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Abstract 

Slender structures and structural elements are sensitive to both 

aerodynamic and aeroelastic excitations which are a dominant 

factor in their design. However, a unified method of handling 

these problems doesn’t exist. In the context of the three-

dimensional gust effect factor technique, till now mainly 

addressed to the aerodynamic response, the present paper 

proposes some advances in the formulation in order to include 

aeroelastic effects (vortex-induced response, in particular) and to 

arrive at a unified vision in the evaluation of wind-induced 

effects on slender structures and structural elements. 

Introduction  

The action of wind on structures leads to vibrations in the 

longitudinal (alongwind), lateral (crosswind) and torsional 

direction. The atmospheric turbulence causes forced excitations, 

whereas particular aeroelastic phenomena, such as vortex 

shedding and galloping oscillations, can overlap gust actions at 

certain values of the mean wind velocity. Slender structures and 

structural elements, typically present in industrial buildings, are 

particularly sensitive to this kind of action. In addition to 

chimneys, relevant examples are elements of cranes for industrial 

lifting and for the uses in harbor areas, which can be realized in a 

wide range of different types, depending on the use and the 

amplitude of the area to be handled (Figure 1). A new generation 

of super tall buildings (Figure 2) also shows a dynamic behaviour 

much closer to that of a slender element (like a chimney) rather 

than to a classic tall building. All of these structures can benefit 

from a unified analysis procedure that can be very important in 

the initial design stage. 

 

Figure 1. Example of harbor cranes. 

The evaluation of vibrations and stresses induced by the wind on 

slender structures and structural elements is crucial in evaluating 

both the serviceability and the ultimate limit state design. During 

the last two decades, the research group in Wind Engineering at 

the University of Genoa has developed a number of procedures 

for the calculation of the response based on the three-dimensional 

(3-D) gust factor technique. At first, a complete closed-form 

solution of vibrations in longitudinal, lateral and torsional 

direction was supplied through the generalized gust factor 

technique (GGF; [1,2]) considering a sole significant vibration 

mode in the evaluation of both quasi-static and resonant part of 

the dynamic response. Later, the 3-D gust effect factor (3-D 

GEF; [3]) was introduced in closed form for vertical slender 

cantilevers. In particular, the examined effects are generalized 

displacements and internal stresses; they were obtained by 

recovering the higher modes in the static and quasi-static 

components of dynamic response through the use of the influence 

functions of the load. In this context, a unitary numerical 

procedure has recently been developed, partially removing some 

approximations necessary to obtain the closed-form solution, in 

order to evaluate the wind-induced effects of a generic slender 

structural element, variously inclined and constrained [4].  

All the cited formulations represent gust- and wake-induced 

excitations by suitable spectral functions in a purely random 

field. This approach leaves out possible aeroelastic phenomena 

depending on motion-dependent components such as galloping 

and Vortex-Induced Vibrations (VIV). The authors [5] very 

recently proposed a step towards a unitary procedure for the 

evaluation of the wind-induced response of slender within the 

GGF framework. Using an equivalent aerodynamic damping for 

aeroelastic effects, it supplies the structural response (RMS and 

peak value) at the varying of the mean wind velocity, including 

galloping phenomenon (taken into account in a linearized way 

only) and VIV excitation. 

 

Figure 2. Example of the new generation of super tall buildings. 

The present paper focuses the attention on the GEF formulation 

introducing some advances in its framework, with the attempt to 

introduce a unified vision in the assessment of wind-induced 

effects on slender structures and structural elements. The 

procedure considers aeroelastic effects induced by galloping and 

VIV excitations and can include higher vibration modes (i.e., it is 

not limited to the fundamental mode). Without intending to 

predictively reproduce experimental results, the capability of the 

proposed formulation to reproduce experimental values is then 

investigated with reference to literature examples. 

 



Theoretical model 

The structural element considered has general boundary 

conditions, is inclined and elevated above the ground (Figure 3), 

has a linear visco-elastic behaviour. It is modelled through three 

uncoupled components of motions (α=x,y,). Since the wind 

loading is schematized as a tri-variate two-dimensional stochastic 

stationary normal process, the generic structural effect e at 

height r along z (Figure 3), associated with the generalized 

direction , is a stochastic stationary normal process: 

( ; ) ( ; ) ( ; )e r t e r t e r t                             (1) 

being 0rL, L the element length, t the time, e  the mean value 

and e
  the nil mean fluctuation of e  around e . The solution is 

developed in integral form through the influence functions 

( ; )
e

r z  (e.g., [4]), which represent the value of the generic 

effect e at height r due to a unit static generalized force applied at 

height z in the direction .  

