Supplementary Material for ‘A Focused Information
Criterion for Locally Misspecified Vector
Autoregressive Models’

Jan Lohmeyer, Franz Palm, Hanno Reuvers, Jean-Pierre Urbain
Department of Quantitative Economics

Maastricht University SBE

The Netherlands

November 5, 2017

A The Selection Matrices and Various Definitions for the VAR

Models

The selection matrices encountered in the main text are:

L:= LY @I, with L'V = L ] (Kp x Kp1),
,Opzxpl
(1) : Y] >Op1sz

Sy := 8, ® I, with S’ = (Kp X Kp,),
| IP2
T (A.1)

S, =8V, with S = o " ] (Kp x Km),
|~ (p—m)xm

I = 7o . (1) _ Im—m
m m ®IK’ with Hm - [6) (KPZXK(m_Pl))
(p—m)x(m—p1)
An overview of several other definitions are:
Or,, = vec(Or,,) (K?’m x 1) vector,
0 = vec(AQ) (K*p, x 1) vector,
1 T
{2 = plim,_, E Z 21274 (Kp x Kp) matrix,
=1
A, =1[8,028,1"S,28,(I, - I,II,) ® Iy (K>m x K?p,) matrix,
) (A2)
v, =[sies| 505,525 o % (K2j x KK) matrix,
P,=S,8.08]"'S oI, (K*p x K?p) matrix,

C,=(S,18,028,1"'S,2-1,,)S,(I

Dy =0u(0.,0)/00
D, =0u(0.,0)/do’

- Hr;lﬂm) ® IK (sz X szz) matrix,

Kp>
(Ix K> p) vector,
(Ix K(K + 1)/2) vector.



B Impulse Responses and their Gradients for AR(3) Models

The first six impulse responses in the AR(3) model y, = 0,y,_1 + 6,y,-2 + 63y,_3 + u, are

wi(0) =6, us(0) = 67 + 366, + 65 + 26,6,
p2(0) = 67 + 6,, us(0) = 6, + 46,0, + 36,6, + 3670, + 20,0, B.1)
us(0) = 6 +260,6, + 0;, us(0) = 65 + 5610, + 66765 + 63 + 4670, + 66,6,0; + 63. '
The gradient vectors corresponding to the impulse responses in Equation (B.1) are:
1 (463 + 60,6, + 20
0411(6) guy(e) |11 T 000+ 20,
ae = O , 80 = 391 + 292 s
10 i 20,
2 [ 126° 2
x(6) 9, 3u1s(6) 567 + 3 6760, + 365 + 60,0,
20 =111, 20 = 467 + 60,6, + 20, , (B.2)
| 0 i 36% + 26,
311s(6) 367 + 20, 3115(6) 667 + 20630, + 120,65 + 12620, + 60,0,
0 | 20 | e T 501 + 12630, + 367 + 60,0,
|1 i 467 + 60,0, + 20,
Remark 1

If the true DGP is a white noise, i.e. 8; = 0, = 03 = 0, then the gradients of the impulse responses
will be zero from horizon 4 onwards. The limiting distribution should now be based on the second
order delta method. This example supports Remark 3 from the paper.

C Derivation of the Optimal Weights in the Simplified Model

The simplified model is given by y, = ay,_; + %y,_z + u,. We develop the elements of the matrix
> for the case with bias correction.

P = aXmcenral (1. (DyC10)[a1) — a + 0D, P, 2P, D,

= A X poncentra (1’ (D,C, 5)2/01) —a+0°D,S,[S{28,]"' S| D,

= QX eoniral (l, (D,C, 5)2/a1) —a, +0*D,P,D, (C.1)
>, = D,P(c°2)P,D;, = °D,P, D,
¥, = D,Py(c*2)P,D, = 7*D,2°' D,

The solution to the optimization problem will not change if we subtract a constant from every
element. We subtract o> D, P, D), and denote the result by ¥ The resulting matrix looks like

alxioncentral (1’ (DHCI 5)2/01) —a O l

: C2
0 D27 - P)D, (€2

-

The (1, 1)-element of this matrix can become negative whenever Xfwmntm[

(1.(D,C6/ay) < 1.

