

Key collaborators: <u>Seth T. Reid</u>, <u>Bradley W. Schleder</u>, John T. Bushoven, Henry D. Delcore, Derya Özgöc-Çağlar[#], and, Mary L. Cadenasso *California State University, Fresno; [#] Ankara Regional Development Agency, *University of California, Davis

International Geographical Congress 2012 Köln, Germany August 23, 2012

Water: a key resource & ecosystem service in any urban Social-Ecological System

What drives water consumption?

- Sococioeconomic status is positively correlated with levels of resource consumption
 - * at individual/household scale as well as larger social units
- * As both a good and a service, water is usually priced at a low rate in industrialized and post-industrial countries
 - as it is deemed essential to human survival;
 - * and therefore, often priced for delivery of service rather than for the resource itself

What drives water consumption?

- Household consumption of water is shaped & constrained by
 - * home design (age of house, irrigation technology)
 - * residential landscape design (type of plants, yard layout)
 - * status honor gained by conspicuous consumption of resources
 - * or, by decreased consumption through newer technology and design that may be linked to greater environmental awareness

Water pricing as a regulatory tool?

- Water pricing may reduce water consumption under certain conditions
 - but most municipal water departments avoid water pricing policies that could encourage conservation
- * The cost of water is negligible for budgetary decision making in most households particularly true in the US

Consequences of human water consumption for urban biodiversity

- * Patterns of water use by humans shape the urban landscape
- Water availability, irrigation technologies, and human preferences determine urban plant diversity
 - plant diversity is more directly driven by human actions
- Water availability, plant diversity & cover, landscape structure and heterogeneity drive animal diversity
 - birds freely choose to inhabit/abandon urban habitats,
 - therefore they are good indicators of biodiversity outcomes

How much water do we use in the Cadillac Desert? Redding Great Ely_ Grand Colorad

Springs ncisco Oakland Durango 1,250 _Gallup ARIZONA Rio Grande Albuquerque Flagstaff Liters of water / person / day Santa Barbara 🕳 _Los Angeles Long Beach 1,000 PHOENIX . Mesa Pacific San Diego Las Cruces Ocean 750 500 250

Fresno

Phoenix

Tucson

Albuquerque Las Vegas

San Joaquin Valley "natural" communities

Poverty in Fresno

Household Water Use in Fresno

- * Currently, 51% of city water supply is used residentially
 - * 70% of residential water use is for landscape irrigation
- No meters: water bill is at a flat monthly rate
 - Neighboring Clovis has metered water since 1910
 - Fresno rejected metering in early 1990s referendum
- * Meters are now running in parts of the city; target date for full implementation of metering: 2013 (we hope...)

Experimental opportunity

- * The onset of metering in Fresno gives us a "found experiment"
- * Clovis provides a "control" as an adjacent city with similar socioeconomics / demographics but >100 yrs of metering
- * We have an opportunity to examine the socioecological dynamics of water use in a *Before-After-Control-Impact (BACI)* design.
- * Currently in the *Before* phase, establishing baseline data

Urban Long-Term Research Area Fresno And Clovis Ecosocial Study

Main Research Questions

- 1. How are institutions of governance & individual decisions related to water use & availability in an urban SES?
- 2. How is water use & availability related to residential landscaping (land-use/land-cover) & plant diversity?
- 3. How are institutional & individual factors related to land cover & plant diversity at broader scales?
- 4. How does land use & plant diversity affect bird diversity in cities?
- 5. More broadly, how do the dynamic interactions & feedback between institutional/individual actors and an ecosystem service (water) affect ecological outcomes (i.e., plant & bird diversity)?

Study Area & Sampling Design Fresno Clovis Metropolitan Area

ULTRA-FACES Study Area

- FBC site (N=460)
- Censused (in 2008)
- Core Residential sites for bird study

Fresno Bird Count

How the social might affect the ecological

Home value
(Zestimate)
% Popn. below
poverty line
Also: Pop. Den;
% Hispanic

Visual score on scale 0-4

% canopy
% grass
% building
% impervious
Tree species richness

Bird species richness Bird functional groups

Vegetation

- Subsample of FBC sites
- * Sites chosen to represent wealth gradient across FCMA
- Survey of trees, ground and canopy cover, irrigation level, conducted spring 2011
- Socioeconomic, demographic variables from US Census
- Property value Zestimate from zillow.com

Reid 2011. MS Thesis.

Legend

ultra_social_smpl_74

Tracts

2010 Median Household Income

- \$84,001 to \$255,862
- \$70,001 to \$84,000
- \$41,001 to \$70,000 (Mean: \$55,148)
- \$27,001 to \$41,000
 - \$0 to \$27,000
- Zero Population

ULTRA-Ex Social Study
Sampling Sites Distribution
(Total 74 sites)
and
2010 Median Household Income

Multivariate drivers of tree species richness

Relative performance of alternative models with human (socioeconomic/demographic/behavioral) and ecological (cover, biotic/abiotic) variables to predict tree species richness. 3 Models with Δ AICc < 7 are shown (*per: Burnham et al* 2011).

