
Appendix

This appendix includes detailed results for the paper Estimation of Dynamic Water Demand
Function: The Case of Istanbul.

Integration Properties of Variables

In the ARDL approach suggested by Pesaran et al. (2001) and Pesaran & Shin (1999) variables
are assumed to be either I(0) or I(1). Since many economic variables generally tend to be
integrated of order one or zero (although in some cases they may be I(2)) we do not need to
pretest for the existence of unit roots. This may be advantageous as the potential mistakes in
pretesting for unit roots can be bypassed. However, to rule out the possibility that the variables
in the water demand equation may be I(2) we still need to conduct unit root tests.

Table 1: Unit Root Test Results
Constant Constant + Trend

Variable Lag ADF p PP p Lag ADF p PP p
LWPC 10 −0.39 0.91 −2.99 0.04 10 −0.39 0.99 −2.98 0.14

∆LWPC 9 −12.01 < 0.01 −10.76 < 0.01

LPRICE 0 −2.94 0.07 −2.74 0.07 0 −3.47 0.05 −3.47 0.04

LIPI 13 −1.16 0.69 −1.32 0.62 13 −2.76 0.22 −5.72 < 0.01
∆LIPI 12 −3.05 0.03 −28.73 < 0.01

LTEMP 10 −2.41 0.14 −3.66 0.005 10 −3.1 0.11 −3.48 0.04
∆LTEMP 9 −13.03 < 0.01 −7.67 < 0.01

LPRECIP 5 −8.01 < 0.01 −9.38 < 0.01 5 −7.98 < 0.01 −9.35 < 0.01

LPE 0 −1.25 0.65 −1.25 0.65 6 −2.97 0.15 −2.29 0.44
∆LPE 5 −2.85 0.05 −11.52 < 0.01

LPG 0 −2.46 0.13 −2.45 0.13 0 −2.40 0.38 −2.40 0.38
∆LPG 0 −10.98 < 0.01 −10.98 < 0.01

ADF stands for Augmented Dickey-Fuller test statistic, PP stands for Phillips-Perron test statistic.

Lag order is chosen according to Schwarz Bayesian Criterion.

P-values (p) are computed using MacKinnon (1996) approximation.

Table 1 summarizes the Augmented Dickey-Fuller (ADF), and the Phillips-Perron (PP)
unit root test statistics for both logarithmic levels and first differences of the variables. The
test regressions include both constant, and constant plus linear trend specifications along with
p-values. The lag orders were determined using Schwartz’ Bayesian Information criterion (with
maximum lag order 13). The ADF and the PP test results generally agree with each other.
For log water consumption per capita (LWPC) series we fail to reject the null of unit root
whereas it is rejected for the first differences implying that LWPC is an I(1) variable. On the
other hand, the ADF and the PP tests suggest that log real water price series (LPRICE) is
trend-stationary in levels. Test results also indicate that industrial production index (LIPI),
temperature (LTEMP ), real price of electricity (LPE) and price of natural gas (LPG) are
I(1), whereas log total precipitation (LPRECIP ) is I(0). Overall, none of the variables is I(2).
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Table 2: Flexible Fourier ADF Unit Root Test Results

LWPC (p = 10) LPPRICE (p = 0) LIPI (p=2)

k ADF F−test RSS ADF F−test RSS ADF F−test RSS
1 −1.27 6.44 0.096 −4.25 2.9 0.043 −4.01 4.45 0.346
2 0.12 4.39 0.098 −3.48 0.21 0.046 −2.7 1.39 0.36
3 −0.11 2.15 0.101 −3.67 1.1 0.045 −2.72 0.52 0.365
4 −0.47 1.67 0.102 −3.48 0.28 0.046 −2.16 0.93 0.363
5 −0.23 1.66 0.102 −3.7 1.87 0.044 −2.71 0.3 0.366

LTEMP (p = 10) LPRECIP (p = 5) LPE (p = 6)

k ADF F−test RSS ADF F−test RSS ADF F−test RSS
1 −3.18 0.37 4.341 −11.4 1.33 5.135 −2.82 1.3 0.071
2 −3.95 3.52 4.171 12.01 5.08 4.914 −2.67 0.29 0.073
3 −3.16 0.46 4.344 −11.3 0.69 5.175 −2.76 3.4 0.068
4 −3.14 0.52 4.333 −11.3 0.71 5.173 −2.87 0.42 0.072
5 −3.38 3.46 4.175 −11.7 3.51 5.001 −2.77 0.66 0.072

LPG (p = 0) Critical Values %5

k ADF F−test RSS ADF F−test
1 −2.37 0.44 0.198 −4.31 8.88
2 −3.27 3.35 0.188 −4.01
3 −2.41 1.81 0.193 −3.77
4 −2.36 0.54 0.197 −3.63
5 −2.67 3.95 0.186 −3.56