From this point onwards, we consider the case without bias correction. Now,

g>® = al)(iancentral(l’(D()Cl(s)z/al) 0 = ki 0 (C.3)
0 7D -P)D,| T |0 x|

2



and if we assume D(,(.(Z‘1 — P)D; > 0 (see main text), then we have ¥ > 0 hence unique
weights. The optimal weight w* is the minimizer of k;w? + k(1 — w)? subject to 0 < w < 1. The
unconstrained solution is

K> 02D9(9‘1 - P)D,

Wt = _ . (C.4)
Kit+ ko al)(ioncentral (1’ (DGCI 5)2/01) + O-ZDG(Q_I - Pl)Dé

This solution is both positive and in the interval [0, 1] because ki, k; > 0. The constraint w € [0, 1]
is thus automatically satisfied. It follows that

1 -
Pr(w*SX):Pr( 2 Sx):Pr(/qZu)
K1+ K> X

(C.5)

oD, (27" - P)D)[1 - x])

= Pr (X?wncentral (1’ (D901 6)2/(11) = a)x



D Further Simulation Results on the Simplified Model
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Figure 1: (a) The asymptotic MSE of the models with one and two lags (red and black line, respectively).
The area between the 5% and 95% empirical quantile of FI/C; and FIC; are shaded in red and grey. (b) The
empirical selection probabilities of the FIC. (¢) The AMSE of the models with m = 1 and m = 2 together

with the empirical MSE of the feasible FIC (red) and infeasible FIC (cyan). This figure was obtained at
T = 1000.
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Figure 2: The 5% and 95% empirical quantile of the weights distribution without bias correction (a) and
with bias correction (b). The infeasible weights are displayed in cyan. The empirical MSE of plug-in
methods is shown in (c). This figure was obtained at 7 = 1000.



E No Gradient Dependence in Simplified Model

Fory, = ay,_; + \%yt_z +u,, we have §2 = 11’; [Le]and 27! = (% [ 1 ~]. The required selection

a1 —-a 1
matrices are Sy =[], So = [{], and IT|IT; = Oay,. Straightforward calculations show

{2

2
Q-I—Plzi[“ “]— ! [“][a _1]:$yy'. (E.2)

2 l-a 1| o2|-1

and

The elements of the weighting matrix (with bias correction in red) are now given by:
@, = D,|C,(88 - 075,27 S,)) C; + o P,| D = (8"~ 1)(Dygy) + 0> D, P, D},
v, =o’D,P,D,, (E.3)
Uy, = 0°Dy(27' - P)D, + o> D,P,D, = (Dyy)* + c*D,P, D,

The weights are determined from w°

0 1 w+
0?D,P,D; = argming<,<i(Dgy)* [wz(éz—l) +(1 - w)2] + 02D, P, D,. This expression shows
that the weights do not depend on the quantity of interest because Dy is no longer of importance
for the optimal weight calculation.

(6°-1) O]

= arg Miney W' WPw = arg minyeq(Dyy)>w’ [

Remark 2
The diagonal elements of the weighting matrix without bias correction are also the AMSE’s of the
individual model. We would prefer the model with one lag if 5> < 1. This is supported by Figure 2.



F Full Simulation Results on Misspecified AR(3) Model
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Figure 3: The empirical MSE for model selection based on Akaike’s Information Criterion (AIC), the
Bayesian Information Criterion (BIC), and the Focused Information Criteria (FIC). ‘Infeas’ denotes an in-
feasible version of the FIC for which all quantities (and especially ¢) are replaced by their true values. The
DGP is yr, = 0.5y7,-1 + %ym_z + ﬁyTH +u, with T = 100.
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Figure 4: Idem Figure 3, but for 7 = 1000.
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Figure 5: The empirical MSE for model averaging based on smoothed AIC (sAIC), smoothed BIC (sBIC),
the plug-in average without bias correction (Plug-in), the plug-in average with bias correction (Plug-in
Corr.), the infeasible plug-in average (Infeas) and the average with Jackknife weights (Jackknife). The DGP
is yr. = 0.5yr,-1 + %ynt_z + %ym_g +u, with T = 100.
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Figure 7: The empirical MSE of the OLS estimator of the model with 1 lag (OLS1), 2 lags (OLS2) and

the full model with 3 lags (OLS3) for T = 100. Gray lines show the asymptotic MSE approximations as
provided by the delta method.
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(e) h=5. ®Hhr=6

Figure 9: The selection frequencies of the various models for AIC (blue), BIC (green), FIC (red) and the
infeasible estimator (cyan) as a function of the amount of misspecification, 6. The data was generated by
yri = 0.5y7,-1 + %yr,,_z + %yﬂ,_g, + u; with a sample size of T = 100.
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Figure 10: Idem Figure 9, but for 7 = 1000.
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Figure 11: The empirical weights on the various models for sAIC (blue), sBIC (green), FIC (red) and the
infeasible estimator (cyan) as a function of the amount of misspecification, 6. The data was generated by
yri = 0.5y7,-1 + %yr,t_z + %ym% + u; at a sample size of 7 = 100.

14



r
g —_—
[T

e -

5L
gmpegRgnsd

|=||l=!!.’-'-‘hq'-_&--..,

(e)h =5.

Figure 12: Idem Figure 11, but for 7 = 1000.

