Appendix B Mathematical Proofs

Appendix B.1 Proof of Lemma 1

Proof. By the classical Weyl inequalities in e.g., Horn and Johnson (2013) and Tao (2012), we have
IN(A+e€) —Nj(A)] < K ||e]], for all j =1,2,...,d, where A,e € M, and K is some constant. This
establishes the Lipchitz property. 1

Appendix B.2 Proof of Lemma 2

Proof. Tt is straightforward to show (by the implicit function theorem, see Magnus and Neudecker
(1999) Theorem 8.7) that any simple eigenvalue and its corresponding eigenvector, written as func-
tions of A, \;j(A) and v4(A), are C*°. To calculate their derivatives, note that Ay, = \;7g4, hence
we have (9j5A)7g + A(9jkvg) = (9jrrg)Vg + Ag(OjkYg). Pre-multiplying v on both sides yields
DjrAg = 7495k A) Vg = YgjYgk- Rewrite it into (AL — A)0jkvg = (9j8A)vg — (OjkAg)Vg, Which leads
0 (AL —A)T (NI — A)0jiyg = (AL — A)T (95 A)7g. As a result, djpvg = (AL — A)T Tk,

In the case when all eigenvalues are simple, by direct calculation we have

1
ajk’)/gh Z Ny — My T IphVpiYgks
p#g

where we use the fact that (v{,73,...,7])TA(71,72, - --,74) = Diag(A(A)). Further,

1 1
FpamVgh = — Z FYES W (OimAg = OumAp) Yph Ypj Yok + Z ﬁazm (Yph VpiYgk)
PF£g P PF£g
1
= Z ()\ Y )2 (’7gl7gm'7ph’7pj79k - ’7pl’7pm7ph7pj’7/gk)
ptg Y p
+ Z ) Oy — Ag) 2t P YanTpi Yok
p#gq#p a
+ Z Z )( Y )’qu'Ypm"Yqj’th'ng
p#aq#p a
+ Z Z )( 2\ )qu’qu’ngVph’ija
p¢gq¢g a

which concludes the proof. 1
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Appendix B.3 Proof of Lemma 3

Proof. The proof is by induction. Consider, at first the following optimization problem:

u
mwax/ Yiesvsds, st. Alys =1, 0<s<u<t.
s Jo

Using a sequence of Lagrange multipliers \g, the problem can be written as solving
CsYs = As7Ys, and ’Y;’Ys =1, for any 0 < s < t.

Hence, the original problem is translated into eigenanalysis.
Suppose the eigenvalues of ¢, are ordered as in A\ s > Aa s > ... > A\g,. Note that viesys = A,
so that As = A1, and 75 = 71,5 is one of the corresponding eigenvectors (if A; s is not unique), and

the maximal variation is fg A1,sds.
Suppose that we have found i 4,...,7,s, for 1 <k < d and 0 < s < t, the (k + 1)th principal

component is defined by solving the following problem:

u
mwax/ Yresysds, st ylys =1, and ’y]T’ScS’ys =0,for1<j<k 0<u<t
s 0

Using similar technique of Lagrange multipliers, A, and vy, ..., V4, we find

k
CsYs = AsYs + Z VjsCs7j,s-
j=1
Multiplying on the left fleS, for some 1 <1 < k, we can show that v scs7y;s = 0. Indeed,
k
0= )\Z,S'YZS'VS = ’YZSCS’YS = '7;:8)\375 + Z Vj,s'VZSCS’Yj,s = Vl,s)\l,s-

=1

Therefore, since [ is an arbitrary number between 1 and k, we have csvs = Ag7y,. Hence, Ay = Apy1 5,
Vs = Yk+1,s is one of the eigenvectors associated with the eigenvalue A\j1 . This establishes the first

part of the theorem.
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For any cadlag and adapted process s,

t
[/ vs_dXs,/ } /Vgcsfysds.
0

Hence the statement follows from the gth-step optimization problem. Note that the validity of the

integrals above is warranted by the continuity of A given by Lemma 1. J

Appendix B.4 Proof of Lemma 4

Proof. The first statement of the proof follows by immediate calculations from Theorem 1.1 in Lewis
(1996b) and Theorem 3.3 in Lewis and Sendov (2001). The second statement is discussed and proved
in, e.g., Ball (1984), Sylvester (1985), and Silhavy (2000). Finally, the last statement on convexity
is proved in Davis (1957) and Lewis (1996a). 1

