Design and synthesis of Brain Penetrant Trypanocidal NMyristoyltransferase Inhibitors

Tracy Bayliss, David A. Robinson, Victoria C. Smith, Stephen Brand, Stuart P. McElroy, Leah S. Torrie, Chido Mpamhanga, Suzanne Norval, Laste Stojanovski, Ruth Brenk, Julie A. Frearson, Kevin D. Read, Ian H. Gilbert, Paul G. Wyatt*. Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, U.K.

Supporting Information

S.1. Suzuki Array Chemistry - Figure 3 Table 1 of publication

S.1.1 General Suzuki Reaction Scheme
S.1.2 Experimental
S.1.3 Suzuki Array Examples
S.1.4 Representative Suzuki Reaction
S.1.4.1 Method 1 synthesis
S.1.4.2 Method 2 synthesis
S.1.4.3 Method 3 synthesis
S.2. Amidation Array Chemistry - Figure 3 Table 1 of publication.
S.2.1 Amides (directly linked)
S.2.2 Experimental
S.2.3 Amides (homologated)
S.2.4 Experimental
S.2.5 Amidation Array Examples
S.2.6 Representative Amidation Reaction
S.2.7 Yields, NMRs, m/z of directly linked and homologated amide series.

Nos. 3-12
S.3. Mitsunobu Array Chemistry - Figure 3 Table 1 of publication.
S.3.1 General Mitsunobu Reaction Scheme
S.3.2 Experimental
S.3.3 Mitsunobu Array Chemistry
S.3.4 Representative Mitsunobu Reaction
S.3.5 Yields, NMRs, m/z of Mitsunobu Reactions. Nos. 17-24

S. 4 X-ray Crystallography Statistics

S. 5 Comparison of pIC50 data for NMT inhibitors against TbNMT and AfNMT

S. 6 Molecular structures of known NMT inhibitors

S1. Suzuki Array Chemistry

All the boronic acids or boronate esters and aryl bromides used in the Suzuki array are commercially available.

S.1.1 General Suzuki Reaction Scheme

i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, Dioxane/ $1 \mathrm{M} \mathrm{aq} \mathrm{K}_{3} \mathrm{PO}_{4}$, Polystyrene bound-DEAM ii)

TFA/dichloromethane
Scheme 1. Suzuki Reaction Methods

S.1.2 Experimental

Intermediate B, C Synthesis

i) $\mathrm{BocO}_{2}, \mathrm{NEt}_{3}$, THF ii) $\mathrm{Pd}(\mathrm{OAc})_{2}$, bispinacolartodiboron, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$, Dioxane, iii) TFA/Ether
tert-Butyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperidine-1carboxylate (C). A solution of 4-(3-bromophenyl)piperidine.hydrochloride (A) (5.1 g, $18.4 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{Boc}_{2} \mathrm{O}(4.4 \mathrm{~g}, 20.2 \mathrm{mmol}, 1.1 \mathrm{eq})$, and triethylamine ($3.87 \mathrm{~mL}, 27.8$ $\mathrm{mmol}, 1.5 \mathrm{eq})$ in THF (50 mL) was stirred at room temperature for 16 h . The reaction was filtered, the filtrate was washed with dilute 10% citric acid and extracted into ethyl acetate. The ethyl acetate layer was washed with water, and the organic layer dried over MgSO_{4}, filtered and evaporated to give an off-white solid (tert-butyl 4-(3bromophenyl))piperidine-1-carboxylate (X) (6.13 g, 98\% yield). ${ }^{1} \mathrm{H} \mathrm{NMR}, 500 \mathrm{MHz}$, $\mathrm{CDCl}_{3} \delta 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{tt}, J=3.70,12.21$, $1 \mathrm{H}), 2.77-2.85(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.32(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]^{+}=388.4$
tert-Butyl 4-(3-bromophenyl)piperidine-1-carboxylate, $\boldsymbol{X}(2.9 \mathrm{~g}, 8.52 \mathrm{mmol}, 1 \mathrm{eq})$, bispinacolartodiboron ($2.6 \mathrm{~g}, 10.2 \mathrm{mmol}, 1.2 \mathrm{eq}$) and potassium acetate $(1.84 \mathrm{~g}, 18.7$ mmol, 2.2 eq) were combined in anhydrous dioxane (15 mL) in a microwave vessel and degassed with argon for 5 min before adding $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(348 \mathrm{mg}, 0.426 \mathrm{mmol}$, 5%. The reaction was degassed again before microwaving at $120^{\circ} \mathrm{C}$ for 40 min . The reaction was then partitioned between dichloromethane and aq. NaHCO_{3}. The organic layer was dried over MgSO_{4}, filtered and absorbed onto silica before being purified by flash column chromatography, running a gradient from 0% ethyl acetate/hexane to 30% ethyl acetate/hexane. This gave C as a white solid ($2.4 \mathrm{~g}, 73 \%$
yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.37(\mathrm{~s}, 12 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.64-1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{tt}, J=3.62,12.25,1 \mathrm{H}), 2.76-2.84(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.36(\mathrm{~m}$, $2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 2 \mathrm{H})$.