15

®h=06




(=]
-
jy

o
o

| |—FIC !
-
008 al Infeas \ !
’ \ I}
W L / \
W o008 W s _ . {
= 0.07 = 7 T !
T ™ \ !
2 2 \ /
= 006 E \
a = .
,_,E_l 005 E st Y
0.04 4l
\
0.03 3 A p £
o
0.02 2
-4 3 2 0 1 2

YN

011 11 210°
------ SAIC

o1 10l [— -sBIC
—han.
= = Flug-in Lorr,

008 9 Inlegas y
w T | s Jackknife ’
] 0.08 7} -
= =
- 0.07 -

@ ]
o 2
:E 0.06 =
o o
,_,E_l 005 ,_,E_|

0.04

0.03

0.0z

-4 -3 2 -1 0 1 2
)
(c) Model Averaging, T = 100. (d) Model Averaging, T = 1000.

Figure 13: Simulation results for a multiple quantities of interest. Model selection/averaging is based on
the impulse responses from horizon 1 up to 6. The trace of the AMSE matrix is used to map the AMSE
matrix to a scalar, i.e. model selection/averaging is based on the sum of the asymptotic mean-squared errors.
Therefore, we also report the sum of the empirical MSE of the first six horizons on the vertical axis.

16



0L'19 vS'L9 6l¢cL 69°9L 65°6L 19°8L Y6'9L OLTL 818 0Tv8 6v'€8 09°08 0¢
8L'LS 00°¢€9 0889 9¢¢L 6008 roL 0'8L €L’ SL 6818 8T8 018 orC8 ¢l
8Les 6S°LS 1879 9689 86708 ¢ros L96L I1°8L 618 IS¥8 eers8 0T°¢8 01
8y 86°0S 01°s¢ €6'19 CO'I8 808 8908 G8'6L L6'V8 LSV8 [S18 99°¢8 ¢0
Svev vy 0C9v 99°¢s evi8 6¢°18 ¢S18 10718 00°¢8 19'v8 658 c6'e8 00
Sv'8¢ vOLE Pege 90°v¢ 6L'18 €818 Y08 eL’18 0S8 09'v8 CSy8 L8E8 ¢0-
6¢1¢ CL'LT clec 9LvC LOC8 el'es 8¢C8 €C'C8 6618 0S¥8 Y18 65°¢8 01~
08°LC 08°I¢ 6v'S1 L8VE 1€7¢C8 IvC8 ¥97C8 Pees 6818 818 8118 90°¢8 S
eeed 44! 124! 0e°s¢ 91°C8 124 Y9778 6’18 9L¥8 91'¥8 6L°¢8 €8 0¢C
LELT ¢l'8 6CSY €979 LYC8 86C8 orC8 Y018 1918 96'¢8 9¢¢8 CeI8 T
T10°T1 619 8Ly ¢8°'L9 s r'es 80°C8 6L 0r'v8 CL'E8 ¢6'C8 90°08 0¢
IS¢ €S 0s €9°Cs L CLC8 61778 Y918 6¢'8L eCv8 I8 LETY 6C8L e
Y0C 1494 18°8S C8°¢CL 1€7C8 6618 el'l8 vSOL 8018 P0°€8 0L 18 9L’ GL || Ov-

000r=4 00s=.L 0Sc=. 00I=.L | 000I=.L 00S=.L 0sCc=.L O0O0I=.L|000l=L 00S=.L 0SC=. O0I=.L Q
9=14 €=y =Y

n 4+ mlixm% + Nliamq\/

+ 771G = *LL O 9Y) UT [ pUB @ JO SIOIOYD [BIOAJS IO XIS PUB QAIY) ‘OM] SUOZLIOY Y} JOJ S[RAIOIUI QOUIPYUOD 9()6 JO 93e10A00 Tedrridwo oy, ] J[qeL

17



91°68 9168 €888 6C'L8 16°68 6L°68 SL68 PG 88 0¢C
6268 L8'88 8788 L6798 9868 SL'68 89°68 00°68 Sl
cre8 9688 16°L8 6668 L868 LL'68 VL 68 L1768 01
80°68 €e'88 CeL8 SY'v8 06'68 £8°68 8L'68 68 0
9168 1€°88 1698 08°¢8 £6'68 6868 9868 I°68 00
8768 0888 LOL8 0€°06 L6'68 C6'68 L6'68 [S°68 ¢0-
1C°06 [¥°06 9668 el9L ¢0'06 10°06 10°06 6568 01~
69°16 cl'1e 0°89 0SvL 0006 006 7006 1968 SI-
10°¢6 LS89 ¢89¢ I6'vL ¢0°06 LO06 €006 79°68 0¢
198 LY Oy LES9 S6'8L 01°06 Sro6 €006 IL°68 ¢
1232 YL 1Y LTEL CI'v8 11°06 11°06 €006 6568 0¢
[L°€C LS GL'T8 Y98 0106 0106 6668 ¢9°68 S
L8'6 SCIL LY98 V1I'L8 8006 10°06 v6'68 1L°68 0y~

