20N5




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+ 0.20N5
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712 538 612 291 117

538 499 453 285 153

612 453 711 482 192

291 285 482 757 581

117 153 192 581 692





• Moderately-Separated Components:
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– Model 4 : 3-Component Mixture of Gammas

0.20G(1, 2) + 0.30G(30, 1) + 0.50G(50, 2)

– Model 5 : 4-Component Mixture of Poissons

0.20P(3) + 0.20P(20) + 0.30P(40) + 0.30P(70)

– Model 6 : 4-Component Mixture of Tetravariate Normals

0.30N4




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

• Heavily-Overlapping Components:

– Model 7 : 3-Component Mixture of Univariate Normals

0.50N (0, 3) + 0.30N (2, 1) + 0.20N (−2, 1)

– Model 8 : 4-Component Mixture of Poissons

0.30P(3) + 0.20P(10) + 0.30P(15) + 0.20P(30)
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– Model 9 : 5-Component Mixture of Trivariate Normals

0.20N3



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

1 −3 −2

−3 11 8

−2 8 22
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
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

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5

5
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1 −3 5

−3 11 −19

5 −19 51




Note that simulations involving Models 1, 6, and 7 were discussed in the main text.

We next present and discuss all of the mixturegrams for the different simulation settings. The

mixturegrams are organized as follows:

• Mixturegrams for the models with well-separated components are given in Figures 1, 4, 7, 10,

and 13.

• Mixturegrams for the models with moderately-separated components are given in Figures 2, 5,

8, 11, and 14.

• Mixturegrams for the models with heavily-overlapping components are given in Figures 3, 6, 9,

12, and 15.

• Mixturegrams based on the first principal component are given in Figures 1, 2, and 3.

• Mixturegrams based on the second principal component are given in Figures 4, 5, and 6.

• Mixturegrams based on the first kernel principal component are given in Figures 7, 8, and 9.

• Mixturegrams based on the second kernel principal component are given in Figures 10, 11, and

12.

• Mixturegrams based on reduced rank linear discriminant analysis are given in Figures 13, 14,

and 15.
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Figure 16 gives plots of the average proportion of within-cluster point scatter, π(k), versus the number

of components, k, for all nine mixture models considered.

Some general observations made about these mixturegrams:

• For the well-separated components cases, principal components and reduced rank linear discrim-

inant analysis provide mixturegrams with fairly good separation in the profiles, thus allowing

one to easily determine an appropriate number of components. Kernel principal components

analysis yields plots that are a bit harder to interpret. However, we are able to see in all figures

values of k where there is distinct separations between the clusters and the k cluster means (i.e.,

red dots) have a similar type of visual separation. These values of k are what we would typically

select for our number of components.

• For the moderately-separated components cases, we still have some success in interpreting the

mixturegrams like with the well-separated components cases. Again, principal components

analysis and reduced rank linear discriminant analysis tend to produce more visually informative

mixturegrams compared to kernel principal components analysis.

• For the heavily-overlapping components cases, the mixturegrams become difficult to interpret

overall. However, some distinct clusters of profiles do emerge, suggesting that there may be a

mixture structure present, but providing an objective and definitive assessment of the proper

number of components is challenging.

• Use of the second principal or second kernel principal component yields mixturegrams that are

harder to interpret. More variability gets introduced in the figure. With that said, visual sepa-

ration in the profiles is sometimes noticeable, however, again, providing a definitive assessment

of the proper number of components is challenging.

• In general, reduced rank linear discriminant analysis appears to only be efficacious when the

components are well-separated. In Figure 13, we can ascertain a distinct number of profiles for

each of the three models when assessing k∗. In the univariate settings for the well-separated

case (i.e., Figures 13(a) and 13(b)), we can easily see k∗ = 4 and k∗ = 3 are appropriate

7



−
4

−
2

0
2

4

k

P
C

 S
co

re
s

1 2 3 4 5 6 7 8

(a)

−
4

−
2

0
2

4

k

P
C

 S
co

re
s

1 2 3 4 5 6 7 8

(b)

−
4

−
2

0
2

4

k

P
C

 S
co

re
s

1 2 3 4 5 6 7 8

(c)

