
Appendix B Mathematical Proofs

Appendix B.1 Proof of Lemma 1

Proof. By the classical Weyl inequalities in e.g., Horn and Johnson (2013) and Tao (2012), we have

|λj(A+ ε)− λj(A)| ≤ K ‖ε‖, for all j = 1, 2, . . . , d, where A, ε ∈M+
d , and K is some constant. This

establishes the Lipchitz property.

Appendix B.2 Proof of Lemma 2

Proof. It is straightforward to show (by the implicit function theorem, see Magnus and Neudecker

(1999) Theorem 8.7) that any simple eigenvalue and its corresponding eigenvector, written as func-

tions of A, λg(A) and γg(A), are C∞. To calculate their derivatives, note that Aγg = λgγg, hence

we have (∂jkA)γg + A(∂jkγg) = (∂jkλg)γg + λg(∂jkγg). Pre-multiplying γᵀg on both sides yields

∂jkλg = γᵀg (∂jkA)γg = γgjγgk. Rewrite it into (λgI − A)∂jkγg = (∂jkA)γg − (∂jkλg)γg, which leads

to (λgI−A)+(λgI−A)∂jkγg = (λgI−A)+(∂jkA)γg. As a result, ∂jkγg = (λgI−A)+Jjkγg.

In the case when all eigenvalues are simple, by direct calculation we have

∂jkγgh =
∑
p6=g

1

λg − λp
γphγpjγgk,

where we use the fact that (γᵀ1 , γ
ᵀ
2 , . . . , γ

ᵀ
d)ᵀA(γ1, γ2, . . . , γd) = Diag(λ(A)). Further,

∂2
jk,lmγgh =−

∑
p 6=g

1

(λg − λp)2
(∂lmλg − ∂lmλp)γphγpjγgk +

∑
p 6=g

1

λg − λp
∂lm (γphγpjγgk)

=−
∑
p 6=g

1

(λg − λp)2
(γglγgmγphγpjγgk − γplγpmγphγpjγgk)

+
∑
p 6=g

∑
q 6=p

1

(λg − λp)(λp − λq)
γqlγpmγqhγpjγgk

+
∑
p 6=g

∑
q 6=p

1

(λg − λp)(λp − λq)
γqlγpmγqjγphγgk

+
∑
p 6=g

∑
q 6=g

1

(λg − λp)(λg − λq)
γqkγqlγgmγphγpj ,

which concludes the proof.
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Appendix B.3 Proof of Lemma 3

Proof. The proof is by induction. Consider, at first the following optimization problem:

max
γs

∫ u

0
γᵀs csγsds, s.t. γᵀsγs = 1, 0 ≤ s ≤ u ≤ t.

Using a sequence of Lagrange multipliers λs, the problem can be written as solving

csγs = λsγs, and γᵀsγs = 1, for any 0 ≤ s ≤ t.

Hence, the original problem is translated into eigenanalysis.

Suppose the eigenvalues of cs are ordered as in λ1,s ≥ λ2,s ≥ . . . ≥ λd,s. Note that γᵀs csγs = λs,

so that λs = λ1,s, and γs = γ1,s is one of the corresponding eigenvectors (if λ1,s is not unique), and

the maximal variation is
∫ t

0 λ1,sds.

Suppose that we have found γ1,s, . . . , γk,s, for 1 ≤ k < d and 0 ≤ s ≤ t, the (k + 1)th principal

component is defined by solving the following problem:

max
γs

∫ u

0
γᵀs csγsds, s.t. γᵀsγs = 1, and γᵀj,scsγs = 0, for 1 ≤ j ≤ k, 0 ≤ u ≤ t.

Using similar technique of Lagrange multipliers, λs, and ν1,s, . . . , νk,s, we find

csγs = λsγs +

k∑
j=1

νj,scsγj,s.

Multiplying on the left γᵀl,s, for some 1 ≤ l ≤ k, we can show that νl,scsγl,s = 0. Indeed,

0 = λl,sγ
ᵀ
l,sγs = γᵀl,scsγs = γᵀl,sλsγs +

k∑
j=1

νj,sγ
ᵀ
l,scsγj,s = νl,sλl,s.

Therefore, since l is an arbitrary number between 1 and k, we have csγs = λsγs. Hence, λs = λk+1,s,

γs = γk+1,s is one of the eigenvectors associated with the eigenvalue λk+1,s. This establishes the first

part of the theorem.
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For any càdlàg and adapted process γs,

[∫ u

0
γᵀs−dXs,

∫ u

0
γᵀs−dXs

]c
=

∫ t

0
γᵀs csγsds.

Hence the statement follows from the gth-step optimization problem. Note that the validity of the

integrals above is warranted by the continuity of λ given by Lemma 1.

Appendix B.4 Proof of Lemma 4

Proof. The first statement of the proof follows by immediate calculations from Theorem 1.1 in Lewis

(1996b) and Theorem 3.3 in Lewis and Sendov (2001). The second statement is discussed and proved

in, e.g., Ball (1984), Sylvester (1985), and Silhavý (2000). Finally, the last statement on convexity

is proved in Davis (1957) and Lewis (1996a).