4-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperidine (B). To a solution of tert-butyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)piperidine-1-carboxylate (C) ($2.77 \mathrm{~g}, 7.15 \mathrm{mmol}, 1 \mathrm{eq}$), in diethylether (15 ml), TFA (4 eq) was added dropwise and the reaction stirred at RT for 96 h . The reaction was evaporated in vacuo and passed through an SCX column, eluting with 7 N ammonia in methanol, giving B as a white solid ($1.9 \mathrm{~g}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{MeOD}, \delta 1.38(\mathrm{~s}, 12 \mathrm{H}), 1.89-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.96$ $(\mathrm{m}, 1 \mathrm{H}), 3.12-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.52(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.70(\mathrm{~m}, 2 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]^{+}=288.2138$

S.1.3 Suzuki Array Examples

No compounds made gave an $\mathrm{IC}_{50}<10 \mu \mathrm{M}$ against $T b N M T$

S.1.4 Representative Suzuki Reaction

S.1.4.1 Method 1

a) $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, Dioxane/ $1 \mathrm{M} \mathrm{aq} \mathrm{K} \mathrm{K}_{3} \mathrm{PO}_{4}$, Polystyrene bound-DEAM

2-(3'-(Piperidin-4-yl)-[1, l'-biphenyl]-3-yl)acetamide. A solution of 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetamide ($152 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.2 \mathrm{eq}$),

4-(3-bromophenyl)piperidine hydrochloride (A) ($135 \mathrm{mg}, 0.49 \mathrm{mmol}, 1 \mathrm{eq}$), in anhydrous dioxane (3 mL) with $1 \mathrm{M} \mathrm{aq} \mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{~mL})$, in a microwave vessel was degassed with argon for 5 min , before addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.024 \mathrm{mmol}, 28 \mathrm{mg}$, 5%). The reaction was degassed again for a further 5 min , then heated at $140^{\circ} \mathrm{C}$ for 15 min in a microwave. To the resulting reaction Polystyrene bound-DEAM (polystyrene bound diethanolamine, loading $=1.5-2.2 \mathrm{mmol} / \mathrm{g}, 1 \mathrm{~g}, \sim 5 \mathrm{eq}$) was added and the reaction microwaved again at $100^{\circ} \mathrm{C}$ for 10 min . Once cooled, the reaction was loaded onto a pre-washed SCX cartridge. The SCX cartridge was washed with dichloromethane ($3 \times 10 \mathrm{~mL}$) and methanol $(3 \times 10 \mathrm{~mL})$ before eluting the product with 7 N ammonia in methanol. This was evaporated to give the title compound (96 $\mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.68-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.93(\mathrm{~m}, 2 \mathrm{H})$, 2.68-2.76 (m, 1H), 2.76-2.82 (m, 2H), 3.21-3.26 (m, 2H), $3.68(\mathrm{~s}, 2 \mathrm{H}), 5.47$ (br.s, 2H), 7.24-7.29 (m, 2H), 7.38-7.48 (m, 4H), 7.51-7.57 (m, 2H). $[\mathrm{M}+\mathrm{H}]^{+}=295.2$

S.1.4.2 Method 2

i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, Dioxane $/ 1 \mathrm{M} \mathrm{aq} \mathrm{K} \mathrm{K}_{3} \mathrm{PO}_{4}$, Polystyrene bound-DEAM

1-(6-Morpholino-3'-(piperidin-4-yl)-[1, 1^{\prime}-biphenyl]-3-yl)ethanone. A solution of (3-(piperidin-4-yl)phenyl)boronic acid (B) ($85 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.1 \mathrm{eq}$), 1-(3-bromo-4morpholinophenyl)ethanone ($107 \mathrm{mg}, 0.38 \mathrm{mmol}, 1 \mathrm{eq}$), in anhydrous dioxane (3 mL) with $1 \mathrm{M} \mathrm{aq} \mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{~mL})$, in a microwave vessel was degassed with argon for 5
min, before addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.021 \mathrm{mmol}, 24 \mathrm{mg}, 5 \%)$. The reaction was degassed again for a further 5 min , then heating at $140^{\circ} \mathrm{C}$ for 15 min in a microwave. To the resulting reaction polystyrene bound-DEAM (DEAM = diethanolamine, loading $=1.5-2.2 \mathrm{mmol} / \mathrm{g}, 1 \mathrm{~g}, \sim 5 \mathrm{eq})$ was added and the reaction microwaved again at $100^{\circ} \mathrm{C}$ for 10 min . Once cooled, the reaction was loaded onto a pre-washed SCX cartridge. The SCX cartridge was washed with dichloromethane ($3 \times 10 \mathrm{~mL}$) and methanol ($3 \times 10 \mathrm{~mL}$) before eluting the product with 7 N ammonia in methanol. This was evaporated to give the title compound ($128 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.42-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.58(\mathrm{~m}$, $2 \mathrm{H}), 2.68-2.70(\mathrm{~m}, 4 \mathrm{H}), 3.37-3.40(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=8.50,1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.40$, $1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.48,1 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]^{+}=$ 365.22

S.1.4.3 Method 3

i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, Dioxane $/ 1 \mathrm{M} \mathrm{aq} \mathrm{K}{ }_{3} \mathrm{PO}_{4}$, Polystyrene bound-DEAM, ii)TFA/dichloromethane