Figure 1: Mixturegrams constructed using the first principal component for (a) Model 1, (b) Model
2, and (c) Model 3. Each mixturegram shows a particular number of distinct profile groupings that
correspond to the true number of components.
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Figure 2: Mixturegrams constructed using the first principal component for (a) Model 4, (b) Model
5, and (c) Model 6. Even though the data were generated from a moderately-separated mixture
component structure, each mixturegram shows a particular number of distinct profile groupings that
are at or within one component of the true number of components.
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Figure 3: Mixturegrams constructed using the first principal component for (a) Model 7, (b) Model
8, and (c) Model 9. The mixturegrams give some indication of a possible mixture structure, but due
to the heavily-overlapping structure of the components, it is difficult to make a definitive selection for
the number of components.
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Figure 4: Mixturegrams constructed using the second principal component for (a) Model 1, (b) Model
2, and (c) Model 3. A mixture structure is clearly indicated in each dataset, but the exact number is
not as clear as in the mixturegrams based on the first principal component in Figure 4.
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Figure 5: Mixturegrams constructed using the second principal component for (a) Model 4, (b) Model
5, and (c) Model 6. A mixture structure is clearly indicated in each dataset, but the exact number is
not as clear as in the mixturegrams based on the first principal component in Figure 2.
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Figure 6: Mixturegrams constructed using the second principal component for (a) Model 7, (b)
Model 8, and (c) Model 9. These mixturegrams do not provide any clear guidance compared to the
mixturegrams based on the first principal component in Figure 3.
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Figure 7: Mixturegrams constructed using the first kernel principal component for (a) Model 1, (b)
Model 2, and (c) Model 3. A similar assessment can be made as with the mixturegrams based on
the first principal component in Figure 1, however, the profiles appear to cross a bit more in these
mixturegrams.
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Figure 8: Mixturegrams constructed using the first kernel principal component for (a) Model 4, (b)
Model 5, and (c) Model 6. A similar assessment can be made as with the mixturegrams based on
the first principal component in Figure 2, however, the profiles appear to have more variable in these
mixturegrams.
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Figure 9: Mixturegrams constructed using the first kernel principal component for (a) Model 7, (b)
Model 8, and (c) Model 9. A similar assessment can be made as with the mixturegrams based on the
first principal component in Figure 3.
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Figure 10: Mixturegrams constructed using the second kernel principal component for (a) Model 1,
(b) Model 2, and (c) Model 3. A mixture structure is clearly indicated in each dataset such that there
appears to be a number of distinct profiles that matches the true number of components.
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Figure 11: Mixturegrams constructed using the second kernel principal component for (a) Model 4,
(b) Model 5, and (c) Model 6. A mixture structure is clearly indicated in each dataset, but the exact
number is not as clear as in the mixturegrams based on the first kernel principal component in Figure
8.
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Figure 12: Mixturegrams constructed using the second kernel principal component for (a) Model 7,
(b) Model 8, and (c) Model 9. Due to the heavily-overlapping structure of the mixture components,
it is difficult to provide any clear guidance on the appropriate number of components.
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Figure 13: Mixturegrams constructed using reduced rank linear discriminant anlaysis for (a) Model 1,
(b) Model 2, and (c) Model 3. The number of distinct profiles (which are horiztonal lines) for Models
1 and 2 match the true number of components, however, the number of profiles for Model 3 seems to
indicate less than the true number of components.

20



−
4

−
2

0
2

4

k

LD
C

 S
co

re
s

1 2 3 4 5 6 7 8

(a)

−
4

−
2

0
2

4

k

LD
C

 S
co

re
s

1 2 3 4 5 6 7 8

(b)

−
4

−
2

0
2

4

k

LD
C

 S
co

re
s

1 2 3 4 5 6 7 8

(c)