Appendix B.5 Proof of Lemma 5

Proof. Obviously, for any 1 < g; < g2 < ... < g, < d, the set defined in (4), D(g1, 92,.--,9r), IS an
open set in R} /{0}. Define f(z) = |z, | +>i2j |Tg; —Zg;|, which is a continuous and convex function.
It is differentiable at z if and only if x € D(¢1,92,. .., 9r). Therefore, by Lemma 4, f o \ is convex,
and it is differentiable at A if and only if A(A) € D(¢1,92,...,9r), i.e., A € M(g1,92,...,9r). On
the other hand, a convex function is almost everywhere differentiable, see Rockafellar (1997), which
implies that M(g1, g2, ..., gr) is dense in M} ". Moreover, M(g1, g2, ..., g,) is the pre-image of the
open set R*/{0} under a continuous function h o A, where h(z) = [[,,; [Z4 — %g,[|Zg,|. Therefore,

it is open. 1

Appendix B.6 Proof of Theorem 1

Proof. Throughout the proof, we adopt the usual localization procedure as detailed in Jacod and

Protter (2012). Note that

[t/(knAn)] [t/(knAn)]
V(A XiF) =k 3 (k) = a3 (FoN@noa,):
=0

By Assumption 2 and Lemma 4, f o\ is a continuous vector-valued function. Moreover, for ¢ € M7,
o) < K1+ [A@)]°) < K1+ |¢|). Below we prove this theorem for any spectral function
F that is bounded by K (1 + ||c[|).
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We start with a function F' bounded by K everywhere. We extend the definition of ¢ to the entire

interval [0, ] by letting:
Cs = Clim1)knAy fOT (1 — kA, < s <ikpAg,.

Note that for any ¢ > 0, we have

E HV(An,X;F) - /OtF(cs)ds

E|F@) - Fes)l|ds + / E | F(cy)]| ds

[t/ (kn An)]knAr
/ [t/(EnAn)knAn

<knAnE || F (€t nm)iinnn)|| + ;

[t/ (knAn)]knA
<Kk + / E||F(@) - F(cs)| ds.
0

By the fact that ¢ — cs — 0, it follows that E ||[F(¢,) — F(cs)|| — 0, which is bounded uniformly
in s and n because F' is bounded. Therefore, by the dominated convergence theorem, we obtain the

desired convergence.

Next we show the convergence holds under the polynomial bound on F. Denote 1 to be a C*
function on R™ such that 15 o)(z) < ¥(x) < 1pjoee)(®). Let e(c) = ([l /e), and YL(c) =
1 — ¢e(c). Since the function F -, is continuous and bounded, the above argument implies that
V(A,, X;F4l) 2 fg F-yL(cs)ds, for any fixed e. When e is large enough, we have fg F 4l (cs)ds =
fg F(cs)ds by localization, since ¢, is locally bounded. On the other hand, F 1. (c) < K ||c||° Lijicl>e}s

for € > 1. So it remains to show that

[t/ (knAn))
lim limsup B | knA, Y @ik |1 Lgjo, o >et | =0

€200 p—oo °
=0

By (9.4.7) of Jacod and Protter (2012), there exists some sequence a,, going to 0, such that

_ K - -
E (HCiknAn”C 1{H/C\iknAnH>5}’]:iknAn> <<+ Ka, AUl—Cte=),

which establishes the desired result.
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Appendix B.7 Proof of Proposition 1

Proof. We divide the proof into several steps. To start, we need some additional notations. Let
X’ and ¢ denote the continuous parts of the processes X and c, respectively. Also, we introduce
Cik, A, to denote the estimator constructed similarly as in (5) with X replaced by X’ and without

truncation, namely

?r

~
Cik,,

n NT
’Lk +] zkn+]X) .

o . A/ .
In addition, A;, A, corresponds to the vector of eigenvalues of ¢}, A , and

/()
V/(Ap, X5 F) = kn A, Z f()\zkn )

We also define

1 (i+1)knAn

CikpnAn = 7T
S knAn tknAp

1/2
"=|E |b; — b ’2|]:.
77@ Sup ZAn'i'u ZAn ZAn .
AR <u<iAp+knAp

We first collect some known estimates in the next lemmas:

cuds, Bl = Cpoa, — Citynn o = (AFX)(AFX)T — e, Ay, and

Lemma 6. Under the assumptions of Proposition 1, we have

E ( sup |[crpu — | |ft> < Ks"2 B (crys — oo )| < Ks, (B.1)
0<u<s

E H(A?X)(A?X)Tl (arx]|<u} — (A?X’)(A?X’)TH < Kan AP for some an — 0,  (B.2)