RSS is residual sum of squares. supF statistics are displayed in bold.
supF critical values are as follows: for T = 200 11.7 at 1% level, 8.88 at 5% level, 7.62 at
10%10 level; and for T = 100 12.21 at 1% level, 9.14 at 5% level, 7.78 at 10% level (see
(Enders & Lee 2012, Table 1a, p.197)).
Lag order of the dependent variable (p) is given in parentheses next to the variable names.
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As is well-known ADF unit root test is less powerful if there are structural breaks and/or
regime changes in the series. In this case, if variable is in fact stationary around a broken trend
the ADF test tends to accept the incorrect null. There are several alternative unit root testing
procedures in case of structural breaks. Some of these tests require assumption on the type and
location of the break (e.g., Perron (1989)). Another variant lets the user only choose the type
of break and determines break date(s) endogenously (e.g., Lee & Strazicich (2003), Zivot &
Andrews (1992)). A more recently suggested approach, on the other hand, does not make any
assumptions on the type, number and location of break and therefore provides a more flexible
testing framework. In this approach, it is assumed that deterministic component has a nonlinear
structure which can be captured by the appropriate number of flexible Fourier components. For
example, the flexible Fourier ADF test regression with only a single component can be written
as follows (Enders & Lee 2012):

∆yt = ρyt−1 + α0 + α1t+ α2 sin

(
2πkt

T

)
+ α3 cos

(
2πkt

T

)
+

p∑
j=1

δj∆yt−j + ut (1)

Trigonometric terms in this equation, which is otherwise the usual ADF test regression under
α2 = 0, α3 = 0, provides an easy way to approximate unknown type and number of breaks
without resorting to adding dummy variables and/or trend interactions at appropriate dates.
The rejection of the null hypothesis H0 : ρ = 0 implies that yt is stationary around a nonlinear
trend. Enders & Lee (2012) show that under the null hypothesis the ADF test statistic (t ratio)
has an asymptotic distribution that depends on the number of frequency components k and
the number of observations, T . In practice k is usually unknown but it can be determined by
estimating all test regressions for all possible k under a maximum value and then choosing the
model with the smallest sum of squared residuals (RSS).

Enders & Lee (2012) also suggested a test for the nonlinearity of the deterministic compo-
nents which can be applied before the flexible Fourier test. They suggested testing H0 : α2 =
0, α3 = 0 using the usual F test statistic that has a non-standard distribution under the unit
root null. Also, since k is unknown as well, one needs to compute all possible F statistics for
each k < kmax and use supremum of these (supF). Enders & Lee (2012) provides an approxi-
mation of the distribution of supF statistic and its critical values. If the supF statistic is less
than the critical value at a given significance level, one can conduct the usual ADF unit root
tests as it implies that the deterministic components are linear.

Table 2 summarizes Flexible Fourier ADF unit root test results with kmax = 5. For LWPC
series the minimum RSS (or maximum F) value occurs at k = 1 frequency component. The
ADF test statistic is −1.27 which is larger than 5% critical value. The supF statistic is 6.44
which is smaller than 5% critical value (8.88). Thus, the null hypothesis of linear deterministic
components cannot be rejected. Similarly, the supF statistics indicate that the deterministic
components in LPRICE and LIPI series are linear. In fact, the supF statistics are all in-
significant for all variables in the model. Overall, these results reinforce that the usual ADF
unit root test statistics can be safely used.

Further Estimation Results

Table 3 displays detailed ARDL estimation results for the two subsamples described in the
main text. Table 4 and Table 5 summarize the ARDL estimation results and long-run elasticity
estimates using seasonally adjusted water consumption series, respectively.
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Table 3: ARDL Estimation Results in Subsamples

Dependent variable: ∆LWPCt

2006m12−2010m12 2011m1−2014m12
ARDL(1,0) ARDL(2,0)

Model (1) Model (2) Model (3) Model (1) Model (2) Model (3)
LWPCt−1 −0.667∗∗∗ −0.667∗∗∗ −0.665∗∗∗ −0.666∗∗∗ −0.670∗∗∗ −0.647∗∗∗

(0.095) (0.096) (0.097) (0.073) (0.073) (0.076)

∆LWPCt−1 0.367∗∗∗ 0.368∗∗∗ 0.354∗∗∗

(0.096) (0.095) (0.096)

LPRICEt −0.213∗∗ −0.190∗∗ −0.194∗∗ 0.114 0.358 0.478
(0.089) (0.094) (0.095) (0.269) (0.317) (0.341)

