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Preface 

The late Carl Felix Moppert was a senior lecturer in the depart­
ment of Mathematics at Monash University from 1967 until his 
death from leukaemia in 1984. His speciality was Geometry, a 
subject he could and did pursue in its abstract modern forms. 
Yet he also saw it, as indeed did Euclid, as being related to the 
world of experience. 

This found expression in three remarkable projects, undertaken 
during the last ten or so years of his life. These were: 

(a) the design and construction of the Foucault pendulum in 
the Science North building at Monash - the most accurate 
such pendulum in the world; 

(b) the design and construction of the vertical analemnic sun­
dial on the north wall north wall of Monash's Union Build­
ing (the subject of this monograph); 

(c) the concept of an energy-efficient and novel pump whose 
full potential he did not live to develop. 

Of these three projects, the first has been reported in the tech­
nicalliterature (Q.H.R. Astr. Soc. 21, 1980, 108-118). The 
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2 The Monash Sundial 

third was the subject ofa brief popular article (Function 8(4), 
1984, 2-7), and a prototype, constructed of discarded hospital 
equipment, was demonstrated at a Monash Open Day in Au­
gust, 1984. (The combination of ingenuity and courage implicit 
in this history epitomises the man.) 

In terms of sheer effort, however, it was the sundial that claimed 
most of his attention. It stands and still works (when the sun 
shines) as a monument to its creator. Students, staff and visi­
tors alike stop to read the legend and try to see if they too can 
use it to determine the time and date (it tells the careful reader 
both). 

What the brief on-site plaque cannot say, of course, is how the 
elaborate configuration of curves and loops was designed. Carl 
felt that without this explanation the sundial itself was lacking 
- it should not be, he thought, a mere wonder to be gazed 
upon, but a device that should be understood, and understood 
in mathematical terms. 

To this end, he produced a manuscript of some 70 pages: a 
manuscript he tried strenuously to see to publication. In this 
he was unsuccessful; at the time of his death a highly con­
densed account had appeared in the Monash journal of school 
mathematics, Function (5(5), 1981, 2-9), and that was all. 

In tribute to his memory we have reprinted this work. Al­
most in its entirety. Omitted, as now out of date, are detailed 
instructions on how to programme an HP25 to perform the cal­
culations required. Reluctantly (for there is much real elegance 
of technique displayed there), we came to the conclusion that 
these passages detracted from a modern reader's understanding 
of the situation, rather than enhancing it, which was what Carl 
would have sought. 
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The two final chapters, which consist of alternative calculations 
and other peripheral material, of only marginal relevance to the 
main topic, have also been omitted. 

Otherwise, modulo all of those small amendments editors feel 
absolutely compelled to make, we give you Carl's book as he 
wrote it. 

We thank Jean Sheldon, who did the drawings, and Geoff Bryan 
who converted the typescript into what you see before you. 

J. N. Crossley 
M. A. B. Deakin 
G. B. Preston 
J. C. Stillwell 
G. A. Watterson 



4 The Monash Sundial 

The Monash Sundial. The shadow falls as shown twice 
a year: on October 15th at 10:25 am and on March 1 st at 
10:55 am (EST in both cases). 



Introduction 

In the background, the sundial in its final stages of con­
struction. In the foreground, the lat e Dr. C. F. M oppert, 
design er of the sundial and author of this book. 
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6 The Monash Sundial 



Introd uction 

If I had known what is written in this little book before I de­
cided to build a sundial, I could have calculated the lot in a 
day. This book should therefore save the reader from the round­
about way in which I learned the necessary facts. 

It is no use pretending that the reader will find the going easy. 
I took great effort to present things as simply as I could; how­
ever, I don't expect anybody to understand this text without 
work. The knowledge I assume the reader to have is high-school 
trigonometry. 

Although educated people today know about quasars, pulsars, 
galaxies, black-holes and UFO's, basic knowledge which was 
common fifty years ago has been lost. Some of my colleagues -
professional astronomers - have asked me the most inane ques­
tions. Although it is hard to believe, in many excellent books 
the basic figure - a three-dimensional coordinate system in per­
spective - is hopelessly wrong (see Figure 0). 
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8 The Monash Sundial 

The text is divided into eight chapters. 

§1 Gives the basic facts concerning the sky. 

§2 Describes the coordinate system. 

§3 Explains spherical trigonometry. 

§4 Describes the conventional sundial. 

§5 Explains complementary sundials. 

§6 Calculates the length ofthe shadow and how the time can 
be calculated. 

§7 Discusses the various ways in which time can be mea­
sured. 

§8 Gives the calculations for the Monash sundial. 

I thank Professor K C Westfold and in particular Dr G A Wat­
terson for comments and suggestions. 

Carl Moppert 
Warrandyte 
August 1980 
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z 

Figure O. Nonsensical perspective of a 3-dimensional coor­
dinate system. The curve representing a circle should be a 
semi-ellipse whose tangents at the end points are parallel to 
the x -axis. 

y 



10 The Monash Sundial 



1 Looking at the Sky 

For an understanding of the sundial it is easiest to adopt a 
geocentric standpoint: the earth is at rest and the 'stars and 
the sun move relative to it. 

If we point a camera at night towards the sky and leave the 
shutter open for at least several minutes, then we will see that 
all stars move on circles about a common centre. The centre is 
the south celestial pole (from the Latin coelum, the sky) and 
is exactly due south. The elevation of the south celestial pole 
from the horizon in degrees is equal to our latitude (Figure 1). 