0001 =L 00S=. 0ST=. 001=.|000l=.L 00S=. 0ST=. 00I=.L]| @
9%t =1y lea=1y

*¢ 1910weTed uoreoyroadssiw pue 7 9z1s o[dwes Jo uorounj e se SU0ISaI 9dUIpYuod 3y} Jo 95819400 [eoundwa 9y, 17 qeL,

18



G Full Simulation Results on Misspecified VAR model
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Figure 14: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is 7 = 100. See Equation (3.2) of the paper for the DGP.
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Figure 15: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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Figure 16: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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Figure 17: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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Figure 18: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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Figure 19: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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Figure 20: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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Figure 21: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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Figure 22: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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Figure 23: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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Figure 24: The empirical MSE of the impulse response estimator for several averaging methods. We use

the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is 7 = 1000. See Equation (3.2) of the paper for the DGP.
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Figure 25: The empirical MSE of the impulse response estimator for several averaging methods. We use

the notation i — j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is 7 = 1000. See Equation (3.2) of the paper for the DGP.
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Figure 1: (a) The asymptotic MSE of the models with one and two lags (red and black line,
respectively). The area between the 5% and 95% empirical quantile of FIC, and FIC, are shaded
in red and grey. (b) The empirical selection probabilities of the FIC. (c) The AMSE of the models
with m = 1 and m = 2 together with the empirical MSE of the feasible FIC (red) and infeasible
FIC (cyan). This figure was obtained at 7 = 1000.

Figure 2: The 5% and 95% empirical quantile of the weights distribution without bias correction
(a) and with bias correction (b). The infeasible weights are displayed in cyan. The empirical MSE
of plug-in methods is shown in (c). This figure was obtained at 7 = 1000.

Figure 3: The empirical MSE for model selection based on Akaike’s Information Criterion (AIC),
the Bayesian Information Criterion (BIC), and the Focused Information Criteria (FIC). ‘Infeas’
denotes an infeasible version of the FIC for which all quantities (and especially ¢) are replaced by
their true values. The DGP is yr; = 0.5y7,-1 + %ym_g + Z\Lﬁ)’ma + u, with T = 100.

Figure 4: Idem Figure 3, but for 7 = 1000.

Figure 5: The empirical MSE for model averaging based on smoothed AIC (sAIC), smoothed
BIC (sBIC), the plug-in average without bias correction (Plug-in), the plug-in average with bias
correction (Plug-in Corr.), the infeasible plug-in average (Infeas) and the average with Jackknife

weights (Jackknife). The DGP is y7, = 0.5y7,_; + \%ym_z + %ﬁym_g +u, with T = 100.

Figure 6: Idem Figure 5, but for 7 = 1000.

Figure 7: The empirical MSE of the OLS estimator of the model with 1 lag (OLS1), 2 lags (OLS2)
and the full model with 3 lags (OLS3) for T = 100. Gray lines show the asymptotic MSE approx-
imations as provided by the delta method.

Figure 8: Idem Figure 7, but 7 = 1000.

Figure 9: The selection frequencies of the various models for AIC (blue), BIC (green), FIC (red)
and the infeasible estimator (cyan) as a function of the amount of misspecification, 6. The data
was generated by yr, = 0.5y7,_; + \%yr,t_z + #ym_g + u, with a sample size of T = 100.

Figure 10: Idem Figure 9, but for 7 = 1000.

Figure 11: The empirical weights on the various models for sAIC (blue), sBIC (green), FIC (red)
and the infeasible estimator (cyan) as a function of the amount of misspecification, §. The data
was generated by yr, = 0.5y7,.1 + %yn,_z + %ﬁyﬁﬁ + u, at a sample size of T = 100.

Figure 12: Idem Figure 11, but for 7 = 1000.

Figure 13: Simulation results for a multiple quantities of interest. Model selection/averaging is
based on the impulse responses from horizon 1 up to 6. The trace of the AMSE matrix is used
to map the AMSE matrix to a scalar, i.e. model selection/averaging is based on the sum of the
asymptotic mean-squared errors. Therefore, we also report the sum of the empirical MSE of the
first six horizons on the vertical axis.
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Figure 14: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 15: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 16: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 17: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 18: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 19: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 20: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is 7 = 1000. See Equation (3.2) of the paper for the DGP.

Figure 21: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 22: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 23: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 24: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 25: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i — j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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Table 1: The empirical coverage of 90% confidence intervals for the horizons: two, three and six.
For several choices of ¢ and T in the DGP yr, = 0.5y7,_1 + %ym_z + %ﬁyﬁﬁ + u,.

Table 2: The empirical coverage of the confidence regions as a function of sample size 7 and
misspecification parameter 6.
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