Model	No. Param	AICc	ΔAICc	\mathbb{R}^2
Zestimate, % Impervious, % Grass, Zestimate*% Impervious, Zestimate*% Grass	5	262.71	3.53	0.489
Zestimate, % Impervious, % Grass, Pop. Density, Zestimate*% Impervious, Zestimate*% Grass, % Impervious*Pop. Density	7	259.18	0	0.585
Zestimate, %Impervious, % Grass, Pop. Density, Irrigation Rate, Zestimate*Impervious, Zestimate*% Grass, Impervious*Pop. Density, Irrigation Rate*Grass	9	262.61	3.43	0.614

Reid 2011. MS Thesis.

Multivariate drivers of tree diversity

- Tree species richness
 - decreases with greater impervious ground cover
 - increases with neighborhood home property values
 - * increases with amount of yard irrigation
 - * increases with ethnic diversity? (measured as % Hispanic)

Bird Species Richness

- In 2008
- 186 points surveyed by 30 volunteers
- 68 bird species recorded
- 3,263 total birds
- Average species richness
 per site 5.13 ± 0.16 SE

Multivariate drivers of bird species richness

Relative performance of alternative models with human (socioeconomic/demographic/behavioral) and ecological (cover, biotic/abiotic) variables to predict bird species richness. Models with Δ AICc < 7 are shown (*per: Burnham et al* 2011).

Model	No. Param	AICc	ΔAICc	\mathbb{R}^2
% Bldg, (% Poverty*Irrigation)	2	156.85	3.26	0.293
% Bldg, (% Poverty*%Grass), (% Poverty*Irrigation)	3	154.32	0.73	0.383
% Bldg, (% Poverty*%Grass), (% Poverty*Grass Height), (% Poverty*Irrigation)	4	153.59	0	0.438
% Grass, % Bldg, (% Poverty*%Grass), (% Poverty*Grass Height), (% Poverty*Irrigation)	5	154.54	0.95	0.46
% Grass, % Bldg, Grass Height, (% Poverty*%Grass), (% Poverty*Grass Height), (% Poverty*Irrigation)	6	156.07	2.48	0.49

Schleder 2010. MS Thesis.

Multivariate drivers of bird diversity

- Bird species diversity
 - * decreases with impervious ground cover % buildings
 - increases with % grass cover and grass height
 - increases with amount of yard irrigation
 - decreases with neighborhood poverty % population below poverty line

Wealth, irrigation, & urban biodiversity

- Residential irrigation increased significantly with wealth.
- * Species richness: Multivariate results indicate that socioeconomic variables and irrigation have strong positive effects on both tree and bird species richness in combination with habitat cover variables.
- * Avian guilds: Wealth and irrigation also strongly affect avian guild richness, with insectivores particularly sensitive to irrigation, disappearing from poorly irrigated areas.

Other pathways being studied

- * Social survey of individual households (completed, under analysis; anjones@csufresno.edu)
- * Site visits to sample homes (in progress; hdelcore@csufresno.edu)
- Focus group and individual interviews of institutional actors (key policy makers & implementers in city and county govt; Fall 2011)
- Land Use Land Cover (LULC) analysis (preliminary)

Legend

ultra_social_smpl_74

Tracts

2010 Median Household Income

- \$84,001 to \$255,862
- \$70,001 to \$84,000
- \$41,001 to \$70,000 (Mean: \$55,148)
- \$27,001 to \$41,000
 - \$0 to \$27,000
- Zero Population

ULTRA-Ex Social Study Sampling Sites Distribution (Total 74 sites) and

2010 Median Household Income

Words from site visits...

"I always thought of myself as conservation-minded, but I don't think looking back in retrospect that my choices for the valley have reflected that image of myself... I try to conserve water when I can but I think my choices have not been so great."

- Homeowner cognizant of dissonance

It takes a village to study the city...

- * Paying the bills:
 - * National Science Foundation & U.S. Forest Service (ULTRA-Ex Award # 0949036)
 - * CSU Fresno: Provost, College of Science and Mathematics, Division of Graduate Studies
 - * Robert and Norma Craig Foundation
 - Fresno Audubon Society
- City of Fresno, City of Clovis, Fresno County
- Citizen Scientists of the Fresno Bird Count!
- * FBC coordination: Kaberi Kar Gupta, Jenny Phillips, Pedro Garcia, Amy Krisch
- Database: Xiaoming Yang
- * Data entry: Amer Naik, Rhiannon Perry
- Tucson Bird Count, NiJeL.org

NiJeL