The latitude is counted positive in the northern hemisphere and 
negative in the southern one. The sun and all the stars follow 
these circles from east to west. All fixed stars have exactly 
the same angular velocity, or : every fixed star performs a full 
circle in 23 hours 56 minutes and 4.091 seconds. In the yearly 
average, the sun takes exactly 24 hours to perform a full circle. 
This time can vary from day to day by up to 30 seconds. 

The semicircle in the sky about the southern pole which starts 
exactly due east and ends exactly due west is called the ce­
lestial equator. The sun moves along the celestial equator on 

11 
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celestial 
southern ~ 
pole 

The Monash Sundial 

E 

Figure 1. Apparent motion of the fixed stars as seen from 
a point 0 with latitude A. 

the equinoxes, i.e. on the 20th of March and on the 23rd of 
September. 

Every fixed star always follows exactly the same circle in the 
sky (hence its name !). The sun does not. During any day the 
sun follows near enough a circle, however this circle changes 
during the year. In the southern hemisphere it is nearer the 
south celestial pole in summer and nearer the north celestial 
pole in winter. As we have said before, it is along the equator 
of the sky at the dates which divide the summer half-year from 
the winter half, i.e. at either of the two equinoxes. 

How does the sky appear if we are on the earth's south pole 
or on the earth's equator? If we are on the earth's south pole, 
then all fixed stars move along circles which are parallel to the 
horizon (Figure 2) and if we are on the earth's equator (e.g. in 
Singapore) then all the fixed stars move along circles which are 
perpendicular to the horizon (Figure 3). 

Every fixed star rises in Singapore from the horizon along a 
perpendicular line. At the south pole, the equator of the sky is 
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celestial 
southern 

/POle 

Figure 2. Apparent motion of the fixed stars as seen from 
the south pole, O. 
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14 The Monash Sundial 

celestial 
southe rn 
pole 

celestial 
equator 

E 

Figure 3. Apparent motion of the fixed stars as seen from 
a point on the equator, e.g. /rom Singapore. 

N 
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along the horizon. In Singapore, the equator of the sky is the 
perpendicular circle starting due east and ending due west. 
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2 Declination and Hour 
Angle 

As we said earlier, the circle which the sun describes every day 
is not always the same; it shifts a little bit every day. More 
exactly, the sun does not follow a circle in the sky but a spiral. 
However, it is sufficiently accurate to say that during any day 
the sun moves along a circle about the south celestial pole. 

In order to describe the position of this circle, we need the 
notion of the declination of the sun. Point your outstretched 
left arm to the south celestial pole in the sky. Stretch out your 
right arm in such a way that the two arms form a right angle. 
You observe that you can do so in many ways, in fact you can 
rotate your right arm in such a way that the left arm keeps 
pointing to the celestial south pole while the right arm always 
forms a right angle with the left one. Your right arm is then 
always in a fixed plane and this plane is the celestial equatorial 
plane. It is the plane through the equator of the sky. 

In Figure 4, 0 is the observer and Sc the south celestial pole. 
The point P moves along the circle on which it lies. We see that 
the angle LScOP remains constant and that 90° minus LScOP 

17 



18 The Monash Sundial 

is the constant angle between OP and the celestial equatorial 
plane. This second angle also remains constant. Its opposite, 
i.e. the negative angle LScOP minus 900

, is called the declina­
tion of the point P in the sky. If P happens to move along the 
celestial equator then its declination is zero. The declination 
of the south celestial pole is -900

• If P is between the celestial 
equator and the southern pole then its declination is negative, 
otherwise it is positive. The declination of the sun changes over 
one year between -23f and 23f. Figure 5 gives the change 
of the declination of the sun during anyone year. In order to 
fix the position of the point P (Figure 4) fully, the declina­
tion of its circle is not sufficient. From where we stand, we 
can imagine a vertical plane in the North-South direction. In 
this plane, there is the south celestial pole and also the highest 
point Z in the sky, the zenith, which is straight above us . We 
can also imagine a plane which contains us (the point 0), the 
south celestial pole Sc and the point P. These two planes form 
an angle T , say. There is another way of arriving at the angle 
T (Figure 6). The plane through 0, P and Sc meets the celes­
tial equatorial plane EOWZ' along the line OP' . The vertical 
plane in the N-S direction is the plane NOSScZZ'. The angle T 

is therefore T = LZ'OP'. In the same figure, the declination 6 
of P is the angle POP', taken with a negative sign. 

What I have said in the preceeding paragraph is perhaps the 
most difficult part of the whole exercise. We have points in the 
sky which may be fixed or moving; e.g., the celestial south pole 
or the zenith are fixed, while stars are moving. A "point" in 
the sky is not really a point, but a direction. In the following 
paragraph, we shall introduce the celestial globe and there we 
shall again identify directions with points. 

I talk about the angle between planes. Two planes intersect 
along a line (parallel planes do not occur here). We select 
a point in this line and draw in each plane a line which is 
perpendicular to the line of intersection. The angle between 
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Figure 4. Declination and hour angle. 
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Figure 5. Change of the declination of the sun during a year. 
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Figure 6. The hour angle, T, of P is the angle P'OZ'. The 
declination of P is minus the angle POP'. 
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these two perpendiculars is called the angle between the two 
planes. 