Figure 14: Mixturegrams constructed using reduced rank linear discriminant anlaysis for (a) Model
4, (b) Model 5, and (c) Model 6. There appears to be some distinct groupings of profiles shown in
each mixturegram, but there is no clear guidance that can be provided from these plots.
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Figure 15: Mixturegrams constructed using reduced rank linear discriminant anlaysis for (a) Model
7, (b) Model 8, and (c) Model 9. All of these mixturegrams indicate that a mixture structure is not
present.
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Figure 16: Plots of the average proportion of within-cluster point scatter, π(k), versus the number of
components, k, for (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4, (e) Model 5, (f) Model 6, (g)
Model 7, (h) Model 8, and (i) Model 9. Wherever the average values for each π(k) tend to level-off or
π(k+1) > π(k) is indicative of an appropriate choice for the value of k.
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choices. However, Figure 13(c) indicates that at least k∗ = 4 is appropriate, but it is much more

subjective about the interpretation at k∗ = 5, which is the correct number of components for

this mixture simulation. Thus, using reduced rank linear discriminant analysis as the dimension

reduction technique can yield more subjective results – compared to principal components and

kernel principal components – even in a well-separated setting.

• In Figure 16, we see locations where the change in the average trend becomes considerably

smaller. These locations on the figures are where we suspect reasonable candidates for the

number of components. For the well-separated components cases, the results obtained from

these plots generally agree with the true number of components, regardless of the dimension

reduction technique employed. However, for some of the moderately-separated components

cases and the heavily-overlapping components cases, these results are difficult to interpret and

one might select a large number of components if the profile does not have a clear elbow in its

shape. These figures also emphasize the ad hoc nature of this criterion. The results appear to

be consistent with our interpretations of the mixturegrams for the well-separated cases, but less

informative for some of the moderately-separated and heavily-overlapping cases. However, the

interpretations that we make using the π(k) values for the data analyses tend to agree with what

we select based on our assessments of the corresponding mixturegrams as well as the calculated

information criteria. Thus, this ad hoc criterion can serve a confirmatory role regarding the

final selected value k∗.

In Table 1, we report the percentage of times each model selection criterion selected the appropriate

number of k for our B = 100 simulated datasets. Clearly the more separation we have between the

components, the better all of the criteria perform at selecting the correct number of components. In

practice, if one uses a traditional quantitative metric for assessing the number of components – like

model selection criteria or other approaches discussed in Section 2 of the main text – we advocate

also displaying the mixturegram as an effective visualization component for such an assessment.
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Model k AIC BIC ICL CAIC

Well-Separated Components
Model 1 4 93% 100% 100% 100%
Model 2 3 96% 100% 100% 100%
Model 3 5 31% 100% 100% 100%

Moderately-Separated Components
Model 4 3 93% 100% 100% 100%
Model 5 4 92% 100% 100% 100%
Model 6 4 46% 100% 100% 100%

Heavily-Overlapping Components
Model 7 3 17% 7% 8% 5%
Model 8 4 51% 11% 13% 5%
Model 9 5 12% 6% 6% 1%

Table 1: Percentage of times each model selection criterion selected the correct number of components
for the three simulation conditions. The results for the models having well-separated or moderately-
separated components are in good agreement, wherease those for the heavily-overlapping components
are not able to accurately select the true number of components.

4 Data Analysis

4.1 Additional Results for Quasar Data

We constructed mixturegrams for the quasar data based on PCA with the K-profile summaries (Figure

17(a)) and with all observations plotted (Figure 17(d)) as well as based on KPCA with the K-profile

summaries (Figure 17(c)) and with all observations plotted (Figure 17(d)). There are clearly two

distinct groupings of profiles in the PCA-based mixturegrams. The KPCA-based mixturegrams also

demonstrate two groupings of profiles, but the profiles cross and do not demonstrate the same visual

separation as with the PCA-based mixturegrams. Regardless, these mixturegrams indicate that a

2-component mixture of normals appears appropriate for these data.

All of the model selection results and values of π(k) for the quasar data are reported in Table 2.

All of the model selection criteria would select k∗ = 2 as an appropriate number of components. The

values of π(k) also indicate that k∗ = 2 is appropriate, mainly because going from k = 1 to k = 2 has

a substantial relative decrease, whereas going from k = 2 to k = 3 is a much smaller relative decrease.