E (HaknAn - /C\gk:nAan ) < Kapn APT0%H1=4 for some ¢ > 1, and a, — 0, (B.3)
E |, A, — EiknAan < Kk7P?, for some p > 1, (B.4)
E (||laf || Fia,) < KAL, for some ¢ > 0, (B.5)
I (0 Fia, Il < KAY? (A2 +07). (B.6)
B (ap i — (d, dx + X A, ) A2IFa, )| < KA, (B.7)
1B (85, 1 Fikuan) || < KA (knAY2 405 ) (B:)
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n,]k n,lm _1 il km, im kl
HE (Bi’f ikn m’“nAn) (Gl Ciin A F Ciloy A Cihn A )H

< KA,? (k:;l/? + knALZ 4 ngzn) , (B.9)

E (Hﬁﬁgan | Fikna,) < K (k;qm + knAn) , for some q > 2, (B.10)
[t/An]

ALE D i = 0. (B.11)
=1

Proof of Lemma 6. These estimates are given by Lemma A.2 in Li and Xiu (2016), (4.3), (4.8), (4.10),
(4.11), (4.12), (4.18), Lemmas 4.2 and 4.3 of Jacod and Rosenbaum (2013), and Lemma 13.2.6 of
Jacod and Protter (2012). 1

Now we return to the proof of Proposition 1.
1) We show that we can restrict the domain of function f to some compact set, where both the
estimates {Cik, A, }i=0,1,2,....[t/(knA,) @0d the sample path of {cs}s¢(o,q take values. By (B.4), we have

gLy gy

for p > 1,
E (|G.a, — Cikann|]” < Kk, P2,

Therefore, by the maximal inequality, we deduce, by picking p > 2/¢ — 2,

E

sup [, a, = Cinuna ||| < KA P20,

0<i<[t/(knAn)]

therefore, sUpg<;<f/(k,a,)] H/c\;knAn — CiknAn || = 0p(1). Moreover, by (B.2) we have
| [/An]k
E sup CiknAn — Ci <o—— H (AT X) (AP X)L An x| <u,, X (ArX' TH
0<i<[t/(knAn)] | FnBn knAp ; A {[lapx]|<un}t (A7X)( )

<Kap, AZ™==1+s 0,

As a result, we have as A,, — 0,

sup |Gk, A, = Cikpa, |l = 0. (B.12)
0<i<[t/(knAn)]

Note that by Assumption 3, for 0 < s < t, ¢ € CN M*(g1,92,.--,9r), where C is a
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convex and open set. Therefore, {Cik,A,}i=0,12,..[t/(knn,)) € C by convexity. For n large
enough, {Cix,A, }i=0,1,2,...[t/(knAn)] € C, With probability approaching 1, by (B.12). Since C C
M(g1,92,...,g-), we can restrict the domain of f to the compact set A(C) C D(g1,92,--.,9),
in which f is C°° with bounded derivatives. Moreover, because Ay (-),1 < j < r are continuous
functions, minj<j<,—1(Ag;(-) — Ag,; .1 (+)) is hence continuous, so that inf.cc{mini<j<,—1(Ag,(c) —
Agir1(c))} = € > 0. It follows from Lemma 4 and Theorem 3.5 of Silhavy (2000) that F'(-) is C*°

with bounded derivatives on C.

2) Next, we have

/(3]
IV (& X3 F) = V(B X P S ka3 [ F@n) = P, )|
1=0
/(3]
O N N .
=0

By (B.3), we have

E (|[Giruan, = Croanl]) < Ka, A==
where a,, is some sequence going to 0, as n — co, which implies
V(An, X; F) = V'(Ap, X; F) = Opan, AZV%). (B.13)
As a result, given the conditions on w, we have
kn (V(An, X5 F) = V'(An, X3 F)) = 0p(1),
hence we can proceed with V' in the sequel.