Appendix B.5 Proof of Lemma 5

Proof. Obviously, for any 1 ≤ g1 < g2 < . . . < gr ≤ d, the set defined in (4), D(g1, g2, . . . , gr), is an

open set in R+
d /{0}. Define f(x) = |x̄gr |+

∑
i 6=j |x̄gi−x̄gj |, which is a continuous and convex function.

It is differentiable at x if and only if x ∈ D(g1, g2, . . . , gr). Therefore, by Lemma 4, f ◦ λ is convex,

and it is differentiable at A if and only if λ(A) ∈ D(g1, g2, . . . , gr), i.e., A ∈ M(g1, g2, . . . , gr). On

the other hand, a convex function is almost everywhere differentiable, see Rockafellar (1997), which

implies that M(g1, g2, . . . , gr) is dense in M++
d . Moreover, M(g1, g2, . . . , gr) is the pre-image of the

open set R+/{0} under a continuous function h ◦ λ, where h(x) =
∏
i 6=j |x̄gi − x̄gj ||x̄gr |. Therefore,

it is open.

Appendix B.6 Proof of Theorem 1

Proof. Throughout the proof, we adopt the usual localization procedure as detailed in Jacod and

Protter (2012). Note that

V (∆n, X;F ) = kn∆n

[t/(kn∆n)]∑
i=0

f
(
λ̂ikn∆n

)
= kn∆n

[t/(kn∆n)]∑
i=0

(f ◦ λ)(ĉikn∆n).

By Assumption 2 and Lemma 4, f ◦λ is a continuous vector-valued function. Moreover, for c ∈M+
d ,

‖f ◦ λ(c)‖ ≤ K(1 + ‖λ(c)‖ζ) ≤ K(1 + ‖c‖ζ). Below we prove this theorem for any spectral function

F that is bounded by K(1 + ‖c‖ζ).
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We start with a function F bounded by K everywhere. We extend the definition of ĉ to the entire

interval [0, t] by letting:

ĉs = ĉ(i−1)kn∆n
, for (i− 1)kn∆n ≤ s < ikn∆n.

Note that for any t > 0, we have

E

∥∥∥∥V (∆n, X;F )−
∫ t

0
F (cs)ds

∥∥∥∥
≤kn∆nE

∥∥F (ĉ[t/(kn∆n)]kn∆n
)
∥∥+

∫ [t/(kn∆n)]kn∆n

0
E ‖F (ĉs)− F (cs)‖ ds+

∫ t

[t/(kn∆n)]kn∆n

E ‖F (cs)‖ ds

≤Kkn∆n +

∫ [t/(kn∆n)]kn∆n

0
E ‖F (ĉs)− F (cs)‖ ds.

By the fact that ĉs − cs
p−→ 0, it follows that E ‖F (ĉs)− F (cs)‖ → 0, which is bounded uniformly

in s and n because F is bounded. Therefore, by the dominated convergence theorem, we obtain the

desired convergence.

Next we show the convergence holds under the polynomial bound on F . Denote ψ to be a C∞

function on R+ such that 1[1,∞)(x) ≤ ψ(x) ≤ 1[1/2,∞](x). Let ψε(c) = ψ(‖c‖ /ε), and ψ′ε(c) =

1 − ψε(c). Since the function F · ψ′ε is continuous and bounded, the above argument implies that

V (∆n, X;F ·ψ′ε)
p−→
∫ t

0 F ·ψ
′
ε(cs)ds, for any fixed ε. When ε is large enough, we have

∫ t
0 F ·ψ

′
ε(cs)ds =∫ t

0 F (cs)ds by localization, since cs is locally bounded. On the other hand, F ·ψε(c) ≤ K ‖c‖ζ 1{‖c‖≥ε},

for ε > 1. So it remains to show that

lim
ε→∞

lim sup
n→∞

E

kn∆n

[t/(kn∆n)]∑
i=0

‖ĉikn∆n‖
ζ 1{‖ĉikn∆n‖>ε}

 = 0.

By (9.4.7) of Jacod and Protter (2012), there exists some sequence an going to 0, such that

E
(
‖ĉikn∆n‖

ζ 1{‖ĉikn∆n‖>ε}|Fikn∆n

)
≤ K

εζ
+Kan∆(1−ζ+$(2ζ−γ))

n ,

which establishes the desired result.
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Appendix B.7 Proof of Proposition 1

Proof. We divide the proof into several steps. To start, we need some additional notations. Let

X ′ and c′ denote the continuous parts of the processes X and c, respectively. Also, we introduce

ĉ′ikn∆n
to denote the estimator constructed similarly as in (5) with X replaced by X ′ and without

truncation, namely

ĉ′ikn∆n
=

1

kn∆n

kn∑
j=1

(∆n
ikn+jX

′)(∆n
ikn+jX

′)ᵀ.