5-Methyl-3-(3'-(piperidin-4-yl)-[1,1'-biphenyl]-3-yl)-1,2,4-oxadiazole. A solution of tert-butyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperidine-1carboxylate (C) ($90 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.1 \mathrm{eq}$), 3-(3-bromophenyl)-5-methyl-1,2,4oxadiazole ($50 \mathrm{mg}, 0.21 \mathrm{mmol}, 1 \mathrm{eq}$), in anhydrous acetonitrile (3 mL) with 1 M aq
$\mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{~mL})$, in a microwave vessel was degassed with argon for 5 min , before addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.021 \mathrm{mmol}, 24 \mathrm{mg}, 5 \%)$. The reaction was degassed again for a further 5 min , then heated at $140^{\circ} \mathrm{C}$ for 15 min in a microwave. To the resulting reaction Polystyrene bound-DEAM (loading $=1.5-2.2 \mathrm{mmol} / \mathrm{g}, 1 \mathrm{~g}, \sim 5 \mathrm{eq}$) was added and the reaction microwaved again at $100^{\circ} \mathrm{C}$ for 10 min . Reaction was filtered, evaporated in vacuo, and the residue dissolved in dichloromethane and treated with triflouroacetic acid (TFA, 1 mL), stirred at RT for 1 h before concentrating in vacuo. The resulting residue was loaded onto a pre-washed SCX cartridge. The SCX cartridge was washed with dichloromethane ($3 \times 10 \mathrm{~mL}$) and methanol ($3 \times 10 \mathrm{~mL}$) before eluting the product with 7 N ammonia in methanol. This was evaporated to give the title compound ($44 \mathrm{mg}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.70-1.79$ (m, 2H), 1.89-1.94 (m, 2H), $2.53(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.23-$ $3.28(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.60-7.64 (m, 1H), 7.827.85 (m, 1H), 8.10-8.12 (m, 1H), 8.36-8.38 (m, 1H). [M+H] = 320.2

S2. Amidation Array Chemistry

S.2.1 Amides (directly linked)

OR

i)PS-CDI, HOBt, MeCN, $\mathrm{NR}_{1} \mathrm{R}_{2}$ ii) TFA, dichloromethane.

Scheme 2. Amide (Directly Linked) Array Chemistry

S.2.2 Experimental (Method 4)

Note: D and E carboxylic acids were synthesised using the same procedure.

i)(4-(ethoxycabonyl)phenyl)boronic acid, dioxane $/ 1 \mathrm{M} \mathrm{aq} \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ii) LiOH , $\mathrm{H}_{2} \mathrm{O} /$ methanol, THF
tert-Butyl 4-(4'-(ethoxycarbonyl)-[1,1'-biphenyl]-3-yl)piperidine-1-carboxylate (D ethyl ester). tert-Butyl 4-(3-bromophenyl)piperidine-1-carboxylate (X) (1.54 g, 4.5 mmol, 1 eq), (4-(ethoxycabonyl)phenyl)boronic acid ($1.3 \mathrm{~g}, 6.75 \mathrm{mmol}, 1.5 \mathrm{eq}$), in anhydrous dioxane (3 mL), and $1 \mathrm{M} \mathrm{aq} \mathrm{K}_{3} \mathrm{PO}_{4}(2 \mathrm{~mL})$ were combined in a microwave vessel and argon bubbled through the mixture for $5 \mathrm{~min} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(260 \mathrm{mg}$, $0.23 \mathrm{mmol}, 5 \%$), was added and the reaction degassed again for a further 5 min before microwaving at $140^{\circ} \mathrm{C}$ for 15 min . The resulting solution was extracted into dichloromethane, washing with sat. aq. NaHCO_{3}, and passed through a phase separation cartridge, the filtrate was absorbed onto silica and purified by flash column chromatography running a gradient from 0% ethyl acetate/hexane to 20% ethyl acetate/hexane, to give the named compound as a clear oil ($1.7 \mathrm{~g}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.45(\mathrm{t}, J=7.36,3 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.67-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.88-$ $1.93(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.82-289(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.02$,

2H), 7.25-7.28 (m, 1H), 7.42-7.45 (m, 1H), 7.47-7.51 (m, 2H), 7.66-7.68 (m, 2H), 8.12-8.15 (m, 2H). $[\mathrm{M}+\mathrm{H}]^{+}=410.2$