3) Then we show for each 1 < h < d, we have

[t/ (knAn)]
/{:n(V/(An,X;Fh)_knAn Z (Fh(CiknAn)
1=0

Z i F (Cien ) (Clikn Ay Chmiken Ay F Cmien A Chlikn A )) = 0p(1).
]k:,l,m 1

where F}, is the hth entry of the vector-valued function F'.
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To prove it, we decompose the left hand side into 4 terms:

[t/ (knAn)] d
Ry, =kiAn > (Fh(ciknAn + B0 = Fu(Cirgn,) = Y OmFn(cin,a,) B
=0 l,m=1
Z O Fn( czknAn)ﬂZ;imBZ;ik>, (B.14)
j,k,l,m 1
2 A R n,lm on,jk 1
5 =kpA Z Z e imFn(Cinan,) | B BR2" — . (Cilikn A Chmikn A T Cimikn A Chl,iknAn) | 5
j.k,lm=1 "
(B.15)
[t/ (knAn)] En
Bh=knln > Z Om Fr(Cik,n,) Z(Clm,(z'kn+u)An = Clm,ikn ) (B.16)
=0 Il,m=1 u=1
[t/(knAn)]  d kn
Rip=kn > > OmFulcina,)d alil™,, (B.17)
=0 Lm=1 u=1

We first consider RY ;. By (B.10), we have

[t/ (knAn)] [t/ (knAn)]
B(RL) < KK2A, > BT < Kk280 > (6% + knldn)
1=0 1=0

< KE2A, + Kk7'V% 0.

As to Ry ), we denote the term inside the summation of Ry, as v . So we have

[t/ (knAn)]
Ry, =kpAy > (Ui, — B | Fikean) + EW | Fikaa,)) -
=0

By (B.9) we have
B, Fian)| € KAV (112 + kA2 ).

On the other hand, by (B.10), we can derive

2
E (vji., — B, | Fiknan))” < Kknly.
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Then Doob’s inequality implies that

[s/(knAn)]
E sgp Z (Vﬁgn — E(Vggn|ﬂknAn)) < Kt.
sstl =0
As a result, by (B.11)
[s/(knAn)] [t/ (kn An)]
B (|R3,]) <knAnE sup > W BRI Fwa))| | FEA. Y B0, IFik,a,)]
s< i—0 1=0
t/(knin)
<Kk, + Kk /Ay | knAn > ik, | = 0.

=0

The proof for E(|Ry,[) — 0 is similar. Denote the term inside the summand as j; . By (B.1) and

the Cauchy-Schwarz inequality, we have

By Doob’s inequality again,

[t/ (kn )] [t/ (knAn)] 1/2
E(RS) < kaln Y. E(E (&1 Fira)]) + ke | D E(I€5.P)
=0 =0
< KE2A, = 0.

For R}, it can be shown in the proof of Theorem 2 below that R}, = Op(knvAp) = 0p(1).

4) Finally, it is sufficient to show that

[t/ (kndn)] (i+1)knAp (i+1)kn Ay t
ko | D / Fh(ciknAn)ds—/ Fr(cs)ds —/ Fr(es)ds | =50,

=0 kenAp ikn A [t/ (knAn)knAs

. . . 2
as the similar result holds if we replace Fj,(cik, A, ) by 8jk,szh(CiknAn) (Cjlikn An Chim,ikn An + Cim,ikn An Chl,iknAn )-

Since F}, is bounded, the second term is bounded by Kk2A, — 0. As to the first term, we notice
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that

(i+1)knAp (i+1)knAr,
. 2/ Fh(Cz‘knAn)dS/ Fy(cs)ds
tknQn iknAn

is measurable with respect to F(;; 1)k, A, , and that
’E (Cﬁ@n‘flknAn) ‘ < K<knAn)2a E (‘Cﬁcn‘glﬂknAn) < K(knAn)?’v
so the same steps as in (2) and (3) yield the desired results. &

Appendix B.8 Proof of Theorem 2

Proof. To start, we decompose

1 7 0 7 0 m 0 n
\/Fn V(AanaF)_knAn ; F(CiknAn) :kn ( 1+R2+R3+R4+R5+R6)7

5

(B.18)
)
where R = (B2, Ry, RD,) s for i = 1,2,3,4, and 5, with Ry, RS, RS, and R}, given by

equations (B.14) - (B.17). In addition, Rf, and Ry, are given by

[t/ (knAn)] d

k;nAn
5 h =5 E § (03 1 P (Cikn ) (Cjtikn A Chomikn A F Cimitin A Chlikin A )
=0 jklm=1