In addition, λ̂
′
ikn∆n

corresponds to the vector of eigenvalues of ĉ′ikn∆n
, and

V ′(∆n, X;F ) = kn∆n

[t/(kn∆n)]∑
i=0

f
(
λ̂
′
ikn∆n

)
.

We also define

c̄ikn∆n =
1

kn∆n

∫ (i+1)kn∆n

ikn∆n

csds, βnikn = ĉ′ikn∆n
− cikn∆n , αnl = (∆n

l X
′)(∆n

l X
′)ᵀ − cl∆n∆n, and

ηni =

(
E

(
sup

i∆n≤u≤i∆n+kn∆n

|bi∆n+u − bi∆n |2|Fi∆n

))1/2

.

We first collect some known estimates in the next lemma:

Lemma 6. Under the assumptions of Proposition 1, we have

E

(
sup

0≤u≤s
‖ct+u − ct‖q |Ft

)
≤ Ks1∧q/2, ‖E (ct+s − ct|Ft)‖ ≤ Ks, (B.1)

E
∥∥∥(∆n

i X)(∆n
i X)ᵀ1{‖∆n

i X‖≤un} − (∆n
i X
′)(∆n

i X
′)ᵀ
∥∥∥ ≤ Kan∆(2−γ)$+1

n , for some an → 0, (B.2)

E
(∥∥ĉikn∆n − ĉ′ikn∆n

∥∥q) ≤ Kan∆(2q−γ)$+1−q
n , for some q ≥ 1, and an → 0, (B.3)

E
∥∥ĉ′ikn∆n

− c̄ikn∆n

∥∥p ≤ Kk−p/2n , for some p ≥ 1, (B.4)

E (‖αni ‖
q |Fi∆n) ≤ K∆q

n, for some q ≥ 0, (B.5)

‖E (αni |Fi∆n)‖ ≤ K∆3/2
n

(
∆1/2
n + ηni

)
, (B.6)∣∣∣E(αn,jki αn,lmi −

(
cjli∆n

ckmi∆n
+ cjmi∆n

ckli∆n

)
∆2
n|Fi∆n

)∣∣∣ ≤ K∆5/2
n , (B.7)∥∥E

(
βnikn |Fikn∆n

)∥∥ ≤ K∆n
1/2
(
kn∆1/2

n + ηnikn

)
, (B.8)
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∥∥∥E
(
βn,jkikn

βn,lmikn
|Fikn∆n

)
− k−1

n (cjlikn∆n
ckmikn∆n

+ cjmikn∆n
cklikn∆n

)
∥∥∥

≤ K∆n
1/2
(
k−1/2
n + kn∆1/2

n + ηnikn

)
, (B.9)

E
(∥∥βnikn∥∥q |Fikn∆n

)
≤ K

(
k−q/2n + kn∆n

)
, for some q ≥ 2, (B.10)

∆nE

[t/∆n]∑
i=1

ηni → 0. (B.11)

Proof of Lemma 6. These estimates are given by Lemma A.2 in Li and Xiu (2016), (4.3), (4.8), (4.10),

(4.11), (4.12), (4.18), Lemmas 4.2 and 4.3 of Jacod and Rosenbaum (2013), and Lemma 13.2.6 of

Jacod and Protter (2012).

Now we return to the proof of Proposition 1.

1) We show that we can restrict the domain of function f to some compact set, where both the

estimates {ĉikn∆n}i=0,1,2,...,[t/(kn∆n)] and the sample path of {cs}s∈[0,t] take values. By (B.4), we have

for p ≥ 1,

E
∥∥ĉ′ikn∆n

− c̄ikn∆n

∥∥p ≤ Kk−p/2n .

Therefore, by the maximal inequality, we deduce, by picking p > 2/ς − 2,

E

∣∣∣∣∣ sup
0≤i≤[t/(kn∆n)]

∥∥ĉ′ikn∆n
− c̄ikn∆n

∥∥p∣∣∣∣∣ ≤ K∆−1
n k−p/2−1

n → 0,

therefore, sup0≤i≤[t/(kn∆n)]

∥∥ĉ′ikn∆n
− c̄ikn∆n

∥∥ = op(1). Moreover, by (B.2) we have

E

∣∣∣∣∣ sup
0≤i≤[t/(kn∆n)]

∥∥ĉikn∆n − ĉ′ikn∆n

∥∥∣∣∣∣∣ ≤ 1

kn∆n

[t/∆n]−kn∑
i=1

E
∥∥∥(∆n

i X)(∆n
i X)ᵀ1{‖∆n

i X‖≤un} − (∆n
i X
′)(∆n

i X
′)ᵀ
∥∥∥

≤Kan∆(2−γ)$−1+ς
n → 0.