LIPIt 0.165∗∗∗ 0.131∗ 0.141∗ 0.088 0.085 0.094
(0.051) (0.067) (0.071) (0.115) (0.114) (0.114)

LTEMPt 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.043∗∗∗

(0.012) (0.012) (0.012) (0.010) (0.009) (0.010)

LPRECIPt −0.012∗∗∗ −0.011∗∗∗ −0.011∗∗∗ −0.011∗∗∗ −0.010∗∗∗ −0.010∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.004) (0.004)

trend 0.001∗∗ 0.001∗ 0.000 0.001 0.000 −0.000
(0.000) (0.000) (0.001) (0.000) (0.000) (0.001)

LPGt −0.031 −0.042 0.076 0.306
(0.040) (0.046) (0.054) (0.246)

LPEt 0.042 −0.311
(0.083) (0.325)

constant −2.009∗∗∗ −1.852∗∗∗ −1.827∗∗∗ −1.962∗∗∗ −2.191∗∗∗ −2.675∗∗∗

(0.392) (0.442) (0.449) (0.678) (0.690) (0.855)
N 49 49 49 48 48 48
AIC −215.411 −214.129 −212.440 −234.657 −235.047 −234.194
BIC −202.169 −198.994 −195.414 −219.688 −218.206 −215.482
R̄2 0.577 0.573 0.565 0.718 0.725 0.724
AR (1) 0.051 [0.82] 0.051 [0.82] 0.008 [0.93] 0.967 [0.33] 1.934 [0.16] 1.662 [0.2]
White Noise 0.699 [0.71] 0.632 [0.82] 0.643 [0.8] 0.685 [0.74] 0.750 [0.63] 0.796 [0.55]
RESET 2.104 [0.12] 1.875 [0.15] 1.668 [0.19] 6.542 [0.001] 5.272 [0.004] 4.280 [0.011]
ARCH LM 0.012 [0.91] 0.030 [0.86] 0.032 [0.86] 0.581 [0.45] 0.110 [0.74] 0.013 [0.91]
Normality 0.033 [0.98] 0.338 [0.85] 0.203 [0.90] 3.717 [0.16] 3.059 [0.22] 2.943 [0.23]
VIF 2.447 3.006 9.913 3.463 4.899 48.662

Standard errors in parentheses. P-values are in brackets. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: ARDL Estimation Results for Seasonally Adjusted LWPCt

Series

(1) (2) (3)
CENSUS X13 TRAMO-SEATS Dummy variables

LWPCt−1 0.426∗∗∗ 0.424∗∗∗ 0.446∗∗∗

(0.080) (0.078) (0.078)

LPRICEt −0.180∗∗∗ −0.170∗∗∗ −0.170∗∗

(0.063) (0.064) (0.065)

LIPIt 0.140∗∗∗ 0.138∗∗∗ 0.129∗∗∗

(0.033) (0.034) (0.034)

LTEMPt −0.013∗∗ −0.007 −0.010∗∗

(0.005) (0.005) (0.005)

LPRECIPt −0.007∗∗∗ −0.009∗∗∗ −0.009∗∗∗

(0.002) (0.002) (0.002)

trend 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000)

constant −1.609∗∗∗ −1.623∗∗∗ −0.524∗∗

(0.272) (0.275) (0.203)
N 97 97 97
AIC −483.772 −478.480 −475.542
BIC −465.749 −460.457 −457.519
R̄2 0.876 0.871 0.868
AR(1) 0.348 [0.56] 0.761 [0.38] 1.393 [0.24]
White Noise 0.649 [0.79] 0.686 [0.74] 0.781 [0.58]
RESET 1.471 [0.23] 0.656 [0.58] 0.889 [0.45]
Normality 6.003 [0.05] 6.761 [0.03] 4.398 [0.11]
VIF 7.782 7.316 7.318

Standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Long Run Elasticity Estimates for Seasonally Adjusted Series

(1) (2) (3)
CENSUS X-13 TRAMO-SEATS Dummy variables

LPRICEt −0.313∗∗∗ −0.296∗∗∗ −0.306∗∗∗

(0.095) (0.098) (0.103)

LIPIt 0.243∗∗∗ 0.240∗∗∗ 0.233∗∗∗

(0.051) (0.052) (0.055)

LTEMPt −0.022∗∗ −0.011 −0.019∗

(0.008) (0.009) (0.009)

LPRECIPt −0.012∗∗∗ −0.016∗∗∗ −0.017∗∗∗

(0.004) (0.004) (0.004)
Bounds F 11.962 13.922 12.857
Bounds t −7.189 −7.414 −7.098

Note: This table displays long run elasticity estimates and PSS bounds
test results for the ARDL model summarized in Table 4.
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