SUPPLEMENTARY MATERIAL

Two New Clerodane-Type Diterpenoids from Bornean Liverwort *Gottschelia* schizopleura and Their Cytotoxic Activity

Shean-Yeaw Ng, Takashi Kamada, Monica Suleiman and Charles Santhanaraju Vairappan*

Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

*Author to whom correspondence should be addressed; *E-Mail: csv@ums.edu.my

Tel.: +60-88-320-000 ext. 2397; Fax: +60-88-320-291.

Abstract: The Bornean liverwort *Gottschelia schizopleura* was investigated phytochemically for the first time. Two new and four previously known clerodane-type diterpenoids were isolated from the MeOH extract of *G. schizopleura* through a series of chromatographic techniques. The structures of the new metabolites were established by analyses of their spectroscopic data (1D NMR, 2D NMR, HRESIMS and IR). All the isolated compounds **1-6** were tested against human promyelocytic leukemia (HL-60), human colon adenocarcinoma (HT-29) and Mus musculus skin melanoma (B16-F10). Compound **1** and **2** showed active inhibition against HL-60 and B16-F10 cells.

Keywords: clerodane diterpenoids, *Gottschelia schizopleura*, Jungermanniaceae, liverwort, Borneo, cytotoxic activity

Supplementary Information

Table S1. ¹³C and ¹H NMR (600 and 150 MHz) data of 1 and 2 (CDCl₃, □ in ppm).

Figure S2. HMBC (solid arrows) and ¹H-¹H COSY (bold lines) correlations of 1 and 2.

Figure S3. ¹H NMR spectrum of 1 in CDCl₃ (600 MHz).

Figure S4. ¹³C NMR spectrum of 1 in CDCl₃ (150 MHz).

Figure S5. HSQC spectrum of 1 in CDCl₃.

Figure S6. ¹H-¹H COSY spectrum of 1 in CDCl₃.

Figure S7. HMBC spectrum of 1 in CDCl₃.

Figure S8. NOESY spectrum of 1 in CDCl₃.

Figure S9. ¹H NMR spectrum of 2 in CDCl₃ (600 MHz).

Figure S10. ¹³C NMR spectrum of 2 in CDCl₃ (150 MHz).

Figure S11. HSQC spectrum of 2 in CDCl₃.

Figure S11. HSQC spectrum of 2 in CDCl₃.

Figure S12. ¹H-¹H COSY spectrum of 2 in CDCl₃.

Figure S13. HMBC spectrum of 2 in CDCl₃.

Figure S14. NOESY spectrum of 2 in CDCl₃.

Table S1. 13 C and 1 H NMR (150 and 600 MHz) data of 1 and 2 (CDCl₃, d in ppm).

		1		2
Position	δ_{C}	$\delta_{\mathrm{H}}(J,\mathrm{Hz})$	δ_{C}	$\delta_{\mathrm{H}}(J,\mathrm{Hz})$
1	18.1	1.80 (1H, m)	17.6	1.88 (1H, m)
		2.02 (1H, m)		2.03 (1H, m)
2	24.3	2.13 (1H, m)	26.4	2.42 (1H, m)
		2.18 (1H, m)		2.53 (1H, m)
3	125.5	5.62 (1H, t, J = 3.4)	156.4	6.70 (1H, t, J = 3.4)
4	143.8		148.1	
5	36.9		37.3	
6	37.4	1.17 (1H, m)	36.0	1.11 (1H, m)
		2.07 (1H, m)		3.11 (1H, m)
7	29.5	1.25 (1H, m)	29.2	1.08 (1H, m)
		1.30 (1H, m)		1.31 (1H, m)
8	38.1	1.47 (1H, m)	38.2	1.50 (1H, m)
9	40.8		40.9	
10	45.8	1.37 (1H, brd, $J = 6.2$)	45.8	1.42 (1H, brd, $J = 6.2$)
11	35.9	1.45 (1H, m)	36.2	1.49 (1H, m)
		1.72 (1H, t, $J = 8.9$)		1.70 (1H, t, J = 8.9)
12	19.4	2.19 (1H, dd, J = 6.9, 10.3)	19.5	2.20 (1H, dd, J = 6.9, 10.3)
		2.19 (1H, dd, J = 6.9, 10.3)		2.20 (1H, dd, J = 6.9, 10.3)
13	140.3		140.1	
14	141.8	6.76 (1H, brs)	142.0	6.77 (1H, brs)
15	103.2	5.73 (1H, brs)	103.3	5.73 (1H, brs)
16	172.2		172.2	
17	16.5	0.77 (3H, d, J = 6.9)	16.6	0.76 (3H, d, J = 6.9)
18	65.4	4.12 (1H, d, J = 13.1)	194.7	9.40 (1H, s)
		4.23 (1H, d, J = 13.1)		
19	35.6	1.13 (3H, s)	33.8	1.14 (3H, s)
20	17.8	0.80 (3H, s)	18.5	0.74 (3H, s)
21	57.7	3.57 (3H, s)	57.8	3.58 (3H, s)

Figure S2. HMBC (solid arrows) and ¹H-¹H COSY (bold lines) correlations of 1 and 2.

Figure S3. ¹H NMR spectrum of 1 in CDCl₃ (600 MHz).

Figure S4. ¹³C NMR spectrum of 1 in CDCl₃ (150 MHz).

Figure S5. HSQC spectrum of 1 in CDCl₃.

Figure S6. ¹H-¹H COSY spectrum of **1** in CDCl₃.

Figure S7. HMBC spectrum of 1 in CDCl₃.

Figure S8. NOESY spectrum of 1 in CDCl₃.

Figure S9. ¹H NMR spectrum of 2 in CDCl₃ (600 MHz).

Figure S10. ¹³C NMR spectrum of 2 in CDCl₃ (150 MHz).

Figure S11. HSQC spectrum of 2 in CDCl₃.

Figure S12. ¹H-¹H COSY spectrum of 2 in CDCl₃.

Figure S13. HMBC spectrum of ${\bf 2}$ in CDCl₃.

Figure S14. NOESY spectrum of 2 in CDCl₃.