As a result, we have as ∆n → 0,

sup
0≤i≤[t/(kn∆n)]

‖ĉikn∆n − c̄ikn∆n‖
p−→ 0. (B.12)

Note that by Assumption 3, for 0 ≤ s ≤ t, cs ∈ C ∩ M∗(g1, g2, . . . , gr), where C is a
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convex and open set. Therefore, {c̄ikn∆n}i=0,1,2,...,[t/(kn∆n)] ∈ C by convexity. For n large

enough, {ĉikn∆n}i=0,1,2,...,[t/(kn∆n)] ∈ C, with probability approaching 1, by (B.12). Since C̄ ⊂

M(g1, g2, . . . , gr), we can restrict the domain of f to the compact set λ(C̄) ⊂ D(g1, g2, . . . , gr),

in which f is C∞ with bounded derivatives. Moreover, because λgj (·), 1 ≤ j ≤ r are continuous

functions, min1≤j≤r−1(λgj (·) − λgj+1(·)) is hence continuous, so that infc∈C{min1≤j≤r−1(λgj (c) −

λgj+1(c))} ≥ ε > 0. It follows from Lemma 4 and Theorem 3.5 of Silhavý (2000) that F (·) is C∞

with bounded derivatives on C.

2) Next, we have

∥∥V (∆n, X;F )− V ′(∆n, X;F )
∥∥ ≤ kn∆n

[t/(kn∆n)]∑
i=0

∥∥F (ĉikn∆n)− F (ĉ′ikn∆n
)
∥∥

≤ Kkn∆n

[t/(kn∆n)]∑
i=0

∥∥ĉikn∆n − ĉ′ikn∆n

∥∥ .
By (B.3), we have

E
(∥∥ĉikn∆n − ĉ′ikn∆n

∥∥) ≤ Kan∆(2−γ)$
n ,

where an is some sequence going to 0, as n→∞, which implies

V (∆n, X;F )− V ′(∆n, X;F ) = Op(an∆(2−γ)$
n ). (B.13)

As a result, given the conditions on $, we have

kn
(
V (∆n, X;F )− V ′(∆n, X;F )

)
= op(1),

hence we can proceed with V ′ in the sequel.

3) Then we show for each 1 ≤ h ≤ d, we have

kn

(
V ′(∆n, X;Fh)− kn∆n

[t/(kn∆n)]∑
i=0

(
Fh(cikn∆n)

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmFh(cikn∆n) (cjl,ikn∆nckm,ikn∆n + cjm,ikn∆nckl,ikn∆n)

))
= op(1).

where Fh is the hth entry of the vector-valued function F .
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To prove it, we decompose the left hand side into 4 terms:

Rn1,h =k2
n∆n

[t/(kn∆n)]∑
i=0

(
Fh(cikn∆n + βnikn)− Fh(cikn∆n)−

d∑
l,m=1

∂lmFh(cikn∆n)βn,lmikn

− 1

2

d∑
j,k,l,m=1

∂2
jk,lmFh(cikn∆n)βn,lmikn

βn,jkikn

)
, (B.14)

Rn2,h =k2
n∆n

[t/(kn∆n)]∑
i=0

1

2

d∑
j,k,l,m=1

∂2
jk,lmFh(cikn∆n)

(
βn,lmikn

βn,jkikn
− 1

kn
(cjl,ikn∆nckm,ikn∆n + cjm,ikn∆nckl,ikn∆n)

)
,

(B.15)

Rn3,h =kn∆n

[t/(kn∆n)]∑
i=0

d∑
l,m=1

∂lmFh(cikn∆n)

kn∑
u=1

(clm,(ikn+u)∆n
− clm,ikn∆n), (B.16)

Rn4,h =kn

[t/(kn∆n)]∑
i=0

d∑
l,m=1

∂lmFh(cikn∆n)

kn∑
u=1

αn,lmikn+u, (B.17)

We first consider Rn1,h. By (B.10), we have

E(|Rn1,h|) ≤ Kk2
n∆n

[t/(kn∆n)]∑
i=0

E
∥∥βnikn∥∥3 ≤ Kk2

n∆n

[t/(kn∆n)]∑
i=0

(k−3/2
n + kn∆n)

≤ Kk2
n∆n +Kk−1/2

n → 0.

As to Rn2,h, we denote the term inside the summation of Rn2,h as νnikn . So we have

Rn2,h = k2
n∆n

[t/(kn∆n)]∑
i=0

(
νnikn − E(νnikn |Fikn∆n) + E(νnikn |Fikn∆n)

)
.

By (B.9) we have

|E(νnikn |Fikn∆n)| ≤ K∆n
1/2
(
k−1/2
n + kn∆1/2

n + ηnikn

)
.

On the other hand, by (B.10), we can derive

E
(
νnikn − E(νnikn |Fikn∆n)

)2 ≤ Kkn∆n.
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Then Doob’s inequality implies that

E

sup
s≤t

∣∣∣∣∣∣
[s/(kn∆n)]∑

i=0

(
νnikn − E(νnikn |Fikn∆n)

)∣∣∣∣∣∣
 ≤ Kt.

As a result, by (B.11)

E
(
|Rn2,h|

)
≤k2

n∆nE

sup
s≤t

∣∣∣∣∣∣
[s/(kn∆n)]∑

i=0

(
νnikn − E(νnikn |Fikn∆n)

)∣∣∣∣∣∣
+ k2

n∆n

[t/(kn∆n)]∑
i=0

∣∣E(νnikn |Fikn∆n)
∣∣

≤Kk2
n∆n +Kkn

√
∆n

kn∆n

t/(kn∆n)∑
i=0

ηikn

→ 0.