There is another way of arriving at this angle. Choose any 
point, it does not matter where it is : on one of the planes, 
on the line of intersection or anywhere. Through this point, 
imagine two lines: one perpendicular to the first plane and the 
other perpendicular to the second one. The angle between these 
two lines is again the angle between the two planes. 

You cannot understand these arguments without making a small 
model. 

We shall call the angle T the hour angle of the point P. (Tradi­
tionally not T but 1800 

- T is the hour angle. Our definition is 
more appropriate for the southern hemisphere.) The two angles 
T and 6 determine the direction of the point P uniquely. For 
a fixed star, 6 has always the same value and T increases from 
00 to 3600 in 23 hours 56 minutes and 4.091 seconds. For the 
sun, 6 is not always the same but it can be taken as constant 
during anyone day. The value T increases for the sun from 00 

to 3600 in, on the average, 24 hours. 



3 Spherical 
Trigonometry 

There is a much easier way of looking at the situation. In all 
the figures so far, we have looked a the sky 'from the inside', 
our own stand-point 0 was the point of reference. Now we 
look at the celestial sphere from the outside. In fact, what is 
the celestial sphere? There is in reality of course no such thing. 
However, we can imagine a glass sphere with our head as its 
centre. We mark on this sphere each point along which we see 
some star or the sun or the moon. We then step outside this 
sphere and look at it from the outside. We are all familiar with 
a globe. The reader is advised to take a globe and experiment 
with it during the following discussion. 

Two points A and B on a sphere can be either diametrically 
opposite or not. The north pole and the south pole on the globe 
are diametrically opposite. Any point on the globe has exactly 
one point which is diametrically opposite to it. We arrive at 
this point by imagining a straight line through the first point 
and the centre of the globe. Where this line penetrates the 
globe on the other side the other point is found. Any point 
and its diametrically opposite one determine a diameter of the 
globe. 

23 



24 The Monash Sundial 

Let A and B be two points which are not diametrically opposite. 
We fix a thread to A and to B and stretch the thread tightly 
over the sphere. It then shows the shortest path from A to B, 
the geodesic. If an airplane flies from A to B it always does so 
(if possible) along the geodesic in order to economise on time 
and fuel. The geodesic is always along a great circle on the 
globe. This means that we can find the geodesic from A to B 
in a different way: the two points A, B and the centre 0 of the 
globe determine a plane. This plane intersects the globe along 
a great circle and the geodesic from A to B is the portion of 
this great circle between A and B. 

We can measure the geodesic distance between A and B, i.e. the 
length of the thread in kilometres. However, it is sufficient to 
measure it by giving the angle AOB and we shall use this kind 
of measurement on the sphere from now on. We see then that 
the distance from the north pole to any point on the equator 
(e.g. Singapore) is 900

• The distance between Melbourne and 
Singapore is about 500

• 

Let us now fix three points A, B, C on the globe (Figure 7). 
Connecting them by geodesics we get a spherical triangle. The 
lengths a, b, c of its sides are angles. Its angles 0:, {3, 'Yare 
of course also angles. As band c are along great circles on 
the sphere and as these are in the two planes determined by 
ACO and ABO, the angle 0: is in fact the angle between these 
two planes. It is important to understand that both lengths 
and angles in spherical triangles are measured by angles. The 
angle-sum in a spherical triangle is always more than 1800

• 

Take, for example, the north pole, Singapore and Kampala in 
Uganda as the vertices of a triangle. Singapore has longitude 
1050 and Kampala (also roughly on the equator) has longi­
tude 31 0. The spherical distance from Kampala to Singapore 
is therefore 105° - 31° = 74° (Figure 8). As both these points 
are on the equator, the angles Singapore-Kampala-North pole 
and Kampala-Singapore-North pole are both 900

• For the same 
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c 

---______ ~..J B 
c 

Figure 7. Spherical triangle. The sides a,b,c are measured as angles. 
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reason, the angle Kampala-North pole-Singapore is equal to the 
spherical distance Kampala-Singapore, i.e. equal to 74° . The 
angle-sum in this triangle is 90° + 90° + 74° = 254°. 

As in ordinary trigonometry, the easiest triangle to calculate is 
the right-angled one (Figure 9). There is a simple rule for it 
which we shall not prove but shall use very often. 

We draw the 'Napier diagram'. 

C 

/~ 
fJ 

\ / 
It has five 'entries' : c, /3, 90° - a, 90° - b, a. 

Take for example the entry /3. The entries c and 90° - a, are 
called adjacent to /3 and the entries a and 90° - b are called 
opposite to /3. Accordingly, each entry has two adjacent and 
two opposite entries. 

Napier's rule then says: For a right-angled triangle, the cosine 
of each entry in the Napier diagram is equal to the product of 
either: 

(i) the two co-tangents of the adjacent entries, 
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Kampala 
lat.31 0 

North Pole 

Singapore 
lat.105° 

27 

Figure 8. The 6pherical triangle on the globe with the vertices at 
Kampala, Singapore (both on the equator) and the North Pole. 
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or 

(ii) the two sines of opposite entries. 

Remember that 

etc. 

1 
cota = 

tana' 
= tana cot(900 - a) 

sin (90° - a) = cos a, 

The quantities a, b, c, a,/3 in Napier's rule are the sides and 
angles of the right-angled triangle (Figure 9). For example: 

cos c = cot a cot /3 = sin (90° - b) sin(900 - a) = cos b cos a 

cos a cot /3 cot(900 - a) = cot a cot(900 - a) = cot /3 tan a 

= sin(90° - a)sin/3 = cosasin/3 

cos(900 - b) = sin b = cot a cot(900 - a) = cot a tan a = sin c sin /3. 