Thus, the mixturegram interpretation, the model selection criteria, and the criterion based on π(k)

are all in agreement.
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Figure 17: Mixturegrams of the quasar data based on (a) PCA with the K-profile summaries, (b)
PCA with all observations plotted, (c) KPCA with the K-profile summaries, and (d) KPCA with
all observations plotted. There are clearly two distinct groupings of profiles in the PCA-based mix-
turegrams, while the KPCA-based mixturegrams demonstrate a clear separation at k = 2. Thus, a
2-component mixture of normals appears appropriate for these data.

4.2 Additional Results for DLBCL Data

Lee and McLachlan (2013) discuss model-based clustering with non-normal multivariate mixture

distributions, such as the (unrestricted) multivariate skew t distribution. X ∈ Rp is said to follow an

(unrestricted) multivariate skew t distribution with location vector µ ∈ Rp, scale matrix Σ ∈ Rp×p,

skewness vector δ ∈ Rp, and (scalar) degrees of freedom ν, if it has probability density function

g(x;µ,Σ, δ, ν) = 2ptp,ν (x;µ,Σ)Tp,ν

(
∆Σ−1(x− µ)

√
ν + p

ν + ‖Ω−1/2(x− µ)‖2
; 0,Λ, ν + p

)
,

where ∆ = diag(δ), Ω = Σ + ∆2, Λ = Ip×p − ‖Ω−1/2∆‖2, and tp;ν(·;µ,Σ) and Tp;ν(·;µ,Σ) are the

probability density function and cumulative distribution function, respectively, of the p-dimensional

t distribution with location vector µ and scale matrix Σ.

We constructed mixturegrams for the DLBCL data based on PCA with the K-profile summaries
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Criterion
Number of Components (k)

1 2 3 4 5 6

AIC 55.487 76.818 74.516 73.035 71.043 70.040
BIC 51.784 67.559 59.701 52.664 45.116 38.558
ICL 51.784 67.855 60.585 53.841 46.575 40.196

CAIC 50.784 65.059 55.701 47.164 38.116 30.058

π(k) (PCA) 1.000 0.041 0.029 0.019 0.015 0.019
π(k) (KPCA) 1.000 0.009 0.057 0.018 0.015 0.006

Table 2: Model selection and π(k) results for the quasar data. Quantities in boldface pertain to the
respective number of components k that are selected for the mixture model. There is agreement across
all measures to select k∗ = 2.

(Figure 18(a)) and with all observations plotted (Figure 18(d)) as well as based on KPCA with

the K-profile summaries (Figure 18(c)) and with all observations plotted (Figure 18(d)). There are

clearly two distinct groupings of profiles in all of these mixturegrams. Thus, a 2-component mixture

of trivariate skew t distributions appears appropriate for these data.

All of the model selection results and values of π(k) for the DLBCL data are reported in Table 3.

With the exception of AIC, the other selection criteria all select k∗ = 2 as an appropriate number of

components. Moreover, the values of π(k) indicate that the value of k∗ = 2 is appropriate since there

is only a moderate decrease in the value of π(3) relative to π(2). Thus, we would select k∗ = 2 as the

number of components to use for this mixture problem.

Criterion
Number of Components (k)

1 2 3 4 5

AIC -4537.789 -4370.414 -4359.522 -4360.523 -4365.228
BIC -4560.678 -4417.953 -4431.712 -4457.363 -4486.718
ICL -4560.678 -4418.294 -4432.138 -4458.001 -4487.496

CAIC -4558.928 -4414.203 -4425.962 -4449.613 -4476.968

π(k) (PCA) 1.000 0.054 0.035 0.027 0.019
π(k) (KPCA) 1.000 0.025 0.010 0.012 0.008

Table 3: Model selection and π(k) results for the DLBCL data. Quantities in boldface pertain to
the respective number of components k that are selected for the mixture model. There is majority
agreement across the measures to select k∗ = 2.
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Figure 18: Mixturegrams of the DLBCL data based on (a) PCA with the K-profile summaries, (b)
PCA with all observations plotted, (c) KPCA with the K-profile summaries, and (d) KPCA with all
observations plotted. There are clearly two distinct groupings of profiles in all of the mixturegrams,
thus indicating that a 2-component mixture of trivariate skew t distributions is appropriate for these
data.