The proof for E(|Rn3,h|) → 0 is similar. Denote the term inside the summand as ξnikn . By (B.1) and

the Cauchy-Schwarz inequality, we have

|E(ξnikn |Fikn∆n)| ≤ Kk2
n∆n, E

(
|ξnikn |

2|Fikn∆n

)
≤ Kk3

n∆n.

By Doob’s inequality again,

E
(
|Rn3,h|

)
≤ kn∆n

[t/(kn∆n)]∑
i=0

E
(∣∣E (ξnikn |Fikn∆n

)∣∣)+ kn∆n

[t/(kn∆n)]∑
i=0

E
(
|ξnikn |

2
)1/2

≤ Kk2
n∆n → 0.

For Rn4,h, it can be shown in the proof of Theorem 2 below that Rn4,h = Op(kn
√

∆n) = op(1).

4) Finally, it is sufficient to show that

kn

[t/(kn∆n)]∑
i=0

(∫ (i+1)kn∆n

ikn∆n

Fh(cikn∆n)ds−
∫ (i+1)kn∆n

ikn∆n

Fh(cs)ds

)
−
∫ t

[t/(kn∆n)]kn∆n

Fh(cs)ds

 p−→ 0,

as the similar result holds if we replace Fh(cikn∆n) by ∂2
jk,lmFh(cikn∆n) (cjl,ikn∆nckm,ikn∆n + cjm,ikn∆nckl,ikn∆n).

Since Fh is bounded, the second term is bounded by Kk2
n∆n → 0. As to the first term, we notice
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that

ζnikn =

∫ (i+1)kn∆n

ikn∆n

Fh(cikn∆n)ds−
∫ (i+1)kn∆n

ikn∆n

Fh(cs)ds

is measurable with respect to F(i+1)kn∆n
, and that

|E
(
ζnikn |Fikn∆n

)
| ≤ K(kn∆n)2, E

(
|ζnikn |

2|Fikn∆n

)
≤ K(kn∆n)3,

so the same steps as in (2) and (3) yield the desired results.

Appendix B.8 Proof of Theorem 2

Proof. To start, we decompose

1√
∆n

Ṽ (∆n, X;F )− kn∆n

[t/(kn∆n)]∑
i=0

F (cikn∆n)

 =
1

kn
√

∆n
(Rn1 +Rn2 +Rn3 +Rn4 +Rn5 +Rn6 ) ,

(B.18)

where Rni =
(
Rni,1, R

n
i,2, . . . , R

n
i,d

)ᵀ
, for i = 1, 2, 3, 4, and 5, with Rn1,h, Rn2,h, Rn3,h and Rn4,h given by

equations (B.14) - (B.17). In addition, Rn5,h and Rn6,h are given by

Rn5,h =
kn∆n

2

[t/(kn∆n)]∑
i=0

d∑
j,k,l,m=1

(
∂2
jk,lmFh(cikn∆n) (cjl,ikn∆nckm,ikn∆n + cjm,ikn∆nckl,ikn∆n)

−∂2
jk,lmFh(ĉ′ikn∆n

)
(
ĉ′jl,ikn∆n

ĉ′km,ikn∆n
+ ĉ′jm,ikn∆n

ĉ′kl,ikn∆n

))
.

Rn6,h =
kn∆n

2

[t/(kn∆n)]∑
i=0

d∑
j,k,l,m=1

(
∂2
jk,lmFh(ĉ′ikn∆n

)
(
ĉ′jl,ikn∆n

ĉ′km,ikn∆n
+ ĉ′jm,ikn∆n

ĉ′kl,ikn∆n

)
−∂2

jk,lmFh(ĉikn∆n) (ĉjl,ikn∆n ĉkm,ikn∆n + ĉjm,ikn∆n ĉkl,ikn∆n)
)

+ kn
(
V (∆n, X;F )− V ′(∆n, X;F )

)
.

We have shown in the proof of Proposition 1 that Rni = op(kn
√

∆n), for i = 1, 2, 3. Therefore, these

terms do not contribute to the asymptotic variance of Ṽ ′(∆n, X;F ).

Next, we show that Rn5,h is also op(kn
√

∆n). By (B.10) and the mean-value theorem, we have

E|Rn5,h| ≤Kkn∆n

[t/(kn∆n)]∑
i=0

E
∥∥cikn∆n − ĉ′ikn∆n

∥∥ ≤ K(k−1/2
n + kn∆n) = op(kn

√
∆n).
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As to Rn6,h, by (B.13) and the mean-value theorem, we have

E|Rn6,h| ≤Kkn∆n

[t/(kn∆n)]∑
i=0

E
∥∥ĉikn∆n − ĉ′ikn∆n

∥∥ = Op(an∆(2−γ)$
n ) = op(kn

√
∆n).