Let us calculate the spherical distance from Melbourne to Sin­
gapore! 

City Longitude Latitude 

Melbourne 145° -38° 
Singapore 105° 0° 
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c 

A 8 

Figure 9. Right-angled triangle. 
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We take the point C on the equator with the same longitude as 
Melbourne: 

Point C longitude 1450 latitude 00 

We then have the right-angled triangle Melbourne-Singapore­
Point C, the right angle being C (Figure 10). We know the 
spherical distances : 

Singapore to Point C = 1450 
- 1050 = 400 

Point C to Melbourne = 00 
- (-38°) = 38°. 

Napier's rule then gives the spherical distance c : 

Melbourne to Singapore: cos c = cos 40° . cos 38° . 

So c = 53° , approximately. 

In which direction should a pilot fly to get from Melbourne to 
Singapore? As the side b in Figure 10 is in the north-south 
direction, the answer is the angle a. From Napier's rule we 
choose an equation connecting a, a, b: 

cos(900 - b) = cot a cot(900 - a) 

and thus 
tan a = tan a/ sin b. 

It follows that 
a = 54°west. 

The advent of the electronic calculator enables us to solve com­
plicated problems of spherical trigonometry in minutes. 
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Equator 

31 

Meridian of 
Melbourne 

Melbourne 

Figure 10. Calculating the distance Melbourne-Singapore 
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4 The Conventional 
Sundial 

Conventional sundials may be mounted either horizontally or 
vertically. The conventional sundial mounted on a vertical wall 
consists of a stick OG (Figure 11) which points exactly to the 
celestial southern pole. This stick is called the gnomon and 
its shadow indicates the hour. In Figure 11 we have a vertical 
wall on which the gnomon is fixed. OS is the vertical line in the 
wall. The angle SOG is the angle between the vertical and OG. 
Looking at Figure 11 we see that this angle is 90° - A where 
A is the latitude of where we are. The vertical plane through 
SOG is in the North-South direction. The angle between this 
plane and the wall is thus the angle ,p between the wall and the 
North-South direction. 

In Figure 11 the point G' is the point in which a perpendicular 
to the wall, dropped from G, meets the wall. As GG' is per­
pendicular to the wall and the wall is vertical, GG' horizontal. 

We assume that the length of the gnomon, i.e. the length of 
OG, is unity. Furthermore, we make the length of OS equal to 
unity and then we mark T on the line OG' produced so that 

33 
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Figure 12. Spherical triangle for the sundial. 
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OT is unity. As G, T, and S have the same distance from 0, we 
can place a sphere with unit radius about O. On this sphere 
we have then the geodesics SG, GT, and TS. As the plane 
through OG'TG is perpendicular to the wall, the angle at T in 
the spherical triangle STG is 90° (Figure 12). Its side SG is, as 
we have seen, 90° - A. The angle at S of the spherical triangle 
is the angle ¢ between the north-south direction and the wall. 

The spherical triangle STG has a right angle at T. Its hy­
potenuse is SG = 90° - A. In order to apply Napier's rule we 
put 90° - A = c, ¢ = a. Then we must put ST = b. In the 
Napier diagram, c and 90° - b are adjacent to a, hence 

or 

l.e. 

Thus 

cos a = cot c cot(900 - b) 

tan b = cos a tan c 

tan ST = cos ¢ tan c. 

(
cos¢) 

ST = artan tan A . (4.1) 

The side GT of our triangle must be named a. In the Napier 
diagram, a and c are opposite 90° - a. 

Thus 
cos(90° - a) = sin a sin c 

or 
sin a = sinasinc, 

l.e. 
sin GT = sin ¢ cos A 

Thus 
GT = arsin(sin ¢ cos A). (4.2) 
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Finally, we want to find the angle 13 = LSGT. In Napier's 
diagram, 13 and a are adjacent to e, thus 

or 

i.e. 

Thus 

cos e = cot a cot 13 

cot a 
tan 13 = --, 

eose 

cot<p 
tan 13 = ~. 

smA 

13 = artan (. / <p). sm tan 
(4.3) 

If <p = 90°, i.e. if the wall is in the East-West direction, then 
cos <p = 0; hence ST = artan 0 = 0°. As sin <p = 1 we have then 
TG = arsin cos >. = 90° - >.. 

Let r represent the hour angle of the sun. This is the angle 
between the rays of the sun and the vertical plane in the North­
South direction. The rays of the sun along the gnomon OG 
(Figure 11) determine a plane OH PG where P is the shadow 
of the point G on the wall. As the plane OSG is vertical, the 
angle between the former plane and the latter is the angle SGH 
in Figure 12. 

