Towards a taxonomy of attention shifting: Individual

differences in fMRI during multiple shift types

Tor D.Wager ${ }^{1}$, John Jonides ${ }^{2}$, Edward E.Smith ${ }^{1}$, and Thomas E.Nichols ${ }^{2}$
1 Columbia University, Department of Psychology, NY,NY 2 University of Michigan, Department of Psychology,Ann Arbor,Michigan

Introduction

Task switching is often considered one of the fundamental abilities underlying executive functioning and general intelligence.
do different types of task and attention shifts use the same underlying mechanisms? Are performance measures correlated But do dififerent types of task and attention shits use the same underlying mechanisms? Are perfirmance eeasures correleated
across shitting types? And what is the relationship between attention-Shiting measures and other measures of "executive functio Our previous work, shown in the figure below, found a set of regions in the anterior insula/frontal operculum and frontal cortex that correlated with each other and with response-interference performance in three separate inhibitiory' tasks: Go-No Go, a
stimulus-response compatibility task (SRC), and a Flanker task. Poor performers showed more activity in these frontal region stimulus-response compatibility task (SRC), and a Flanker task. Poor performers showed more activity in these frontal regions in
each task, but pertormance across tasks was relatively uncorrelated. Meta-analyses showed consistent activity across studies in all of these regions except insula for executive working memory, and for insula and anterior cingulate (but not anterior PFC) in task
switching. Int his study, we examined individual differences in multiple types of attention-shititing to ask whether behavioral performance
and fMRI activity are correlated across different types of shifting. Participants ($n=39)$ switched between objects and attributes both and $f \mathrm{IMRI}$ activity are correlated across different types of shiting. Participants ($n=39$) switched between objects and attributes both
when stimuli were perceptually available (external) and when stimuli were stored in memory (internal). As in our previous work, we found that switch-related activations in many regions associated with executive control-including dorsolateral and medial preftrontal tound that swith-releated activitions in many regions associated with executive controi- incluaing dorsolateral and medial prefron
and parietal cortices -were more active when behavioral switch costs were higher (poor performance). Conversely, activation in
 ing a genera role for these areas in efficient atention shiting. Focusing on the VMPFC resulis
nals in VMPFC may guide efficient selection of tasks in lateral prefrontal and parietal cortices.
This poster is available at http://www.columbia.edu/cu/psychology/tor

Performance Results

Shiftexternal shape, shl: internal shape, orE: external orientation,orl: internal orientation

Methods

Participants
43 righth-handed adults aged $18-40$. The study was approved by the University of Michigan Institutional Review Board. Participants were selected from the extreme ends (top and bottom 25%) of a larger
sample ($\mathrm{n}=268$) based on overall switch costs across conditions. After screening for head motion, quality of spatial normalization, and performance, analyses were conducted on a sample of $\mathrm{n}=39$ ($\mathrm{n}=19$ sample $(n=268)$ based on overall switct cost
low switch cost and $n=20$ high switch cost).

Task design o Multi-part tria

attend. Judugments were mad judgments about the same stimulus. Stimuli were images of two overlapping objects ellipse and rectangle), one red and one blue. The color served as a cue for which object to

\bigcirc O Block of 48 external (E) and internal (I) trials were alternately performed (EIEI

Individual subject models
o SPM , with a canonical HRF used to model J2 events for each switch type (no switch, attribute swith only, object switch only, or double switch, crossed with internal and external conditions). Additional
periods during the trial were also modeled, and these regressors were nearly orthogonal to the switch-related contrasts of interest. A high-pass filter cutoff of $1 / 180 \mathrm{~Hz}$ was used, with no global scaling. ${ }_{0}$ Contrasts were main effects of internal object switch (IO), internal a atribute switch (IA), external object switch (EO), and external attribute switch (EA).
Group analysis: Brain-behavior correlations
O Second-level mixed GLM analysis in SPM2, 2 -between, 4 -within, to determine whether switch costs in each brain
o Six brain-behavior correlations interest: 2 ,

Correlations in
 performance ($n=249$)

Attribute switching in J 2

	shE	shI	orE
ShE	-		
shI	$0.203 *$	-	
ore	$0.303 *$	$0.262 *$	-
orI	$0.173 *$	$0.362 *$	$0.371 *$

Object switching (residual)

shE shI orE

shE	-		
shI	0.175^{*}	-	
orE	$0.247 *$	0.102	-
orI	0.07	0.303^{*}	$0.207 *$

Brain-performance correlations
0 Omnibus F -test for correlations between brain and behavioral switching costs, $\mathrm{p}<.05$ FDR
correction o Positive fMRI-performance correlations in frontal, parietal (intraparietal sulcus and
precuneus), and occipital regions. Strongest correlations with switches involving task-set

- Substantial overlap with working memory meta-analysis regions (shown in blue; Wager \&

 long, in the internal task $(58 \mathrm{~ms}$ intera
but not the external task $(-13 \mathrm{~ms}, F<1)$.
- An interpetation: Serial object and attribute selection processes in perception. But working memory involves r r.
attributes, so serial selection is impossible.
- significant ojject switch cost in the cue period.
 $=.99$ and a reasonable test-retest reiliability across a period of weel
to several months ($\mathrm{r}=.72$). We used actual swith costs in brain O Corealionns are higher within interalavextenal swiching, implying
that some uniuu e processes are invoved in
red: vary internal/external and shape/orientation judgment green:hold int/ext constan blue: hold sh/or constant

$$
0.07 \quad 0.303 * 0.207
$$

Brain-performance correlations
o Negative correlations in ventromedial PFC, pregenual anterior cingulate, and right inferio
anterior insula (agranular insula near primary gustatory cortex; Mesulam \& Mufson, 1982).

$-\mathrm{p}<.05 \mathrm{FDR}$