Hence, $ ≥ 1−ς
2−γ >

1
4−2γ is sufficient to warrant the desired rate.

As a result, except for the term that is related to Rn4 , all the remainder terms on the right-hand

side of (B.18) vanish. We write Rn4 as

Rn4 = kn

[t/(kn∆n)]kn∑
i=1

d∑
l,m=1

ωn,lmi αn,lmi , where ωn,lmi = ∂lmF (c[(i−1)/kn]kn∆n
).

where ωn,lmi is a vector measurable with respect to F(i−1)∆n
, and ‖ωni ‖ ≤ K. To prove the stable

convergence result, we start with

1√
∆n

E

∥∥∥∥∥∥
[t/(kn∆n)]kn∑

i=0

ωn,lmi E
(
αn,lmi |Fi∆n

)∥∥∥∥∥∥ ≤ 1√
∆n

[t/(kn∆n)]kn∑
i=0

K∆3/2
n (

√
∆n + E (ηni ))→ 0,

where we use (B.6) and (B.11). Moreover, by (B.5), we have

1

∆2
n

E

[t/(kn∆n)]kn∑
i=0

‖ωni ‖
4 E
(
‖αni ‖

4 |Fi∆n

) ≤ K∆n → 0.

Also, similar to (4.18) in Jacod and Rosenbaum (2013), we have E
(
αn,lmi ∆n

i N |Fi∆n

)
= 0, for N = W

or any N that is an arbitrary bounded martingale orthogonal to W , which readily implies

1√
∆n

[t/(kn∆n)]kn∑
i=0

ωn,lmi E
(
αn,lmi ∆n

i N |Fi∆n

)
p−→ 0.

Finally, note that for any 1 ≤ p, q ≤ d, by (B.7),

1

∆n

[t/(kn∆n)]kn∑
i=0

|ωn,jki,p ωn,lmi,q |
∥∥∥E
(
αn,jki αn,lmi |Fi∆n

)
− (ci∆n,jlci∆n,km + ci∆n,jmci∆n,kl) ∆2

n

∥∥∥ ≤ K∆1/2
n ,
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which implies

1

∆n

[t/(kn∆n)]kn∑
i=0

ωn,jki,p ωn,lmi,q E
(
αn,jki αn,lmi |Fi∆n

)

=
1

∆n

[t/(kn∆n)]kn∑
i=0

ωn,jki,p ωn,lmi,q (ci∆n,jlci∆n,km + ci∆n,jmci∆n,kl) ∆2
n + op(1)

p−→
∫ t

0
∂jkFp(cs)∂lmFq(cs) (cs,jlcs,km + cs,jmcs,kl) .

Finally, by Theorem IX.7.28 of Jacod and Shiryaev (2003), we establish

1

kn
√

∆n
R4
n
L−s−→Wt,

where Wt is conditional Gaussian on an extension of the probably space, with a covariance matrix

E (Wp,tWq,t|F) =

d∑
j,k,l,m=1

∫ t

0
∂jkFp(cs)∂lmFq(cs) (cs,jlcs,km + cs,jmcs,kl) .

Appendix B.9 Proof of Proposition 2

Proof. As we have seen from the above proof, we have for any c ∈ C,

‖∂jkFp(c)∂lmFq(c) (cjlckm + cjmckl)‖ ≤ K(1 + ‖c‖2),

which, combined with the same argument in the proof of Theorem 1, establishes the desired result.

Appendix B.10 Proof of Corollary 1

Proof. The first statement on consistency follows immediately from Theorem 1, as Assumption 2

holds with ζ = 1. Next, we prove the central limit result. For any 1 ≤ p ≤ d, we define fλp as,

fλp (x̄) =
1

gp − gp−1

gp∑
j=gp−1+1

x̄j ,
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hence we have

∂fλp (x̄) =
1

gp − gp−1

gp∑
v=gp−1+1

ev, ∂2fλp (x̄) = 0,

and fλ is C∞ and Lipchitz. By Lemma 4 we can derive

∂jkF
λ
p (cs) =

d∑
u=1

Ouj∂uf
λ
p (λ(cs))Ouk =

1

gp − gp−1

d∑
u=1

gp∑
v=gp−1+1

Ouje
v
uOuk =

1

gp − gp−1

gp∑
v=gp−1+1

OvjOvk.