In Figure 12. we now look at the spherical triangle GHT. It 
has a right angle at T. We know its side a = GT and the angle 
13 - r at G. We must call the other side b, i.e. b = HT. The 
angle 13 - T must be considered as 13 in Napier's diagram. There 
13 and 90° - b are adjacent to 90° - a, thus 

cos (90° - a) = cot 13 cot(900 - b) 

or 

tan b = sin a tan 13, 
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i.e. 

tan HT = sin GT tan(.8 - T) = sin 4J cos A tan(.8 - T) 

HT = artan(sin 4J cos Han(.8 - T)). (4.4) 

In the same triangle GHT we calculate HG. As it is its hy­
potenuse, we call it c. We know its side GT = a and its angle 
.8 - T, playing the role of.8. In the Napier diagram, c and 
90° - a adjacent to .8. Thus 

or 

l.e. 

cos.8 = cotccot(900 - a) 

tan a 
tanc =--a, 

cOSJJ 

tanGT 
tan HG = (.8 )" cos - T 

Using Equation (4.2), we find 

HG _ (tanarSin(Sin4JCOSA)) 
- artan ( . 

cos.8- T) 
(4.5) 

Let us check these formulae for particular values of T! First we 
put T = .8. Then.8 - T = 0°, cos(.8 - T) = 1 and tan(.8 - T) = O. 
Thus HT = artan 0 = 0°; H G = artan( tan arsin( cos A sin 4J)) = 
arsin( cos A sin 4J) = GT and this is correct as we see from Figure 
12. Next we put T = 0°. Then HT = artan(cosAsin4Jtan.8) 

and from Equation (4.3) we see that tan.8 = . / 4J. It fol-
sm tan 

(
COS A sin 4J ) ( cos 4J ) lows then HT = artan . A 4J = artan --, = ST. 
sm tan tan" 

This is correct as for T = 0°, H = S and thus HT = ST. For 
T = 0°, the sun is in the vertical plane in which the gnomon 
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lies. The shadow of the gnomon is then a vertical line on the 
wall, i.e. it lies along the line OS. 

We are now able to design a conventional sundial. For the wall 
in question, we determine ¢J. The angle ~ is the latitude of 
our position. We calculate GT from Equation (4.2) and f3 from 
Equation (4.3). As the hour angle of the sun increases by 3600 

in every 24 hours it increases by 150 in every hour. r = 00 

corresponds to the local noon. The vertical line OS on the 
wall is thus marked 12. The markings for 11 and 1 we get by 
putting r = ±15° and calculating HT = LHOT from (4.4). 
The markings for 10 and 2 we get by putting r = ±300

, etc. 





5 The Orientation of the 
Wall 

We have been somewhat careless in the determination of the 
angle </J. Two opposite walls of a rectangular building form the 
same angle with the North-South direction; however, sundials 
on these walls will be different. We have not yet taken into 
account which side of the wall is exposed to the sun. There is 
in fact no wall standing in an open place which is never exposed 
to the sun. 

In Figures 13a and 13b we illustrate how to measure the angle 
<p for the two sides of the same wall as seen from above, looking 
down on the wall. We see that specifying the wall and the side of 
it on which we desire to put the sundial determines <p uniquely. 
We also see that <p ranges from 00 to 3600

• In Figure 14 we have 
illustrated a wall in the East-West direction and the position 
of the gnomon on its southern and on its northern side (the 
figure applies to the wall being in the southern hemisphere). 
For the southern side of the wall we have </J = 2700 and for its 
northern side, ¢ = 900

• No matter which side of the wall we 
choose, the angle f3 from Equation (4.3) will be the same, and 
tan </J = tan(1800 +</J). As cos ¢ = - cos(1800 +</J), the angle ST 

41 
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Figure 19. Orientation of the wall 
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will be positive for one side and negative for the other and the 
same applies to the angle GT. Two sundials on the two sides of 
the same wall (or of parallel walls) are called complementary. 
Of course the sun does not shine on them both simultaneously. 
In Chapter 6 we shall calculate when the sun shines on a wall. 
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s N 

Figure 14. Complementary sundials 



6 The Length of the 
Shadow 

In Figurell the shadow of the tip G of the gnomon is the point 
P on the wall. We shall calculate the length OP of the shadow 
of the gnomon. In the triangle OPG we take the length of the 
side OG as the unit (Figure 15). The angle A = LPOG is equal 
to the angle HG (Figures 11, 12). We can therefore calculate it 
from Equation (4.5). The angle OGP is equal to 90°-6 where 6 
is the declination of the sun (remember that the gnomon points 
to the south celestial pole!). The angle OPG is thus 90° +r -6. 
The sine-theorem then gives 

1 OP 
sin(900 + r - 6) = sin(900 - 6) 

OP= 
cos 6 cos 6 

(6.1) 
cos(r - 6) = cos(HG - 6)' 

Formula (6.1) provides a lot of information. During any day, 
6 is constant or can at least be taken as such (it varies at the 
most by 24' per day). In Figures 11 and 15, LOGP = 90° + 6. 
As this angle is constant, the direction from G towards the sun 
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Sun 

o 

Figure 15. The length OP o/the shadow. 
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in Figure 11 moves along a circular cone with axis OG and 
vertex G. The same can of course be said about the produced 
segment GP. It follows that the path of the shadow P is the 
intersection of this circular cone with the wall, i.e. this path is 
a conic section. 

In Formula (6.1), 0 remains constant during anyone day and 
HG changes. Now cos(HG + 0) decreases as HG increases and 
as cos(HG + 0) is in the denominator, OP increases as HG 
increases. By the way, this behaviour is evident from Figure 
15. The minimum of OP occurs for the minimum of HG and 
this takes place for H = T (Figure 11), i.e. for T = 13. 