3'-(1-(tert-Butoxycarbonyl)piperidin-4-yl)-[1,1'-biphenyl]-4-carboxylic acid (D) . tertButyl 4-(4'-(ethoxycarbonyl)-[1,1'-biphenyl]-3-yl)piperidine-1-carboxylate (D ethyl ester) ($1.7 \mathrm{~g}, 4.15 \mathrm{mmol}, 1 \mathrm{eq}$) was suspended in a mixture of THF (10 mL), $\mathrm{H}_{2} \mathrm{O} /$ methanol ($1: 1,10 \mathrm{~mL}$), to this lithium hydroxide ($400 \mathrm{mg}, 16.6 \mathrm{mmol}, 4 \mathrm{eq}$) was added and the mixture stirred at room temperature for 16 h . The reaction was concentrated in vacuo, and acidified to pH 3 with $1 \mathrm{Naq} . \mathrm{HCl}$, then extracted into ethyl acetate (x3), layers separated and the organic layer dried over MgSO_{4}, filtered and evaporated in vacuo to give an off-white solid, which was washed with diethyl ether to give \mathbf{D} as a white solid ($1.3 \mathrm{~g}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{MeOD} \delta 1.50$ $(\mathrm{s}, 9 \mathrm{H}), 1.64-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.96(\mathrm{~m}, 3 \mathrm{H}), 4.23-4.28(\mathrm{~m}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, J=7.75,1 \mathrm{H}), 7.52(\mathrm{t}, J=7.75,1 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 2 \mathrm{H})$, 8.10-8.12 (m, 2H). $[\mathrm{M}+\mathrm{H}]^{+}=382.2$
tert-Butyl 4-(3'-(methoxycarbonyl)-[1,1'-biphenyl]-3-yl)piperidine-1-carboxylate (\boldsymbol{E} methyl ester). Prepared using tert-butyl 4-(3-bromophenyl)piperidine-1-carboxylate ($3 \mathrm{~g}, 8.8 \mathrm{mmol}, 1 \mathrm{eq}$), and (3-(ethoxycabonyl)phenyl)boronic acid ($1.71 \mathrm{~g}, 8.8 \mathrm{mmol}$, $1 \mathrm{eq})$, in DMF: $\mathrm{H}_{2} \mathrm{O}(1: 1,4 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(120 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.87 \mathrm{~g}, 8.8 \mathrm{mmol}, 1$ eq) according to the procedure outlined above to give the title compound as a gum ($3.22 \mathrm{~g}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.49-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.57(\mathrm{~s}$, 9H), 1.76-1.72 (m, 2H), 1.94-1.87 (m, 2H), 2.78-2.73(m, 1H), 2.86-2.82(m, 3H), $4.40-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46$ (m, 4H), $7.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=354.1574\left(\right.$ product $\left.-{ }^{\mathrm{t}} \mathrm{Bu}\right)$

3'-(1-(tert-Butoxycarbonyl)piperidin-4-yl)-[1,1'-biphenyl]-3-carboxylic acid (E).
Prepared using tert-butyl 4-(3'-(methoxycarbonyl)-[1,1'-biphenyl]-3-yl)piperidine-1carboxylate ($3.22 \mathrm{~g}, 7.8 \mathrm{mmol}, 1 \mathrm{eq}$), lithium hydroxide ($750 \mathrm{mg}, 31.2 \mathrm{mmol}, 4 \mathrm{eq}$), in THF (15 mL) according to the procedure outlined above to give \mathbf{E} as a white foam. ($2.9 \mathrm{~g}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.68-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.90-$ 1.93 (m, 2H), 2.72-2.90 (m, 2H), 2.90-2.93 (br. s, 2H), 4.18-4.27 (br. s, 2H), 7.30$7.32(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.92(\mathrm{~d}, J=4.5,1 \mathrm{H}), 8.16(\mathrm{~d}, J=4.6,1 \mathrm{H}), 8.40(\mathrm{~s}$, $1 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]^{+}=326.1284$ (product $-{ }^{\mathrm{t}} \mathrm{Bu}$)

S.2.3 Amides (homologated)

i)Polystyrene bound-CDI, $\mathrm{HOBt}, \mathrm{MeCN}, \mathrm{NR}_{1} \mathrm{R}_{2}$ ii) TFA, dichloromethane.

Scheme 4. Homologated Amide Array Intermediate Chemistry

S.2.4 Experimental (Method 4)

Note: Intermediates G and H were all made using the same chemistry

i) ethyl 2-(4-bromophenyl)acetate, dioxane/1M aq $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ii) LiOH , $\mathrm{H}_{2} \mathrm{O} /$ methanol, THF
tert-Butyl 4-(4'-(2-ethoxy-2-oxoethyl)-[1,1'-biphenyl]-3-yl)piperidine-1-carboxylate (G ethyl ester). tert-Butyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperidine-1-carboxylate (C) ($2 \mathrm{~g}, 5.17 \mathrm{mmol}, 1 \mathrm{eq}$), ethyl 2-(4bromophenyl)acetate ($1.52 \mathrm{~g}, 6.24 \mathrm{mmol}, 1.2 \mathrm{eq}$), in anhydrous dioxane (5 mL) were combined and degassed with argon for 5 min in a microwave vessel. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(300$ $\mathrm{mg}, 0.26 \mathrm{mmol}, 5 \%$) was added and the reaction degassed again before microwaving at $140^{\circ} \mathrm{C}$ for 15 min . Reaction partitioned between dichloromethane and aq. sat. NaHCO_{3}, and the organic layer dried over MgSO_{4} before absorbing onto silica and purifying by flash column chromatography, running a gradient from 0% ethyl acetate/hexane to 30% ethyl acetate/hexane to give the title compound as a clear oil $\left(1.92 \mathrm{~g}, 88 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.27-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$, $1.65-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{tt}, J=3.53,12.22,1 \mathrm{H}), 2.79-2.89(\mathrm{~m}$, $2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.44,2 \mathrm{H}), 4.23-4.35(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.37-$ $7.47(\mathrm{~m}, 5 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 2 \mathrm{H})$.

