SUPPLEMENTARY MATERIAL

Trienic α -pyrone and ochratoxin derivatives from a sponge-derived fungus

Aspergillus ochraceopetaliformis

Jing-Tang Liu, Wei Wu, Min-Jia Cao, Fan Yang* and Hou-Wen Lin*

Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes,

Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University,

Shanghai 200127, China

*Corresponding author. E-mail: yang-fan@sjtu.edu.cn (F. Y.); franklin67@126.com (H.-W. L.)

Abstract: A new trienic α-pyrone derivative asteltoxin G (1) bearing a tetrahydrofuran ring and

a new ochratoxin derivative named ochratoxin $A_1(5)$, along with seven known compounds were

isolated from a sponge-derived fungus Aspergillus ochraceopetaliformis. The compounds (1-9)

were evaluated on the basis of spectroscopic analyses and comparison with those of the reported

data. The new compound ochratoxin $A_1(5)$ exhibited anti-inflammatory activity against IL-6 and

TNF-α expression of the LPS-induced THP-1 cells with inhibitory rates of 74.4% and 67.7% at

concentration of 10 µM, respectively.

Keywords: sponge-derived fungus; *Aspergillus ochraceopetaliformis*; trienic α -pyrone;

ochratoxin; anti-inflammatory

1

Figure legends

Figure S1. HRESIMS of 1

Figure S2. ¹H NMR (600 MHz, CD₃OD) of **1**

Figure S3. 13 C NMR (150 MHz, CD₃OD) of **1**

Figure S4. HSQC (600 MHz, CD₃OD) of 1

Figure S5. COSY (600 MHz, CD₃OD) of 1

Figure S6. HMBC (600 MHz, CD₃OD) of 1

Figure S7. NOESY (600 MHz, CD₃OD) of 1

Figure S8. The key HMBC and COSY correlations of 1

Figure S9. Key NOE correlations for compound 1

Figure S10. HRESIMS of 5

Figure S11. ¹H NMR (600 MHz, CD₃OD) of **5**

Figure S12. ¹³C NMR (150 MHz, CD₃OD) of **5**

Figure S13. HSQC (600 MHz, CD₃OD) of **5**

Figure S14. COSY (600 MHz, CD₃OD) of 5

Figure S15. HMBC (600 MHz, CD₃OD) of 5

Figure S16. The key HMBC and COSY correlations of compound 5

Figure S17. The levels of the inflammatory cytokines IL-6 (A) and IFN- α (B) in cell supernatant (pg/ml, mean \pm SD)

Table S1. ¹H (600 MHz) and ¹³C NMR (150 MHz) Data for **1** in CD₃OD

Table S2. ¹H (600 MHz) and ¹³C NMR (150 MHz) Data for **5** in CD₃OD

Figure S1. HRESIMS of 1

Figure S2. ¹H NMR (600 MHz, CD₃OD) of **1**

Figure S3. 13 CNMR (150 MHz, CD₃OD) of **1**

Figure S4. HSQC (600 MHz, CD₃OD) of 1

Figure S5. COSY (600 MHz, CD₃OD) of 1

Figure S6. HMBC (600 MHz, CD₃OD) of 1

Figure S7.NOESY (600 MHz, CD_3OD) of $\boldsymbol{1}$

Figure S8. The key HMBC and COSY correlations of ${\bf 1}$

Figure S9. Key NOE correlations for compound ${\bf 1}$

Figure S10. HRESIMS of 5

Figure S11. ¹H NMR (600 MHz, CD₃OD) of **5**

Figure S12. ¹³CNMR (150 MHz, CD₃OD) of **5**

Figure S13. HSQC (600 MHz, CD₃OD) of 5

Figure S14. COSY (600 MHz, CD₃OD) of **5**

Figure S15. HMBC (600 MHz, CD_3OD) of $\bf 5$

Figure S16. The key HMBC and COSY correlations of compound 5.

Figure S17. The levels of the inflammatory cytokines IL-6 (A) and IFN- α (B) in cell supernatant (pg/ml, mean \pm SD)

Table S1. 1 H (600 MHz) and 13 C NMR (150 MHz) Data for **1** in CD₃OD.

- \
Hz)
3.9)
3.9)
3.3)
3, 3.3)
.2, 7.3)
2, 11.2)
9, 11.1)
8, 11.2)
9, 11.1)
4.8)
8
8
S
3

Table S2. 1 H (600 MHz) and 13 C NMR (150 MHz) Data for **5** in CD₃OD.

Position	$\delta_{ m C}$	$\delta_{\mathrm{H}}\left(J\ \mathrm{in}\ \mathrm{Hz} ight)$
1	170.9, C	
3	77.3, CH	4.81, m
4	33.1, CH ₂	3.31, ov
		2.89, dd (17.3, 11.7)
5	123.9, C	
6	138.5, CH	8.17, s
7	121.4, C	
8	160.1, C	
9	112.0, C	
10	143.3, C	
11	164.8, C	
13	55.9, CH	4.98, m
14	38.3, CH ₂	3.33, ov
		3.21, dd (13.8, 7.6)
15	137.6, C	
16	130.5, CH	7.24, m
17	129.6, CH	7.26, m
18	128.1, CH	7.21, m
19	129.6, CH	7.26, m
20	130.5, CH	7.24, m
21	20.8, CH ₃	1.54, d (6.3)
22	172.7, C	
24	68.3, CH ₂	4.40, ddd (26.8, 11.4, 2.9)
		4.25, ddd (25.0, 11.4, 6.5)
25	71.1, CH	3.79, m
26	73.4, CH	3.59, m
27	64.5, CH ₂	3.75, m
		3.62, m