Outside the tropics, the conic section in question is always a 
hyperbola. It follows that the axis of this hyperbola lies along 
the line OT in Figure 11. The asymptotes of the hyperbola 
correspond to the values of HG for which OP becomes infinite, 
i.e. for cos(HG + 0) = O. For this we have HG + 0 = 90°. Let 
T = T A in this case. Then 

HG 
C tan arsin(sin I/> cos A) 

tan = cot u = (R) cos,., - TA 

or 
cos(I3 - TA) = tan Han arsin (sin I/> cos A). (6.2) 

The angle 13 is determined by I/> and A (Formula (4.3) ). Ac­
cordingly, Formula (6.2) allows us to calculate T from 1/>, A and 
o. 

However, I cos(f3 - T)I ~ 1 and therefore Formula (6.2) makes 
sense only if 

I tan Han arsin( sin I/> cos A)I < 1. (6.3) 

Formula (6.3) can be changed to 

Itanol ~ I cot arsin(sin I/> cos A)I 
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and clearly cot (arsin (sin 4> cos A» = tan(900 -arsin(sin4> cos A». 
Now for arbitrary angles z, y we have 

I tan zl :5 I tan yl is equivalent to Izl :5 Iyl if we restrict z and 
y to the interval from -900 to + 900

• 

Accordingly, Formula (6.3) is equivalent to 

161 :5 1900 
- arsin(sin 4> cos A)I· (6.4) 

Again, for any z and y, Izl :5 Iyl is equivalent to I cos zl :5 I cos yl 
(under the same restriction). It follows that Formula (6.4) can 
be replaced by 

I cos 61 ~ I cos(900 
- arsin(sin 4> cos A))I 

and cos( 900 
- arsin( sin 4> cos A) I = sin 4> cos A. The condition 

(6.3) appears thus finally in the form: 

I cos 61 ~ I sin 4> cos AI· (6.5) 

The declination 6 of the sun ranges between ±23°26' and these 
angles are of course the boundary latitudes of the tropics. Out­
side the tropics we have thus 161 < IA I, hence cos 6 > cos A ~ 
I cos A sin 4> I. The above inequality is thus always satisfied there. 

In order to understand why in the tropics the shadow P need 
not trace a hyperbola it is best to consider the simplest case : 
a sundial on the equator placed on the wall in an East-West 
direction.The gnomon OG is then horizontal and we place such 
a gnomon on either side of this wall: on the northern side the 
gnomon points to the celestial north pole and on the south­
ern side to the celestial southern pole. The sun shines on the 
northern side of the wall from the 21st of March to the 21st of 
September and on its southern side from the 21st of September 
to the 2pt of March. During anyone day, the line GP moves 
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along a circula.r cone with axis OG and P thus describes a. cir­
de. Of course this is in fact only a semi-cirde from sunrise to 
sunset. The radius of this circle approaches infinity as the time 
of the year approaches the equinox. 

Formula (6.2) enables us to calculate when the sun shines on 
a given wall. As an example, we take the wall on which the 
Monash sundial is mounted. The latitude of Monash is A = 
-3'r'55' = -37.92° and the angle of the wall is ¢J = 106°51' = 
106.85°. Formula (4.3) gives {3 = 26.24°. We find that 

tan arsin (sin ¢J cos A) = ±1.1514. 

Formula (6.2) is then 

cos(26.24° - T) = ±1.1514 tan 6 

or 
T = 26.24° ± arcos (±1.1514 tan 6). 

At the equinoxes, the declination of the sun is 6 = 0 and thus 
T = 26.24° ± 90° or T = 116.24°, or T = -63.76°. The first 
one of these values is useless as the sun is above the horizon 
for only ITI ::; 90°. This means that the sun hits the wall from 
the moment of sunrise and goes behind the wall at the moment 
at which T takes the value -63.76°. In the next paragraph we 
shall find out how to find the corresponding time of the daY'i 

The argument I am now putting forward is not scientific; it is 
based on trial and error. It would of course be quite easy to 
put it in scientific dothing. I shall explain as I go on. In our 
formula 

T = 26.24° ± arcos (±1.1514 tan 6) 

we have four values of T corresponding to a given value of 6. 
Of course this is wrong; we cannot have more than two such 
values by the nature of the problem. The question is: should we 
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choose arc08(+1.1514tan6) or arc08(-1.1514tan6)? In mid­
summer we have 6 = -23.44° and in mid-winter 6 = +23.44°. 
Itfollows that 11.1514 tan 61 = 0.4992 in both mid-summer and 
in mid-winter. 

Now 
arcos0.4992 = ±60.05° 

and arcos( -0.4992) = ±119.95°. 

Furthermore, T = 26.24° ± 60.05° = 86.29° or -33.81° while 
T = 26.24° ± 119.95° = 146.19° or -93.71°. 

My experimental argument goes as follows: In mid-summer the 
sun is on the wall for a long period and in mid-winter for a short 
one. The correct formula is thus 

T = 26.24° ± arcos( -1.1514 tan 6). 

This means then that in mid-winter, the sun hits the wall from 
sunrise to sunset and in mid-summer between the times corre­
sponding to T = -33.81 ° and T = 86.29°. 

I have not yet finished with Formula (6.2). We have agreed 
that in mid-summer the sun hits the wall between the time 
corresponding to T = -33.81° and 86.29°. What happens for 
86.29" $ T $ 90° and -90.° $ T $ 33.81° ? Obviously, the 
sun then hits the back of the wall. (In the case of the Monash 
sundial, this is the south wall of the Monash Union building.) 
This means that the sun hits the south wall in the morning 
and in the evening but not in the middle of the day. In mid­
winter the situation is different: the sun then hits the north 
wall during the whole day and the south wall never. 