4.3 Old Faithful Data

The Old Faithful geyser dataset consists of the waiting time between eruptions and the duration of the

eruptions (both recorded in minutes) for the Old Faithful Geyser in Yellowstone National Park. This

bivariate dataset consists of n = 272 records and are depicted in Figure 19(a). The data were first

reported in Azzalini and Bowman (1990) and have been analyzed using various statistical approaches,

such as multivariate density estimation (Scott, 2004), cluster analysis (Hennig, 2003), and mixture

models (Benaglia et al., 2009).

We consider mixture models with bivariate normal component distributions and k = 1, 2, 3, 4

components. We used 20 random starts for the EM algorithm and for each k > 1, we retained the

estimates that had the largest log-likelihood. Figure 20 gives the mixturegrams that we constructed

for the Old Faithful geyser data. We again construct mixturegrams based on PCA with the K-profile

summaries (Figure 20(a)) and with all observations plotted (Figure 20(d)) as well as based on KPCA
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Figure 19: (a) Scatterplot of all n = 272 recorded measurements of the waiting time between eruptions
(y-axis) and duration of the eruptions (x-axis) for the Old Faithful geyser data. (b) The same
scatterplot with the means and 50%, 70%, and 90% bivariate normal contours for the estimated
2-component mixture of bivariate normals.

with the K-profile summaries (Figure 20(c)) and with all observations plotted (Figure 20(d)). There

are clearly two distinct groupings of profiles in the PCA-based mixturegrams, while the KPCA-based

mixturegram based on the K-profile summaries seems to indicate 3-components. However, a plot of

all the observations based on KPCA indicates more overlap of the profiles. Specifically, this indicate

there is a stronger representation of two groupings of profiles, a feature that is masked by how we

construct the K-profile summaries. This highlights that occasionally a mixturegram based on all of

the observations may provide further insight beyond what is plotted on the mixturegram using the

K-profile summaries. Regardless, a 2-component mixture of bivariate normals appears appropriate

for these data.

We also report the model selection results and values of π(k) in Table 4. With the exception of

AIC, the other selection criteria all select k∗ = 2 as an appropriate number of components. Moreover,

the values of π(k) indicate that a value of k∗ = 2 is appropriate, especially since the value of π(3) is

larger than π(2). Thus, we would select k∗ = 2 as the number of components to use for this mixture

problem. A scatterplot with the estimated component means and selected bivariate normal contours

based on this 2-component fit is given in Figure 19(b).
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Figure 20: Mixturegrams of the Old Faithful geyser data based on (a) PCA with the K-profile
summaries, (b) PCA with all observations plotted, (c) KPCA with the K-profile summaries, and
(d) KPCA with all observations plotted. There are clearly two distinct groupings of profiles in the
PCA-based mixturegrams, while the KPCA-based mixturegram based on the K-profile summaries
seems to indicate 3-components. However, a plot of all the observations in this case indicates more
overlap of the profiles such that there is a stronger representation of two groupings of profiles. Thus,
a 2-component mixture of bivariate normals appears appropriate for these data.

4.4 Hidalgo Stamp Data

The Hidalgo stamp dataset contains n = 485 records of the thickness of stamps having images of

Miguel Hidalgo y Costilla (a famous leader of the Mexican War of Independence) that were issued by

Mexico in 1872 and circulated until 1874. Due to poor quality control at that time, the thicknesses

of the stamps varied considerably, which are depicted in Figure 21(a). This specific example of

a philatelic mixture was presented and extensively analyzed in Izenman and Sommer (1988) using

both a nonparametric approach and a mixture-of-normals approach in order to identify the different

components.