2-(3'-(1-(tert-utoxycarbonyl)piperidin-4-yl)-[1,1'-biphenyl]-4-yl)acetic acid (G). LiOH ($435 \mathrm{mg}, 18.2 \mathrm{mmol}, 4 \mathrm{eq}$) was added to a solution of tert-butyl 4-(4'-(2-ethoxy-2-oxoethyl)-[1,1'-biphenyl]-3-yl)piperidine-1-carboxylate ($1.92 \mathrm{~g}, 4.54 \mathrm{mmol}$, $1 \mathrm{eq})$ in a mixture of THF (10 mL) and $\mathrm{H}_{2} \mathrm{O} /$ methanol $(1: 1,10 \mathrm{~mL})$, stirring at RT for 16 h . Reaction evaporated in vacuo, and the residue acidified to Ph 3 with 1 N HCl before extracting into ethyl acetate. The organic layer was dried over MgSO_{4}, filtered and evaporated to give (\mathbf{G}) as a white solid $\left(1.5 \mathrm{~g}, 84 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR 500 MHz , $\mathrm{CDCl}_{3} \delta 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.65-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{tt}, J=3.64,12.17$, $1 \mathrm{H}), 2.80-2.89(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.35(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.46$ (m, 5H), 7.56-7.59 (m, 2H).
tert-Butyl 4-(3'-(2-methoxy-2-oxoethyl)-[1,1'-biphenyl]-3-yl)piperidine-1-carboxylate (H methyl ester). Prepared using tert-butyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperidine-1-carboxylate (C) ($2 \mathrm{~g}, 5.17 \mathrm{mmol}, 1 \mathrm{eq}$), methyl 2-(3-bromophenyl)acetate ($1.43 \mathrm{~g}, 6.24 \mathrm{mmol}, 1.2 \mathrm{eq}$), in anhydrous dioxane $(5 \mathrm{~mL})$ with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(300 \mathrm{mg}, 0.26 \mathrm{mmol}, 5 \%)$, and aq. $1 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}(5.2 \mathrm{~mL})$ according to the protocol outlined in above, to give the title compound as a clear oil, ($1.63 \mathrm{~g}, 77 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.51$ ($\left.\mathrm{s}, 9 \mathrm{H}\right), 1.66-1.76$ (m, 2H), 1.87-1.92 (m, 2H), $2.74(\mathrm{tt}, J=3.58,12.27,1 \mathrm{H}), 2.81-2.89(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $2 H), ~ 4.23-4.36(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.47(\mathrm{~m}, 4 \mathrm{H})$, $7.50-7.52(\mathrm{~m}, 2 \mathrm{H})$.

2-(3'-(1-(tert-Butoxycarbonyl)piperidin-4-yl)-[1,1'-biphenyl]-3-yl)acetic acid (H).
Prepared using tert-butyl 4-(3'-(2-methoxy-2-oxoethyl)-[1,1'-biphenyl]-3-
yl)piperidine-1-carboxylate ($1.63 \mathrm{~g}, 3.98 \mathrm{mmol}, 1 \mathrm{eq}$), and lithium hydroxide (382 $\mathrm{mg}, 15.9 \mathrm{mmol}, 4 \mathrm{eq})$ in THF and $\mathrm{H}_{2} \mathrm{O}$:methanol according to the procedure above for G, to give the title compound as a white solid, $(1.47 \mathrm{~g}, 82 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{tt}, J=$ $3.42,12.20,1 \mathrm{H}), 2.80-2.88(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.33(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.23(\mathrm{~m}$, $1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H})$.

S.2.5 Amidation Array Examples

S.2.6 Representative Amidation Reaction

i) Polystyrene bound-CDI, HOBt, MeCN, $\mathrm{NR}_{1} \mathrm{R}_{2}$, ii) TFA, dichloromethane.

Sauer D.R.; Kalvin D.; PhelanK.M.; Microwave-assisted synthesis utilizing supported reagents; a rapid and efficient acylation procedure, Org Lett. 2003, 5, p4721-4724

N-(3-methoxybenzyl)-3'-(piperidin-4-yl)-[1,1'-biphenyl]-4-carboxamide. 3'-(1-(tert-butoxycarbonyl)piperidin-4-yl)-[1,1'-biphenyl]-4-carboxylic acid (D) (90 mg, 0.24 mmol, 1.1 eq), Polystyrene bound-CDI (CDI = carbodiimide, $1.25 \mathrm{mmol} / \mathrm{g}$ loading, $384 \mathrm{mg}, 0.48 \mathrm{mmol}, 2 \mathrm{eq}$), $\mathrm{HOBt}(32 \mathrm{mg}, 0.24 \mathrm{mmol}, 1 \mathrm{eq})$, (3methoxyphenyl)methanamine ($30 \mathrm{mg}, 0.22 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{MeCN}(3 \mathrm{~mL})$ was combined in a microwave vessel and heated at $140{ }^{\circ} \mathrm{C}$ for 10 min in a microwave. The reaction was poured onto a SPE cartridge containing 2 g of $\mathrm{Si}-\mathrm{CO}_{3}$ (Silica bound carbonate), washing through with $\mathrm{MeCN} /$ methanol $(1: 1,15 \mathrm{~mL})$, to gave a pure amide BOC protected intermediate. The filtrate was evaporated in vacuo, the residue dissolved in dichloromethane (5 mL) before adding trifluoroacetic acid (10 eq) and allowing the reaction to stir at room temperature for 3 h . The resulting solution was evaporated in vacuo before dissolving in dichloromethane ($\sim 5 \mathrm{~mL}$) and loading onto a pre-washed SCX cartridge. The SCX cartridge was washed with dichloromethane (3 x 10 mL) and methanol ($3 \times 10 \mathrm{~mL}$) before eluting the product with 7 N ammonia in methanol. This was evaporated to give (D) ($73 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR 500 MHz , $\mathrm{CDCl}_{3} \delta 1.69-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.76(1 \mathrm{H}), 2.77-2.83(\mathrm{~m}, 2 \mathrm{H})$, $3.22-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 6.45(\mathrm{br} . \mathrm{s} 1 \mathrm{H}), 6.86-6.90$ $(\mathrm{m}, 1 \mathrm{H}), ~ 6.94-6.96(\mathrm{~m}, 2 \mathrm{H}), \quad 7.27-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.70(\mathrm{~m}$, $2 \mathrm{H}), 7.87-7.91(\mathrm{~m}, 2 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]^{+}=401.22$

S.2.7 Yields, NMRs, \mathbf{m} / \mathbf{z} of directly linked and homologated amide series. Table 1 of publication

Note: all compounds made using the corresponding directly linked or homologated carboxylic acid and commercially available amines using METHOD 4.