If 6 is such that 

arcos(-1.1514 tan 6) = -(90° - 26.64°) = -63.76° 
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i.e . .5 = -21.01°, then the values of T are 26.24° T 63.76° and 
these values are 90° and -37.52°. At the corresponding date 
the sun hits the southern wall in the evening only and no more 
in the morning. 

If.5 is such that 

arcos( -1.1514 tan 6) = -(90° + 26.24°) = -116.24° 

i.e . .5 = 21.00° when the values of Tare 26.24° T 116.24° and 
these values are -90° and 142.48°. At the corresponding date 
the sun hits the north wall only. 

Now.5 = -21° on the 16 January and 27 November and.5 = 21° 
on 26 May and 19 July. The south wall of the Union building 
has thus: 

• Morning sun from 27 November till 16 January, 

• Evening sun from 19 July till 27 November 

• No sun at all from 26 May till 27 November. 

Our calculations prove to be useful even without any sundial! 
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7 Three Kinds of Time 

The time to which we set our watches is called standard time 
(ST). In Australia there are three standard times, one for Vic­
toria, New South Wales, Tasmania, the A.C.T. and Queens­
land; one for South Australia and the Northern Territory and 
one for Western Australia. If it is 12 noon in Melbourne then it 
is 11.30 am in Darwin and 10 am in Perth (these three standard 
times are not the kinds of time referred to in the title of this 
paragraph!). The map of the earth is divided into "time zonei' 
which you may find in any atlas. When it is 12 noon in Mel­
bourne it is 2 am in England. The standard time in England 
is called Greenwich Standard Time. 

The division of the world into time zones (about one for ev­
ery hour of the day) is clearly a compromise. Ideally, every 
place should have its own standard time, the local standard 
time (LST). It would depend solely on the longitude of the 
place. Longitudes are counted East and West from Greenwich, 
1800 corresponding to 12 hours' time difference. We have thus 

LST = GreenwichST + 115 (East) 

LST = GreenwichST - 1/5 (West), (7.1) 
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where I is the longitude of the place. 

The longitude for Monash is 1= 145°8' East. Its local standard 
time is .thus 

LST(Monash) = GreenwichST + 9h40min 32sec. (7.2) 

The time zones are chosen in such a way that they differ from 
each other (and thus from Greenwich ST) by full hours or half 
hours. They thus give LST for places the longitudes of which 
are multiples of 15° or 7 ~o. In particular, the standard time 
for Victoria, is the LST for places with longitude 150° East, 
i.e. for places on the meridian through Eden in NSW. 

(By the way, we now understand the word meridian: the Latin 
word meridies means noon; places on the same meridian have 
noon at the same time.) 

We have calculated the LST at Monash from the Greenwich 
Standard Time. This is not very useful as we do not set our 
watches to Greenwich time but to the standard time ST of 
Victoria. As this is the LST for places with the longitude 150° , 
we must take into account the difference between the longitude 
of Monash and 150°, i.e. 4°52'. As we are this amount west of 
Eden, we then have 

LST(Monash) = ST(Victoria) - 19 min 28 sec. (7.3) 

as (40 52')/15 = 19'28". This means that when our watch shows 
12h19m28s then the LST at Monash is 12 noon. 1 The two 
coincide for Greenwich, Eden in N.S.W. and most places the 
longitudes of which are multiples of 15°. A third kind is called 
apparent sun time (AST) and this is a bit more difficult to 
understand. It is the difference between AST and LST which 
makes the loops to be seen in our sundial necessary. (Notice by 

1 We now have two kinds of time for each place. 
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the way that the S in AST and LST stand for different words: 
sun in the first, standard in the second). 

The fact is that even in Greenwich or in Eden the sun is not 
always highest at noon. (This is due to the fact that the earth's 
orbit is not perfectly circular, and also to the earth's axis be­
ing tilted.) The time at which the sun is highest is called the 
ephemeris transit time of the sun and it can be found in the 
handbook called «Astronomical Ephemerides ". This book is 
issued every year. In order to find the ephemeris transit times 
ofthe sun, it does not matter which volume of the handbook we 
take, the one for 1900 is just as good as the one for 1980. The 
declination of the sun given there corresponds always to the 
same ephermeris transit time of the sun, at least for hundreds 
of years to come. We find, for example, in the handbook for 
1978 that on December 31, 1977 the declination is -23°07'15" 
and the ephemeris transit takes place at 12h 03min 01.71s LST. 
On the other hand, we find 

Date Declination Ephemeris transit 

31·12 ·1978 -23° 08' 14.5" 12h 02m 54.93s 

1 ·1 . 1979 23° 03' 53.8" 12h 03m 23.61s. 

Linear interpolation from these two data gives, for the decli­
nation 23° 07'15", the ephemeris transit time 12h 03m 1.47s. 
We thus have in one year for a given declination a change in 
ephemeris transit time of 0.24 seconds. In fact it is much less 
than this, as linear interpolation is not good enough. 
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All places on the same meridian have the same AST. At any 
place, AST noon occurs when the sun is highest in the sky, 
i.e. at the moment when the shadow of the gnomon in a con­
ventional sundial is vertical. To put it differently: AST noon 
occurs when the shadow of any vertical object is shortest. LST 
and AST vary by a changing amount during the year. This 
difference, 

dE= LST-AST (7.4) 

as a function of the data is called the equation of time (Figure 
16). (This name is a little unfortunate as dE is not an "equa­
tion"in the usual sense. Rather it is a correction term to be 
entered into the equations. However, the name is standard and 
so is used here.) This difference, dE is the same for all places 
on the earth (not only for places on the same meridian). 