2 ~ ~ ~ ~
_8jk im (€ zknAn) (le ikn A Chmyikn Ay T ij,z’knAnckl,z’knAn)) .
[t/(knAn)]

n _knA ) ~ ~ ~ ~
6h = 5 ]k imFr (G A, (le,iknAnckm,iknAn + ij,iknAanl,iknAn)
=0 7,k lm=1

ajk im F1 (i A) (Citikn A Chomikn A, T Ejm,iknAnEkz,iknAn)) + kn, (V(An, X5 F) = V(A X; F)) )

We have shown in the proof of Proposition 1 that R} = o,(k,v/Ay,), for i = 1,2,3. Therefore, these

terms do not contribute to the asymptotic variance of % (A, X F).

Next, we show that RZ ) is also op(knv/Ap). By (B.10) and the mean-value theorem, we have

[t/ (kn )]
EIRE,| <KknAn Y Ellew,a, — G|l < Kk % + knAn) = 0p(kn/Ap).
=0
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As to R, by (B.13) and the mean-value theorem, we have

[t/ (knAn)]
EIRE,| <Kknln Y E|Cikua, — Cranll = Op(an A7) = o) (kny/A
i=0
Hence, w > %— > m is sufficient to warrant the desired rate.

As a result, except for the term that is related to R}, all the remainder terms on the right-hand
side of (B.18) vanish. We write R} as

[t/(knA)kn  d ] z
"=k, Z Z w" o m, where w "= Oy F (C[(z‘fl)/kn}knAn)‘

I,m=1
where wf’lm is a vector measurable with respect to F(;_1)a,, and [wj'|| < K. To prove the stable
convergence result, we start with

[t/ (kndn)]kn

1
\/TE w?lmE (a? lm|}—lA") =
n i—0

[t/ (knAn)]kn

Y. KAVP/A+EM) =0,
=0

5

where we use (B.6) and (B.11). Moreover, by (B.5), we have

1 [t/ (knAn)]kn A .y
B Y I E (el 1Fs, ) | < KAw 0.

n =0

Also, similar to (4.18) in Jacod and Rosenbaum (2013), we have E (a?’lmA?NU}An) =0,for N=W
or any N that is an arbitrary bounded martingale orthogonal to W, which readily implies
[t/ (knAn)lkn

1 n,lm (nlm p
DR of % MN|EA)—>0.
VA, - : P "

1=0

Finally, note that for any 1 < p,q < d, by (B.7),

1 [t/ (knAn)]lkn
ik nlm ik nlm 2 1/2
A E i i ™| HE( e \]:ZAn) — (Cir, jICiA, km T+ Ciry, jmCin, k) A”H < KAY?,
n N
=0
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which implies

[t/ (knAn)lkn
n,jk mn,lm n,jk _ndm)
Z “ip Yig E(‘)‘z’ & |]'-%An)
=0
1 [t/ (knAn)]kn

_ n,jk mn,m 2
= E w; A wi " (Citng GICI A km T Citrg jmCing ki) Dy + 0p(1)
n 3
1=0

L
Ay,

t
i>/ aijp(CS)alqu(Cs) (Cs7jlcs7km + Cs,jmcs,kl) .
0

Finally, by Theorem IX.7.28 of Jacod and Shiryaev (2003), we establish

1
knv Ay,

L—
Ry =3 W,
where W, is conditional Gaussian on an extension of the probably space, with a covariance matrix

d ¢
E (Wp,tw ,t|}—) = Z / aijp(Cs)alqu(Cs) (Cs,jlcs,k:m + Cs,jmcs,kl) .
ok lm=1"0

Appendix B.9 Proof of Proposition 2

Proof. As we have seen from the above proof, we have for any ¢ € C,

1951 Fp (€) B Fy (€) (cjcm + cjmen)ll < K (1+ e]*),

which, combined with the same argument in the proof of Theorem 1, establishes the desired result.