Therefore, the asymptotic covariance matrix is given by

∫ t

0

d∑
j,k,l,m=1

∂jkF
λ
p (cs)∂lmF

λ
q (cs) (cjl,sckm,s + cjm,sckl,s) ds

=
1

gp − gp−1

1

gq − gq−1

∫ t

0

d∑
j,k,l,m=1

gp∑
v=gp−1+1

gq∑
u=gq−1+1

OvjOvkOulOum (cjl,sckm,s + cjm,sckl,s) ds

=
2

(gp − gp−1)(gq − gq−1)

∫ t

0

d∑
l,m=1

gp∑
v=gp−1+1

gq∑
u=gq−1+1

OvlOvmOulOumλ
2
v,sds

=
2

(gp − gp−1)(gq − gq−1)

∫ t

0

gp∑
v=gp−1+1

gq∑
u=gq−1+1

δu,vλ
2
v,sds

=
2δp,q

(gp − gp−1)

∫ t

0
λ2
gp,sds. (B.19)

Next, we calculate the bias-correction term. Recall that the estimator is given by

F λp (ĉikn∆n) =
1

gp − gp−1

gp∑
v=gp−1+1

λ̂v,ikn∆n ,

where λ̂v,ikn∆n is the corresponding eigenvalue of the sample covariance matrix ĉikn∆n . Although

ĉikn∆n and cikn∆n may have different eigenstructure, it is easy to verify that the functional forms

of the second order derivative of F λp evaluated at both points turn out to be the same, so here we

only provide the calculations based on ĉikn∆n . Since almost surely, sample eigenvalues are simple, it

implies from Lemma 4 that

∂2
jk,lmF

λ
p (ĉikn∆n) =

d∑
u,v=1

Af
λ
p
uv (λ(ĉikn∆n))ÔulÔujÔvkÔvm
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=
1

gp − gp−1

gp∑
h=gp−1+1

d∑
u,v=1,u6=v

ehu − ehv
λ̂u,i∆n − λ̂v,i∆n

ÔulÔujÔvkÔvm

=
1

gp − gp−1

gp∑
h=gp−1+1

d∑
u=1,u 6=h

1

λ̂h,ikn∆n − λ̂u,ikn∆n

(
ÔulÔujÔhkÔhm + ÔhlÔhjÔukÔum

)
,

where Ô is the orthogonal matrix such that Ôĉikn∆nÔ
ᵀ = Diag(λ(ĉikn∆n)). The dependence of Ô on

ikn∆n is omitted for brevity.

To facilitate the implementation, we consider the matrix λ̂h,ikn∆nI− ĉikn∆n . Note that

Diag(λ̂h,ikn∆n − λ̂1,ikn∆n , λ̂h,ikn∆n − λ̂2,ikn∆n , . . . , λ̂h,ikn∆n − λ̂d,ikn∆n) = Ô(λ̂h,ikn∆nI− ĉikn∆n)Ôᵀ,

hence we have

(
λ̂h,ikn∆nI− ĉikn∆n

)+
= ÔᵀDiag

(
1

λ̂h,ikn∆n − λ̂1,ikn∆n

,
1

λ̂h,ikn∆n − λ̂2,ikn∆n

, . . . , 0, . . .
1

λ̂h,ikn∆n − λ̂d,ikn∆n

)
Ô.

As a result, we obtain

(
λ̂h,ikn∆nI− ĉikn∆n

)+

km
=

d∑
u=1,u6=p

1

λ̂h,ikn∆n − λ̂u,ikn∆n

ÔukÔum,

Therefore, we have

∂2
jk,lmF

λ
p (ĉikn∆n) =

1

gp − gp−1

gp∑
h=gp−1+1

Ôhk

(
λ̂h,ikn∆nI− ĉikn∆n

)+

jl
Ôhm+Ôhj

(
λ̂h,ikn∆nI− ĉikn∆n

)+

km
Ôhl.

Now we can calculate the following term, which is used for bias-correction:

d∑
j,k,l,m=1

∂2
jk,lmF

λ
p (ĉi∆n) (ĉjl,i∆n ĉkm,i∆n + ĉjm,i∆n ĉkl,i∆n)

=
1

gp − gp−1

gp∑
h=gp−1+1

d∑
j,k,l,m=1

(
Ôhk

(
λ̂h,ikn∆nI− ĉikn∆n

)+

jl
Ôhm + Ôhj

(
λ̂h,ikn∆nI− ĉikn∆n

)+

km
Ôhl

)

· (ĉjl,ikn∆n ĉkm,ikn∆n + ĉjm,ikn∆n ĉkl,ikn∆n)

=
2

gp − gp−1

gp∑
h=gp−1+1

λ̂h,ikn∆nTr

((
λ̂h,ikn∆nI− ĉikn∆n

)+
ĉikn∆n

)
. (B.20)
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The last equality uses the following observation:5

(λ̂h,ikn∆nI− ĉikn∆n)+Ôᵀ
h,· = 0,

which concludes the proof of (ii). The proof of (iii) uses the same calculations as above. Note that

we can apply Theorem 2 with only Assumption 4, because the spectral function here only depends

on λg.

Appendix B.11 Proof of Proposition 3

Proof. By Lemma 5 and the uniform convergence of ĉikn∆n − c̄ikn∆n to 0 established above, we can

restrict the domain of γg(·) to the set C, in which it is C∞ with bounded derivatives. By Theorem

21 of Protter (2004), we have

[t/(kn∆n)]−1∑
i=1

γᵀg,ikn∆n
(X(i+1)kn∆n

−Xikn∆n)
u.c.p
=⇒

∫ t

0
γg,s−dXs.