The expression of the mean value is: 

     
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,ee r F z r z dz                             (2) 

where F  is the mean value of the wind loading F, that can be 

expressed as (e.g., [2]): 
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ρ being the air density, U  the mean wind velocity, b the 

reference size of the cross-section, λx=λy=1, λθ=b, cαu the drag, 

lift, torsional moment coefficients, respectively, depending on the 

element cross-section shape, αu a non-dimensional function of z 

able to consider variable mechanical and/or aerodynamic 

properties along the element length. 

Applying a suitable loading model (e.g., [2,6]) to the equations 

governing the structural response, the standard deviation of the 

generic effect can be obtained by the following straightforward 

expression: 

( ) ( ) ( ) ( )e x e er e r Q r D r                           (4) 

where 
xe  is the static effect due to the application of the 

generalized wind mean force in the α direction, 
e

Q


 and 
e

D


 are 

the quasi-static and resonant dimensionless components of the 

response in terms of variance. The explicit expressions are: 
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( ) ( ) ( ) ( )e e e dD r r r D r    
                    (7) 

where z  is an arbitrary value of z in the range 0-L, cαε is the 

matrix collecting the aerodynamic coefficients (taking into 

account the possible inclination  of the model, Fig. 3), 

ε,=(u,v,w,s) are indices associated to the three turbulence 

components and wake excitations, respectively, K e
,  

e
,  

e
 are 

coefficients necessary to perform the evaluation. The core of the 

procedure concerns the calculation of the generic component of 

the quasi-static and resonant part of the response: 
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Figure 3. Structural model with its reference systems (X,x entering the 

page). 
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where Jε, J are terms related to turbulence intensities, αε, α are 

non-dimensional functions able to consider variable mechanical 

and/or aerodynamic properties along the element length, S*
  is 

the cross-power density function of turbulence and wake reduced 

components. The double integral in Eq. (10) represents the most 

delicate step of the numerical procedure because of the two-

dimensional nature of the loading process combined with the 

sharp shape of the coherence function. 

The presence of influence functions e
 (r,z) ensures that the 

quasi-static component is able to take into account all the 

structural modes. Conversely, the resonant component is deduced 

by modal analysis considering the displacement influence 

functions (as specified by the superscript d). Thus, the possible 

effect of multiple modes (generally significant only for the wake 

term s) is highlighted by a summation of the N vibration modes 

considered, nk and k being the frequency and damping ratio of 

the k-th modal shape in the α direction.  

When considering turbulence terms, the damping ratio k is 

supplemented by the aerodynamic portion calculated through the 

classic quasi-steady approach (e.g., [5,7]). Therefore, the 

galloping critical condition is automatically taken into account. 

The VIV effect can be included in the described context as both 

forced response and transitory/self-excited (lock-in) condition. 

This seems possible in an equivalent manner, within the linear 

random dynamics, following the derivation first proposed by 

Vickery & Basu [8], using an equivalent damping coefficient that 

is dependent upon the mean-square cross-wind displacement 

averaged over a long period. A similar procedure has been 

recently proposed by the authors [4] within the GGF framework. 

In this way, at the varying of the mean wind velocity, the wake 

contribution on the generic structural effect e at height r is 



calculated considering the possible different shedding points 

depending on the structural mode involved. With regard to this 

assessment, some aspects take on a great deal of importance in 

order to obtain reliable assessments of the structural response, as 

widely discussed in [4]. Among them, the choice of the limiting 

RMS amplitude stands out as it governs the van der Pol 

nonlinearity in the equivalent damping expression, whereas it is 

usually set equal to 0.4 b  (e.g., [9]) regardless of both structure 

and flow characteristics. 

According to the GEF technique, the mean maximum value (in 

modulus) of the generic effect e  during the period T over which 

the mean wind velocity U is averaged (usually 10 minutes) is 

defined as: 

     ,max

x ee r e r G r                             (11) 

where 
x

e  is the static effect due to the application of the 

generalized force xF  in the  direction and 
e

G


 is a non-

dimensional quantity referred to as the 3-D GEF [3]: 
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where  e represents the static non-dimensional component of the 

response, while 
ep

Q


 and 
ep

Q


 supply the quasi-static and resonant 

peak components in terms of variance. They can be defined as 

overall quantities comprehensive of suitable peak factors related 

to each excitation components, as in the following: 
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Classic expressions for g’s coefficients (see, e.g., [1]) seem to fit 

peak factors related to buffeting excitations. On the contrary, the 

definition of the peak factor related to VIV excitations is a 

challenging issue: it can strongly influence the assessment of the 

maximum response as discussed in [5]. 

Work in progress 

The described procedure has been implemented in a computer 

program developed in Fortran code by suitably extending the 

steps described in [4]. Currently two study cases are being 

selected. The first concerns a real chimney with recorded 

structural effects. The second one is related to the slender brace 

of an existing harbor crane. In these cases, both buffeting and 

VIV effects can play a decisive role in the serviceability and 

ultimate limit state design. 
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