Appendix B.10 Proof of Corollary 1

Proof. The first statement on consistency follows immediately from Theorem 1, as Assumption 2

holds with ¢ = 1. Next, we prove the central limit result. For any 1 < p < d, we define fz;\ as,

1 9p
A/ — _
RE=——>:>" >
9p — 9p-1 j=gp—1+1
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hence we have
9p

M@ = —— > @ PR =,

Ip =~ Gp—1 v=gp-1+1

and f» is C™ and Lipchitz. By Lemma 4 we can derive

9p
]kF cs ZOUJa fp s)) uk = Z Z OujeuOuk L Z Ovjovk-

gp 1u lv=gp—1+1 _gp l =gp—1+1

Therefore, the asymptotic covariance matrix is given by

/ Z 8ij (Cs)alm (Cs) (C]l sckm s + C]m sCkl s) ds
0 3.k, I, m=1
9q

= ! / Z Z Z OijkaulOum (le,sckm,s + ij,kal,s) ds

9p = Yp—19¢ — 9q—1 Jk,l,m Lo=gp—1+1u=gg—1+1

= Z Z Z OvlovauZOum)\ ,sds

<g ~ 9p— 1 _1 0 Im=1v=gp_1+1lu=gq—1+1

= / Z Z Suw A2 ods

(gp_gpl gql v=go 41 u=gg1+1
26
:”"1/ A2 ds. (B.19)
(9p — gp—1) Jo ~7°

Next, we calculate the bias-correction term. Recall that the estimator is given by

9p

Fitnan) = ——— 3 Rt
Ip — Gp—1 v—gp 141
where Xv,iknAn is the corresponding eigenvalue of the sample covariance matrix ¢, A, . Although
Cik, A, and ¢, A, may have different eigenstructure, it is easy to verify that the functional forms
of the second order derivative of FpA evaluated at both points turn out to be the same, so here we
only provide the calculations based on ¢, A, . Since almost surely, sample eigenvalues are simple, it

implies from Lemma 4 that

~ o~

alclmF clkn Z -Auv Czkn ))6 6 i OvkOvm

J

64



1 el — eh ~ o~ oA A
= Z Z 7 OulOujkaOvm

gp - gp—l _14+1 uo=1,u#tv )\u,iAn - )\U,iAn
1 9p d 1 A o
= Z Z = = (OulOujOhkOhm + OththukOum> ;

Ip = Ip=1 0 1w Tah Mhiikn An — Auikn Ay

where O is the orthogonal matrix such that 56};% AnaT = Diag(A(¢ik, A, )). The dependence of O on
ik, A, is omitted for brevity.

To facilitate the implementation, we consider the matrix /)\\hfikn AL — Cik, A, - Note that

~

Diag(An ik, A — ALiknAns MyiknAn — A2iknAps - - - > MiknAn — Md,iknAn) = O(Anik, a1 — Cik,a, ) OT,

hence we have

N R oA 1 1 1
(AhyiknAnH_ciknAn) =0 Dlag = = y = = ,...,0,...,\ =

h’ik‘n n laikn n h»lk‘n n Zaikn n hﬂkn n dyikn n

AhyiknAp = ALiknAp AhjiknAn — A2ikn A Ahikn An = Adyikn A
As a result, we obtain
- R + d 1 SRR
()\h,iknAnH - CiknAn) = Y = = OukOum,
R Tty Mk An — Auikn An
Therefore, we have
) R 1 LN R + A oA e N o
DmFy (Ciknn,) = — Z Onk ()\h,iknAnH - Cz‘knAn> | Onm+Oh; ()\h,iknAnH - CiknAn>km Ot
P Il g i !

Now we can calculate the following term, which is used for bias-correction:

Z e imF (@in,) (Cit,inn Com,in, + Cim,it, Chl,ins,)

7.k, lm=1
9p d
1 ~ R + o ~ /a R + o~
= § § Ohnk <)\h,iknAnH - Cz’knAn) _Onm + Oy ()\h,iknAnH - Cz‘knAn) Oni
9p — Gp— gl km

Y =gy 1414k Lm=1

(CjLikn A Clim,ikn Av + Cim,ikin A Chl ik Ar)

2 ~ ~ +
= Z A ikn Ay, 1T ((Ah,iknAnﬂ - Cz’knAn> Cz’knAn> . (B.20)
gp — gpfl 1
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The last equality uses the following observation:®

(Mibna,I = Cik,a,)TOF =0,

which concludes the proof of (ii). The proof of (iii) uses the same calculations as above. Note that
we can apply Theorem 2 with only Assumption 4, because the spectral function here only depends

on A\g. 1

Appendix B.11 Proof of Proposition 3

Proof. By Lemma 5 and the uniform convergence of ¢, A, — Cik, A, to 0 established above, we can
restrict the domain of v4(-) to the set C, in which it is C*° with bounded derivatives. By Theorem
21 of Protter (2004), we have