		NMR and m/z	Yield (purity)
3		${ }^{1}$ H NMR 500MHz, DMSO, δ 1.61-1.71 (m, $2 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}$, $3 \mathrm{H}), 2.63-2.74(\mathrm{~m}, 3 \mathrm{H}), 3.06-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.68$ $(\mathrm{s}, 3 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 1 \mathrm{H})$, 7.56-7.62 (m, 3H), 7.86-7.90 (m, 1H), 7.92-7.96 $(\mathrm{m}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]=$ 389.2 HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{1}=$ 389.2336 , found $=389.2337$	$\begin{aligned} & \hline 82 \% \\ & (96 \%) \end{aligned}$
4		${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.78-1.68(\mathrm{~m}$, $2 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.70(\mathrm{~m}, 3 \mathrm{H})$, $3.30-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.74(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=5.2,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{1}=$ 375.2179, found $=375.2192$	$\begin{aligned} & \hline 57 \% \\ & (95 \%) \end{aligned}$
5		${ }^{1}$ H NMR 500 MHz , DMSO, $\delta 1.60-1.70(\mathrm{~m}, 2 \mathrm{H})$, 1.75-1.81 (m, 2H), 2.61-2.72 (m, 3H), 3.08-3.11 $(\mathrm{m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.5(\mathrm{~d}, J=1.8,2 \mathrm{H}), 6.85$ $(\mathrm{s}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.52-7.58-(m, 4H), 7.78-7.86 (m, 2H), 8.10 (s, $1 \mathrm{H}), 8.98-9.00(\mathrm{~m}, 1 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]=375.2$. HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{1}=$ 375.2179 , found $=375.2187$	$\begin{aligned} & \hline 83 \% \\ & (98 \%) \end{aligned}$
6		${ }^{1}$ H NMR 500 MHz , MeOD δ 1.73-1.82 (m, 2H), 1.89-1.94 (m, 2H), 2.77-2.84 (m, 3H), 3.18-3.24 $(\mathrm{m}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.87(\mathrm{~m}$, $1 \mathrm{H}), 7.99-8.02(\mathrm{~m}, 2 \mathrm{H}), 8.52-8.54(\mathrm{~m}, 1 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]=372.22$	$\begin{aligned} & \hline 32 \% \\ & (90 \%) \end{aligned}$
7		${ }^{1} \mathrm{H}$ NMR 500 MHz , DMSO, $\delta 1.57-1.72(\mathrm{~m}, 4 \mathrm{H})$, 2.60-2.69 (m, 3H), 3.01-3.08 (m, 2H), 4.52 (s, $2 \mathrm{H}), 7.16-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.31-7.34 (m, 1H), 7.43-7.47 (m, 3H), 7.64-7.67 $(\mathrm{m}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.85(\mathrm{~m}, 1 \mathrm{H})$, $8.08(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=1.4,1 \mathrm{H}), 9.17-9.19(\mathrm{~m}$, 1H). $[\mathrm{M}+\mathrm{H}]=372.4$ HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}=$ 372.207039 ,found $=372.207957$	$\begin{aligned} & \hline 55 \% \\ & (98 \%) \end{aligned}$
8		${ }^{1}$ H NMR 500 MHz, DMSO $\delta 1.68-1.82(\mathrm{~m}, 4 \mathrm{H})$, $1.91(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.80(\mathrm{~m}, 3 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.79,1 \mathrm{H})$, $7.35(\mathrm{t}, J=7.79,1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.16,2 \mathrm{H})$, 7.44-7.48 (m, 2H), $7.60(\mathrm{~d}, J=8.16,2 \mathrm{H}), 9.23$ $(\mathrm{s}, 1 \mathrm{H}) \cdot[\mathrm{M}+\mathrm{H}]=403.28$	$\begin{aligned} & \hline 15 \% \\ & (90 \%) \end{aligned}$