Therefore, it remains to show that

[t/(kn∆n)]−1∑
i=1

(
γ̂ᵀg,(i−1)kn∆n

− γᵀg,ikn∆n

)
(X(i+1)kn∆n

−Xikn∆n)
u.c.p
=⇒ 0.

Define a F(i+1)kn∆n
-measurable function:

ξikn =
(
γ̂ᵀg,(i−1)kn∆n

− γᵀg,ikn∆n

)
(X(i+1)kn∆n

−Xikn∆n).

By standard estimates in (B.1) with c replaced by X, (B.3), and (B.10),

E|E (ξikn | Fikn∆n)| =E|γ̂g,(i−1)kn∆n
− γg,ikn∆n

||E
(
(X(i+1)kn∆n

−Xikn∆n)|Fikn∆n

)
|

≤KE|ĉ(i−1)kn∆n
− cikn∆n |(kn∆n)

≤K
(

(kn∆n)1/2 + an∆(2−γ)$
n +

√
k−1
n + kn∆n

)
(kn∆n)

5See page 160 of Magnus and Neudecker (1999).
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Moreover, we have by the same estimates above,

E
(
|ξikn |2|Fikn∆n

)
≤ (kn∆n + an∆(4−γ)$−1

n + k−1
n + kn∆n)kn∆n.

Finally, using Doob’s inequality, and measurability of ξikn , we obtain

E

 sup
0≤s≤t

|
[s/(kn∆n)]−1∑

i=1

ξikn |


≤

[t/(kn∆n)]−1∑
i=1

E|E (ξikn | Fikn∆n)|+

[t/(kn∆n)]−1∑
i=1

E
(
|ξikn |2|Fikn∆n

)1/2

≤K
(

(kn∆n)1/2 + an∆(2−γ)$
n +

√
k−1
n + kn∆n

)
+K(kn∆n + an∆(4−γ)$−1

n + k−1
n + kn∆n)1/2

→0,

because (4− γ)$ ≥ 1 under our assumptions on $ and ς, which establishes the proof.

Appendix B.12 Proof of Corollary 2

Proof. The (p, q) entry of the asymptotic covariance matrix is given by

∫ t

0

d∑
j,k,l,m=1

∂jkγgp,s∂lmγgq,s (cjl,sckm,s + cjm,sckl,s) ds

=

∫ t

0

d∑
j,k,l,m=1

(λg,sI− cs)+
pj(λg,sI− cs)

+
qlγgk,sγgm,s (cjl,sckm,s + cjm,sckl,s) ds

=

∫ t

0

d∑
j,l=1

(λg,sI− cs)+
pj(λg,sI− cs)

+
ql

(
λg,scjl + λ2

g,sγgl,sγgj,s
)
ds

=

∫ t

0
λg,s

(
(λg,sI− cs)+cs(λg,sI− cs)+

)
p,q
ds,

where we use (λg,sI−cs)+γg,s = 0, and
∑d

k=1 γgk,sckm,s = λg,sγgm,s. To calculate the asymptotic bias,

we note that the ĉs has only simple eigenvalues almost surely. Denote λ̂h and γ̂h as the corresponding

eigenvalue and eigenvector. We omit the dependence on time s to simplify the notations. By Lemma
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2, we obtain

d∑
j,k,l,m=1

∂2
jk,lmγ̂gh(ĉjlĉkm + ĉjmĉkl)

=− 2
∑
p 6=g

λ̂pλ̂g

(λ̂g − λ̂p)2

d∑
l,m=1

γ̂2
glγ̂pmγ̂phγ̂gm +

∑
p 6=g

λ̂pλ̂g

(λ̂g − λ̂p)2

 d∑
l,m=1

γ̂2
plγ̂gmγ̂phγ̂pm +

d∑
l,m=1

γ̂2
pmγ̂glγ̂plγ̂ph


+
∑
p 6=g

∑
q 6=p

λ̂pλ̂g

(λ̂g − λ̂p)(λ̂p − λ̂q)

 d∑
l,m=1

γ̂qlγ̂plγ̂pmγ̂gmγ̂qh +

d∑
l,m=1

γ̂2
pmγ̂glγ̂qlγ̂qh


+
∑
p 6=g

∑
q 6=p

λ̂qλ̂g

(λ̂g − λ̂p)(λ̂p − λ̂q)

 d∑
l,m=1

γ̂2
qlγ̂gmγ̂phγ̂pm +

d∑
l,m=1

γ̂qmγ̂glγ̂qlγ̂pmγ̂ph


+
∑
p 6=g

∑
q 6=g

λ̂pλ̂q

(λ̂g − λ̂p)(λ̂g − λ̂q)

 d∑
l,m=1

γ̂pmγ̂
2
qlγ̂gmγ̂ph +

d∑
l,m=1

γ̂qmγ̂plγ̂qlγ̂gmγ̂ph


=−

∑
p 6=g

λ̂pλ̂g

(λ̂g − λ̂p)2
γ̂gh.

Since γg(·) is a C∞ function, it is straightforward using the proof of Theorem 2 that the desired CLT

holds, even though γg(·) is not a spectral function.
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