When fitting a mixture model to these data, it is more challenging to assess the number of com-

ponents since the component densities are clearly not well-separated. These data have been analyzed

many times in the literature with different results depending on the strategy used for determining the

30



Criterion
Number of Components (k)

1 2 3 4

AIC -1291.799 -1141.264 -1136.300 -1138.919
BIC -1296.013 -1164.444 -1172.124 -1187.387
ICL -1296.013 -1163.793 -1171.244 -1186.106

CAIC -1297.013 -1169.944 -1180.624 -1198.887

π(k) (PCA) 1.000 0.026 0.027 0.016
π(k) (KPCA) 1.000 0.008 0.009 0.008

Table 4: Model selection and π(k) results for the Old Faithful data. There is majority agreement
across the measures to select k∗ = 2.
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Figure 21: (a) Histogram of all n = 485 thickness measurements for the Hidalgo stamp data. (b) The
same histogram with the estimated 4-component mixture of normals density curve plotted.

number of components. The number of components that have been selected include k∗ = 3 (Izenman

and Sommer, 1988), k∗ = 4 (McLachlan and Peel, 2000), and k∗ = 7 (Basford et al., 1997). We con-

sider mixture models with univariate normal component distributions and k = 1, . . . , 8 components.

We, again, used 20 random starts for the EM algorithm and for each k > 1, we retained the estimates

that had the largest log-likelihood. Figure 22 are the mixturegrams we constructed for the Hidalgo

stamp data. We again construct mixturegrams based on PCA with the K-profile summaries (Figure

22(a)) and with all observations plotted (Figure 22(d)) as well as based on KPCA with the K-profile

summaries (Figure 22(c)) and with all observations plotted (Figure 22(d)). The results of these mix-

turegrams are much more subjective. In the top-half of the mixturegrams based on PCA, the profiles
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appear to be similar, but then separate at k = 4. In particular, some of the profiles start to have an

overall increasing trend while some of the profiles continue a decreasing trend. This indicates at least

two components. In the bottom-half of the mixturegram, there appears to be a profile grouping that

stays fairly constant as k increases. This indicates one more component. Finally, in the bottom-half

there appears to be a small subset of four observations where the profiles noticeably increase from

k = 2 to k = 3 and then decrease starting at k = 5. This indicates one final component. For the

KPCA-based mixturegrams, however, there appears to be two or three groupings of profiles. Regard-

less, all of the mixturegrams for this heavily-overlapping setting have a greater degree of subjectivity

in their interpretation. But combining the minimum number of components we discern from these

mixturegrams with the results in Table 5 (which we discuss in the next paragraph), our assessment

is that k∗ = 4 components is an appropriate choice.
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Figure 22: Mixturegrams of the Hidalgo stamp data based on (a) PCA with the K-profile summaries,
(b) PCA with all observations plotted, (c) KPCA with the K-profile summaries, and (d) KPCA
with all observations plotted. There appears to be at least three distinct groupings of profiles in
the PCA-based mixturegrams, while the KPCA-based mixturegrams appear to suggest at least two
distinct grouping. The mixturegrams based on the K-profile summaries are better for making such an
assessment compared to what is observed with the mixturegrams where all observations are plotted.
Based on the lack of separability, a conservative assessment is to suggest a mixture of normals model
where k∗ ≥ 3.
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Criterion
Number of Components (k)

1 2 3 4 5 6 7 8

AIC 1348.338 1437.625 1467.687 1464.687 1473.457 1470.457 1492.947 1496.341
BIC 1344.634 1428.365 1452.871 1444.316 1447.531 1438.975 1455.909 1453.747
ICL 1344.634 1428.966 1453.646 1445.484 1448.920 1440.545 1457.729 1455.531
CAIC 1343.634 1425.865 1448.871 1438.816 1440.531 1430.475 1445.909 1442.247

π(k) (PCA) 1.000 0.057 0.037 0.015 0.007 0.004 0.005 0.002
π(k) (KPCA) 1.000 0.032 0.018 0.006 0.002 0.001 0.001 0.001

Table 5: Model selection and π(k) results for the Hidalgo stamp data. There is no clear agreement
across the different measures.

We also report the model selection results and values of π(k) in Table 5. As we can see, there

is no unanimous agreement between the methods. AIC selects at least k∗ = 8, BIC and ICL both

select k∗ = 7, CAIC selects k∗ = 3, and the values of π(k) seem to indicate that a value of k∗ = 4 is

appropriate since the decrease in π(5) from π(4) is relatively small. Thus, there is a lot of variability in

what one might decide based on the model selection criteria or π(k). Regardless, we proceed to select

k∗ = 4 components based on the assessment of the mixturegram. A histogram with the estimated

4-component mixture of normals density curve overlaid is given in Figure 21(b).
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