9		${ }^{\mathrm{I}} \mathrm{H}$ NMR 500 MHz , DMSO δ 1.79-1.93 (m, 4H), 2.77-2.84 (m, 1H), 2.84-2.94 (m, 2H), 3.22-3.34 (m, 2H), $3.46(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{~d}, J=$ 4.89, 2H), 6.77 (s, 1H), 7.18-7.21 (d, $J=7.17$, 1H), 7.32-7.37 (m, 3H), 7.44-7.48 (m, 2H), 7.54 $(\mathrm{s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.82,2 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]=389.27$	$\begin{aligned} & \hline 6 \% \\ & \text { (90\%) } \end{aligned}$
10		${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.67-1.77(\mathrm{~m}, 2 \mathrm{H})$, 1.89-1.93 (m, 2H), 2.72-2.79 (m, 1H), 2.82-2.89 $(\mathrm{m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 4.26-4.35(\mathrm{~m}, 2 \mathrm{H}), 7.16$ (br. s, 1H), 7.23-7.28 (m, 2H), 7.42-7.50 (m, $5 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.37$ (dd, $J=1.43,4.84,1 \mathrm{H}), 8.47(\mathrm{~d}, J=2.54,1 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]=372.24$	$\begin{aligned} & \hline 5 \% \\ & (90 \%) \end{aligned}$
11		${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.74$ (qd, $J=4.10$, $12.46,2 \mathrm{H}$), 2.73 (tt, $J=3.66,12.20,1 \mathrm{H}), 2.80$ $(\mathrm{td}, J=12.2,2.44,2 \mathrm{H}), 3.22-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.87$ (s, 2H), 7.21-7.23 (m, 1H), 7.26-7.28 (m, 1H), 7.34-7.36 (m, 1H), 7.42-7.49 (m, 2H), 7.52 (t, J $=7.73,1 \mathrm{H}), 7.58-7.63(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.16(\mathrm{~m}$, 1 H), 8.36 (dd, $J=1.42,4.78,1 \mathrm{H}$), 8.45-8.46 (s, $1 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]=372.21$	$\begin{aligned} & \hline 36 \% \\ & (90 \%) \end{aligned}$
12		${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.68-1.73(\mathrm{~m}, 4 \mathrm{H})$, 2.48-2.54 (m, 1H), 2.63-2.69 (m, 2H), 3.11-3.15 (m, 2H), $3.51(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=4.97,2 \mathrm{H})$, $6.74(\mathrm{~s}, 1 \mathrm{H}), 6.98-7.07(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $7.94,2 \mathrm{H}), 7.46(\mathrm{t}, J=7.67,1 \mathrm{H}), 8.31(\mathrm{~d}, J=$ $4.98,1 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]=386.26$	$\begin{aligned} & \hline 16 \% \\ & (85 \%) \end{aligned}$

S3. Mitsunobu Array Chemistry

Note: all of the reagents were commercially available and the 2-, 3-, and 4-hydroxy intermediates were made using the same procedure.

S.3.3 Mitsunobu Array Summary

$R=$

S.3.5 Yields, NMRs, m/z of Mitsunobu Reactions.

Table 1 of publication

Note: all compounds made using the corresponding phenol intermediate and commercially available alcohols using the experimental outlined above.

		NMR and m/z	Yield (purity)
18		${ }^{1}$ H NMR 500MHz, DMSO, $\delta 1.88-1.96$ (m, 4H), $2.71(\mathrm{~s}, 3 \mathrm{H}), 2.82-3.08(\mathrm{~m}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=8.6$, 2 H), 3.31-3.38 (m, 2H), $4.31(\mathrm{t}, J=8.8,2 \mathrm{H})$, 7.06-7.08 (m, 2H), 7.16-7.19 (m, 1H), 7.32-7.48 $(\mathrm{m}, 4 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 2 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]=379.2227$ HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}=$ 379.183861 , found $=379.184038$	$\begin{aligned} & \hline 46 \% \\ & (99 \%) \end{aligned}$
19		${ }^{1} \mathrm{H}$ NMR 500 MHz , DMSO, $\delta 1.83-1.97(\mathrm{~m}, 4 \mathrm{H})$, $2.66(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.92-3.01(\mathrm{~m}$, $2 \mathrm{H}), 3.31-3.34(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 7.11-7.18$ $(\mathrm{m}, 3 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 3 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]=365.1629$ HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OS}=$ 365.168211 , found $=365.166674$	$\begin{aligned} & \hline 84 \% \\ & \text { (98\%) } \end{aligned}$
20		${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.70-1.79(\mathrm{~m}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{tt}, J=3.78,12.02,1 \mathrm{H}), 2.80$ (td, $J=2.40,12.37,2 \mathrm{H}), 3.24-3.28(\mathrm{~m}, 2 \mathrm{H}), 5.20$ (s, 2H), 6.16 (s, 1H), 6.97 (dd, $J=0.87,8.26$, $1 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 4 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]=348.2$	$\begin{aligned} & \hline 26 \% \\ & (92 \%) \end{aligned}$
21		${ }^{1}$ H NMR 500MHz, DMSO $\delta 1.82-1.98$ (m, 4H), 2.88-2.91 (m, 1H), 2.92-3.03 (m, 2H), 3.33-3.38 (m, 2H), $5.19(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.13$ (m, $2 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.58-$ $7.61(2 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]=349.1833$ HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}=$ 349.191054, found $=349.190831$	$\begin{aligned} & \hline 23 \% \\ & (92 \%) \end{aligned}$
22		${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 1.70-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.89-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{tt}, J=12.00,3.54,1 \mathrm{H})$, $2.80(\mathrm{td}, J=12.29,2.39,2 \mathrm{H}), 3.23-3.27(\mathrm{~m}, 2 \mathrm{H})$, $5.17(\mathrm{~s}, 2 \mathrm{H}), 6.97-7.00(\mathrm{~m}, 1 \mathrm{H}), ~ 7.22-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.83-7.86(\mathrm{~m}, 1 \mathrm{H}), 8.62$ (dd, $J=4.91,1.57,1 \mathrm{H}), 8.74(\mathrm{~d}, J=1.67,1 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]=345.2$ HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{1}=$ 345.1961, found $=345.198$	$\begin{aligned} & \hline 47 \% \\ & (95 \%) \end{aligned}$
23		${ }^{1}$ H NMR 500 MHz , MeOD, $\delta 1.81-1.89$ (m, 2H), 1.95-2.01 (m, 2H), 2.79-2.84 (m, 1H), 2.91-2.99 (m, 2H), 3.34-3.38 (m, 2H), $2.51(\mathrm{~s}, 2 \mathrm{H}), 7.08-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.48(\mathrm{~m}$, $4 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=3.2,1 \mathrm{H}), 8.52(\mathrm{~d}$, $J=1.8,1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}) .[\mathrm{M}+\mathrm{H}]=345.2$ HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{1}=$ 345.1961, found $=345.197$	$\begin{aligned} & 30 \% \\ & (96 \%) \end{aligned}$