The "ephemeris transit time" of the sun as found in the "As­
tronomical Ephemerides" is the LST at which the sun is highest 
in the sky. 

Combining the relations found above we have 

ST (Victoria) = LST( Monash) + 19 m 28s 

= AST (Monash) + dE + 19 m 28s. (7.5) 

At noon AST the sun is highest in the sky. Between AST noon 
of one day and the next the sun describes a full circle; the hour 
angle of the sun increases by 3600

• We have then the relation 
between the hour angle T of the sun and AST. 



15Min 

10Min 

5MIn 

o 
- 5 Min 

-10 Min 

-15 Min 

7 Three Kinds of Time 57 

Figure 16. The equation of time 
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Hour angle AST 

0° 12 noon 
+90° 6 am 
-90° 6 pm 
T 12 - ;5 . 

In this last relation, namely 12 - ;5' we count the hours of the 
day from 0 to 24, 0 and 24 standing for midnight. We substitute 
this in our relation above and find 

T = -15ST(Vic) + 184°52' + 15~E 

= -15ST(Vic)+184.87°+15~E. (7.6) 

For 10 am ST (Vic) we have thus T = 34°52' + 15~E and for 
2 pm = 14 ST we have T = -25°8' + 15~E. 

The handbook "Astronomical Ephemerides" does not give ~E 
but ET, the ephemerides transit time of the sun. 

Then ~E = ET - 12 and this is ~E in minutes and seconds. 
For the calculator, we have to convert this into decimal points. 
We have 

(3 - T = (3 - 184.87° + 15(ST - ET + 12) (7.7) 

(3 - T = (3 - 4.87° + 15(ST - ET). (7.8) 



8 Calculations for the 
Monash Sundial 

The longitude of Monash is 

I = 145°08' = 145.13° East 

and the latitude is 

The wall on which the sundial is mounted has the angle (Figure 
13): 

4> = 106.85°. 

From Formulae (4.1), (4.2), (4.3), (4.4), (4.5) we calculate 

ST = 20.41° 

GT = 49.03° 

[3 = 26.24° . 

Then 
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HT 

HG 

The Monash Sundial 

= artan(0.7550) tan(.8 - T)) 

( 
1.1514 ) 

= artan cos(.8 _ T) . 

(8.1) 

(8.2) 

For the meaning of these quantities see Figure lla 

It follows that 

SH = ST - HT = 20.41° - HT. (8.3) 

OG' = cosGT = 0.6557 

G'G sinGT = 0.7550, 

where the length OG of the gnomon is unity. The z, y coordi­
nates of the point G' (Figures 11 and 17) are then 

z = 0.6145, y = 0.2287. 

For the quantity .8 - T we have from Equation (7.8) 

.8 - T = 21.37° + 15(ST - ET). (8.4) 

The quantities OP and SH give the position of the shadow 
in polar coordinates. OP is given by Formula (6.1) (here re­
peated) 

OP = cos 6 
cos(HG - 6) 

(6.1) 

Formulae (8.1-8.4), together with the Formula (6.1) and the val­
ues for I, >.., t/J, ST, GT and .8, allow computation of the position 
of the point P. 

We have 
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fJ = 26.24° 

sin fjJ cos A = 0.7550 

tanarsin (sinfjJcosA) = 1.1515 

(
COS t/J) 

ST=artan tan>. =20.41°. 

These four quantities remain unchanged for all calculations. 

In order to calculate the position of the shadow for any given 
day (remember the year does not affect matters greatly), we 
need also the declination 6 and the ephemeris transit time ET. 
These quantities I took from the 'Astronomical Ephemerides'. 
It is then possible to derive the values of OP (from Equation 
(6.1» and SH (from Equation (8.3». I did this using an HP25 
calculator, applying the calculations to all the values of ST 
when the sun shone on the north wall of the Union building, 
and to all the days of the year. Finally, I used the facilities 
provided by the calculator to convert these values (which are 
the polar coordinates of the point P) into cartesian coordinates 
x,y. 

Consider a particular example; for 21.1.1978, we have 

ET = 12h 11m 18s 

and 
{, =: -20.0244° . 

Our results are then as follows. 
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ST z: y 

7 3.4244 8.9778 
8 2.4421 3.3749 
9 2.3145 2.0120 
10 2.3574 1.3125 
11 2.5093 0.8023 
12 2.9063 0.3047 
13 3.4153 -0.3699 
14 5.1462 -1.8844 

By making many such calculations, it is possible to derive an z: 
and a y for each ST on any particular day. Interpolation, for 
example, gives (still on 21.1.1978) z: = 2.3165, Y = 1.7220 for an 
ST of 9h21m33s. In this way, the values of z:, y were calculated 
for each time on each date of the year. (Fortunately, as noted 
on pg. 55 above, the variation from year to year is extremely 
small and can be neglected.) 

This is how I made the calculations for the Monash sundial2 • 

2Editor's Note: The one complication not allowed for in that calcula­
tion is daylight saving. The sundial gives very accurate readings of Eastern 
Standard Time. During the summer months, the viewer must supply the 
one hour adjustment for Summer Time. 
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y 

p 

Figure 17. z, y coordinates for the design of the sundial. 
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