SUPPLEMENTARY MATERIAL

Trienic α-pyrone and ochratoxin derivatives from a sponge-derived fungus

Aspergillus ochraceopetaliformis

Jing-Tang Liu, Wei Wu, Min-Jia Cao, Fan Yang* and Hou-Wen Lin*
Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
*Corresponding author. E-mail: yang-fan@situ.edu.cn (F. Y.); franklin67@ 126.com (H.-W. L.)

Abstract

A new trienic α-pyrone derivative asteltoxin $G(1)$ bearing a tetrahydrofuran ring and a new ochratoxin derivative named ochratoxin $\mathrm{A}_{1}(\mathbf{5})$, along with seven known compounds were isolated from a sponge-derived fungus Aspergillus ochraceopetaliformis. The compounds (1-9) were evaluated on the basis of spectroscopic analyses and comparison with those of the reported data. The new compound ochratoxin $\mathrm{A}_{1}(\mathbf{5})$ exhibited anti-inflammatory activity against IL-6 and TNF- α expression of the LPS-induced THP- 1 cells with inhibitory rates of 74.4% and 67.7% at concentration of $10 \mu \mathrm{M}$, respectively.

Keywords: sponge-derived fungus; Aspergillus ochraceopetaliformis; trienic α-pyrone; ochratoxin; anti-inflammatory

Figure legends

Figure S1. HRESIMS of $\mathbf{1}$
Figure S2. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{1}$
Figure $\mathrm{S} 3 .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$
Figure S4. HSQC ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$
Figure S5. COSY ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$

Figure S6. HMBC ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$

Figure S7. NOESY ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$

Figure S8. The key HMBC and COSY correlations of $\mathbf{1}$
Figure S9. Key NOE correlations for compound 1

Figure S10. HRESIMS of 5
Figure S11. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5
Figure S12. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5
Figure S13. HSQC ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5

Figure S14. COSY ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{5}$

Figure S 15 . HMBC ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{5}$
Figure S16. The key HMBC and COSY correlations of compound $\mathbf{5}$
Figure S17. The levels of the inflammatory cytokines IL-6 (A) and IFN- α (B) in cell supernatant $(\mathrm{pg} / \mathrm{ml}$, mean $\pm \mathrm{SD})$

Table S1. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (150 MHz) Data for $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}$
Table S2. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (150 MHz) Data for 5 in $\mathrm{CD}_{3} \mathrm{OD}$

Figure S1. HRESIMS of $\mathbf{1}$

Figure $\mathrm{S} 2 .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{1}$

Figure $\mathrm{S} 3 .{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{1}$

Figure S4. HSQC ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$

Figure S5. COSY ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$

Figure S6. HMBC ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$

Figure S7.NOESY ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$

Figure S8. The key HMBC and COSY correlations of $\mathbf{1}$

Figure S9. Key NOE correlations for compound 1

Figure S10. HRESIMS of 5

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5

Figure $\mathrm{S} 12 .{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 5

Figure S13. HSQC ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5

Figure S14. COSY ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{5}$

Figure $\mathrm{S} 15 . \mathrm{HMBC}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 5

Figure S16. The key HMBC and COSY correlations of compound 5.

Figure S17. The levels of the inflammatory cytokines IL-6 (A) and IFN- α (B) in cell supernatant $(\mathrm{pg} / \mathrm{ml}$, mean $\pm \mathrm{SD})$

Table S1. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (150 MHz) Data for $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Position	δ_{C}	$\delta_{\mathrm{H}}(\mathrm{J}$ in Hz $)$
1	$78.2, \mathrm{CH}_{2}$	$3.82, \mathrm{~d}(8.9)$
		$3.67, \mathrm{~d}(8.9)$
2	$81.9, \mathrm{C}$	
3	$81.3, \mathrm{CH}$	$3.68, \mathrm{~d}(3.3)$
4	$84.3, \mathrm{CH}$	$4.74, \mathrm{dd}(7.3,3.3)$
5	$134.1, \mathrm{CH}$	$6.00, \mathrm{dd}(15.2,7.3)$
6	$133.8, \mathrm{CH}$	$6.46, \mathrm{dd}(15.2,11.2)$
7	$138.7, \mathrm{CH}$	$6.62, \mathrm{dd}(14.9,11.1)$
8	$133.0, \mathrm{CH}$	$6.50, \mathrm{dd}(14.8,11.2)$
9	$136.9, \mathrm{CH}$	$7.14, \mathrm{dd}(14.9,11.1)$
10	$120.7, \mathrm{CH}$	$6.59, \mathrm{~d}(14.8)$
11	$155.8, \mathrm{C}$	
12	$109.9, \mathrm{C}$	
13	$173.1, \mathrm{C}$	
14	$89.2, \mathrm{CH}$	$5.63, \mathrm{~s}$
15	$166.3, \mathrm{C}$	
16	$19.4, \mathrm{CH}_{3}$	$1.34, \mathrm{~s}$
17	$8.9, \mathrm{CH}_{3}$	$2.00, \mathrm{~s}$
18	$57.3, \mathrm{CH}_{3}$	$3.90, \mathrm{~s}$

Table S2. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (150 MHz) Data for 5 in $\mathrm{CD}_{3} \mathrm{OD}$.

Position	δ_{C}	$\delta_{\mathrm{H}}(J \mathrm{in} \mathrm{Hz})$
1	$170.9, \mathrm{C}$	
3	$77.3, \mathrm{CH}$	$4.81, \mathrm{~m}$
4	$33.1, \mathrm{CH}_{2}$	$3.31, \mathrm{ov}$
		$2.89, \mathrm{dd}(17.3,11.7)$
5	$123.9, \mathrm{C}$	
6	$138.5, \mathrm{CH}$	$8.17, \mathrm{~s}$
7	$121.4, \mathrm{C}$	
8	$160.1, \mathrm{C}$	
9	$112.0, \mathrm{C}$	
10	$143.3, \mathrm{C}$	
11	$164.8, \mathrm{C}$	$3.98, \mathrm{~m}$
13	$55.9, \mathrm{CH}$	$3.33, \mathrm{ov}$
14	$38.3, \mathrm{CH}$	
15	$137.6, \mathrm{C}$	$7.24, \mathrm{~m}$
16	$130.5, \mathrm{CH}$	$7.26, \mathrm{~m}$
17	$129.6, \mathrm{CH}$	$7.21, \mathrm{~m}$
18	$128.1, \mathrm{CH}$	$7.26, \mathrm{~m}$
19	$129.6, \mathrm{CH}$	$7.24, \mathrm{~m}$
20	$130.5, \mathrm{CH}$	$1.54, \mathrm{~d}(6.3)$
21	$20.8, \mathrm{CH}$	
22	$172.7, \mathrm{C}$	$3.6)$
24	$68.3, \mathrm{CH}$	$4.40, \mathrm{ddd}(26.8,11.4,2.9)$
		$4.25, \mathrm{ddd}(25.0,11.4,6.5)$
25	$71.1, \mathrm{CH}$	$3.79, \mathrm{~m}$
26	$73.4, \mathrm{CH}$	$3.59, \mathrm{~m}$
27	$64.5, \mathrm{CH}$	$3.75, \mathrm{~m}$
		$3.62, \mathrm{~m}$