[t/ (kn Ar)]—1 o
> Naan, X vkea, — Xika,) = /0 Vg,s—dXs.
=1

Therefore, it remains to show that

[t/(knAn)]-1
A u.c.
(7;@_1);@”% - ’Y;Z-knAn) (X(i—l—l)knAn - XiknAn) =2 0.

i=1

Define a F{; 1)k, A, -measurable function:
gikn - <;Y\;7(i_1)knAn - fy;»iknAn) <X(7’+1)knA” B Xlk"An)
By standard estimates in (B.1) with ¢ replaced by X, (B.3), and (B.10),

E|E (&ik, | Fiknar,)

=EF, (i— 1)k n = Ygiknan 1B (X4 1)knan — Xiknan) [ Fikna,) |

<KE[C(i—1)kyA, — Cikna, | (FnlAn)

<K <(knAn)1/ 2+ a, AT 4 M) (knAn)

See page 160 of Magnus and Neudecker (1999).

66



Moreover, we have by the same estimates above,
E (|§ikn‘2|~7:iknAn) < (knAn + anArS;l_W)w_l + k;gl + knAn)k;nAn

Finally, using Doob’s inequality, and measurability of &;x,,, we obtain

[s/(knAn)]—1
E su ikn,
0§52t| ; Eiky |
[t/ (knAn)]—1 [t/ (knAn)]—1 1/2
< ) EE (&l Fikuan)| + > E (k. P Fiknan)
=1

=1

<K <(knAn)1/2 + an AP 4k + knAn> + K (knAp + an AUZ71 =1 4 A)Y2

—0,

because (4 — )z > 1 under our assumptions on w and ¢, which establishes the proof. 1

Appendix B.12 Proof of Corollary 2

Proof. The (p,q) entry of the asymptotic covariance matrix is given by

t d
/ Z ajk'}/gp,salm')/gq,s (le,sckm,s + ij,sckzl,s) ds
0 jklm=1

t d
:/ Z (>\g,s]I - Cs);j()\g,s]l - Cs);rl'}/gk:,s')’gm,s (le,sclcm,s + ij,sckl,s) ds
0 .
7.k, lm=1

d
:/0 Z (Ag,sll — Cs);}(Ag,sH - CS);[ (Ag,scjl + )‘3,3791,87gj78) ds

t
jl=1
t

)

:/ Ag,s (()\g,s]l — cs)+cs()\g,sﬂ - cs)+) ds,
0 X

where we use (A\g sI—cs)Tvg.s = 0, and Zzzl Ygk,sChm,s = Ag,sYgm,s- L0 calculate the asymptotic bias,
we note that the ¢; has only simple eigenvalues almost surely. Denote /)\\h and 7, as the corresponding

eigenvalue and eigenvector. We omit the dependence on time s to simplify the notations. By Lemma
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2, we obtain

Z i gh (CjtChm + CjmChi)

7,k l,m=1
Ly, » d
2~ S o 2~ S o 22 o~ o~ o
= - QZ X p/)g: 5 Z Vgl’)/pm’)/phf}/gm +Z /)\\ /)\g 2 Z ’ypl'ygm’)/phf)/pm + Z 7pm7gl7pl7ph
p#g ( g p) I,;m=1 p#g ( ) l,;m=1 l,m=1
Mg S IR
+ Z Z =~ ~ = Z Yl Vol Ypm Y gmV qh + Z Ypm Vgl Y qlV gh
p;ﬁg q;ép ()\g - Ap (Ap - )\q) l,m:l l,m:1
/): ’>\\ d d
A2~~~ ~N N A~ o~
+ Z Z X /): ) }\g }\\ Z ’yql’ygm’th’ypm + Z qu’}/gl’}/ql’ypm’th
p£g q#p ( p)( P q) l,m=1 I,m=1
’): /): d d
~ A~ o~ ~N AN~~~
+ Z Z = /)\\ P = Z Yom Vgl gmYph + Z Y Ypl Vgl gm Y ph
p#g qFg (Ag —p ()\g B )\q) I,m=1 Il,m=1
o M wrrl
N N g
p#g ()‘g - )‘10)2

Since v4(-) is a C*° function, it is straightforward using the proof of Theorem 2 that the desired CLT

holds, even though ~v,(-) is not a spectral function. #
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