24		${ }^{1}$ H NMR 500MHz, $\mathrm{CDCl}_{3}, \delta 1.68-1.84(\mathrm{~m}, 4 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.64(\mathrm{~m}$, $2 \mathrm{H}), 3.05-3.11(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 6.85-6.89$ (m, 2H), 6.99-7.04 (m, 2H), 7.12-7.21 (m, 3H), 7.33-7.36 (m, 2H), 7.52-7.56 (m, 1H), $8.31(\mathrm{~s}$, $1 \mathrm{H})$. $[\mathrm{M}+\mathrm{H}]=359.2028$ HRMS $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{1}=$ 359.2118 , found $=359.2137$	$\begin{aligned} & 58 \% \\ & (95 \%) \end{aligned}$

S. 4 X-ray Crystallography Statistics

Data measurement and refinement statistics are shown below.

AfNMT	AfNMT:24	AfNMT:29	AfNMT:48	AfNMT:49
PDB code	5T5U	5T6C	5T6E	5T6H
	Data Measurement Statistics			
Source	ID14eh1	ID14eh2	ID14eh1	ID14eh1
Space Group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$			
Unit Cell Dimensions (Å)	$\begin{gathered} a=51.0, b=58.4, \\ c=152.6 \end{gathered}$	$\begin{gathered} a=51.1, b=58.6, \\ c=152.1 \end{gathered}$	$\begin{gathered} a=51.3, b=58.3, \\ c=152.1 \end{gathered}$	$\begin{gathered} a=50.4, b=58.9, \\ c=152.8 \end{gathered}$
Resolution (\AA) ${ }^{\text {a }}$	$\begin{gathered} 42.4-1.80 \\ (1.84-1.80) \\ \hline \end{gathered}$	$\begin{gathered} 38.5-1.90 \\ (1.94-1.90) \\ \hline \end{gathered}$	$\begin{gathered} 48.6-2.30 \\ (2.39-2.30) \\ \hline \end{gathered}$	$\begin{gathered} 50.0-1.80 \\ (1.86-1.80) \\ \hline \end{gathered}$
Observations	120004	162085	78514	112546
Unique Observations	42412	36493	20819	40875
Rmerge (\%) ${ }^{\text {a,b }}$	5.1 (26.2)	8.4 (33.5)	8.8 (47.8)	4.1(13.8)
$1 /\left.\sigma\right\|^{\text {a }}$	12.9 (3.4)	13.8 (4.3)	9.2 (1.9)	30 (7.5)
Completeness $(\%)^{a}$	99.0 (96.2)	99.0 (99.4)	99.4 (100)	94.5 (95.7)
Redundancy ${ }^{\text {a }}$	2.8 (2.8)	4.4 (3.7)	3.8 (3.8)	2.8 (2.7)
	Refinement Statistics			
Resolution Range (\AA)	76.32-1.80	38.5-1.90	48.6-2.30	19.80-1.90
$\begin{aligned} & \mathrm{R} \text {-factor } \\ & \left(\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}\right)^{\mathrm{c}} \end{aligned}$	20.9/23.8	22.3/25.6	19.9/24.8	17.5/21.3
Number of atoms ${ }^{\text {d }}$	3185/63/27/437	3185/63/29/502	3188/63/30/165	3184/63/30/514
$\begin{aligned} & \text { Mean B-factor } \\ & \left(\AA^{2}\right)^{e} \end{aligned}$	18/16/22/26	16/15/16/25	41/34/56/42	19/16/26/29
RMS bond length deviation (\AA)	0.011	0.022	0.012	0.016
RMS bond angle deviation ${ }^{\circ}$)	1.19	2.09	1.39	1.47

${ }^{\text {a }}$ Values in parentheses are for reflections in the highest resolution shell
$\left.{ }^{\mathrm{b}} R_{\text {merge }}=\sum|I-\langle I\rangle| \sum<I\right\rangle$
${ }^{\mathrm{c}} R$-factor $=\sum\left|F_{\text {obs }}-F_{\text {calc }}\right| \sum\left|F_{\text {obs }}\right|$
${ }^{d}$ Number of atoms of protein/cofactor/ligand/water
${ }^{\mathrm{e}}$ Mean B-factor for protein/cofactor/ligand/water

S. 5 Comparison of pIC_{50} data for NMT inhibitors against $T b N M T$ and $A f$ NMT

Comparison of pIC_{50} values determined for a selection of NMT inhibitors against $T b N M T$ and $A f N M T$. A linear regression was calculated (blue line) with an R^{2} value of 0.73 determined.

S. 6 Molecular structures of known NMT inhibitors

