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A The Selection Matrices and Various Definitions for the VAR
Models

The selection matrices encountered in the main text are:

L := L(1) ⊗ IK , with L(1) =

[
Ip1

Op2×p1

]
(K p × K p1),

S0 := S(1)
0 ⊗ IK , with S(1)

0 =

[
Op1×p2

Ip2

]
(K p × K p2),

Sm := S(1)
m ⊗ IK , with S(1)

m =

[
Im

O(p−m)×m

]
(K p × Km),

Π ′
m :=Π ′(1)

m ⊗ IK , withΠ ′(1)
m =

[
Im−p1

O(p−m)×(m−p1)

]
(K p2 × K(m − p1)).

(A.1)

An overview of several other definitions are:

θT,m = vec(ΘT,m) (K2m × 1) vector,

δ = vec(∆) (K2 p2 × 1) vector,

Ω = plimT→∞
1
T

T∑
t=1

zT,t−1z
′
T,t−1 (K p × K p) matrix,

Am =
[
S′mΩSm

]−1 S′mΩS0

(
Ip2
−Π ′

mΠm

)
⊗ IK (K2m × K2 p2) matrix,

V jk =
[
S′jΩS j

]−1
S′jΩSk

[
S′kΩSk

]−1
⊗Σ (K2 j × K2k) matrix,

Pm = Sm
[
S′mΩSm

]−1 S′m ⊗ IK (K2 p × K2 p) matrix,

Cm =
(
Sm

[
S′mΩSm

]−1 S′mΩ − IK p

)
S0

(
IK p2

−Π ′
mΠm

)
⊗ IK (K2 p × K2 p2) matrix,

Dθ = ∂µ(θ∞,σ)/∂θ′ (l × K2 p) vector,

Dσ = ∂µ(θ∞,σ)/∂σ′ (l × K(K + 1)/2) vector.

(A.2)
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B Impulse Responses and their Gradients for AR(3) Models

The first six impulse responses in the AR(3) model yt = θ1yt−1 + θ2yt−2 + θ3yt−3 + ut are

µ1(θ) = θ1, µ4(θ) = θ4
1 + 3θ2

1θ2 + θ
2
2 + 2θ1θ3,

µ2(θ) = θ2
1 + θ2, µ5(θ) = θ5

1 + 4θ3
1θ2 + 3θ1θ

2
2 + 3θ2

1θ3 + 2θ2θ3,

µ3(θ) = θ3
1 + 2θ1θ2 + θ3, µ6(θ) = θ6

1 + 5θ4
1θ2 + 6θ2

1θ
2
2 + θ

3
2 + 4θ3

1θ3 + 6θ1θ2θ3 + θ
2
3.

(B.1)

The gradient vectors corresponding to the impulse responses in Equation (B.1) are:

∂µ1(θ)
∂θ

=


1
0
0

 , ∂µ4(θ)
∂θ

=


4θ3

1 + 6θ1θ2 + 2θ3

3θ2
1 + 2θ2

2θ1

 ,
∂µ2(θ)
∂θ

=


2θ1

1
0

 , ∂µ5(θ)
∂θ

=


5θ4

1 + 12θ2
1θ2 + 3θ2

2 + 6θ1θ3

4θ3
1 + 6θ1θ2 + 2θ3

3θ2
1 + 2θ2

 ,
∂µ3(θ)
∂θ

=


3θ2

1 + 2θ2

2θ1

1

 , ∂µ6(θ)
∂θ

=


6θ5

1 + 20θ3
1θ2 + 12θ1θ

2
2 + 12θ2

1θ3 + 6θ2θ3

5θ4
1 + 12θ2

1θ2 + 3θ2
1 + 6θ1θ3

4θ3
1 + 6θ1θ2 + 2θ3

 .
(B.2)

Remark 1
If the true DGP is a white noise, i.e. θ1 = θ2 = θ3 = 0, then the gradients of the impulse responses
will be zero from horizon 4 onwards. The limiting distribution should now be based on the second
order delta method. This example supports Remark 3 from the paper.

C Derivation of the Optimal Weights in the Simplified Model

The simplified model is given by yt = αyt−1 +
δ
√

T
yt−2 + ut. We develop the elements of the matrix

Ψ∞ for the case with bias correction.

Ψ∞1,1 = a1χ
2
noncentral

(
1, (DθC1δ)2/a1

)
− a1 + σ

2DθP1ΩP1D
′
θ

= a1χ
2
noncentral

(
1, (DθC1δ)2/a1

)
− a1 + σ

2DθS1
[
S′1ΩS1

]−1 S′1D
′
θ

= a1χ
2
noncentral

(
1, (DθC1δ)2/a1

)
− a1 + σ

2DθP1D
′
θ

Ψ∞1,2 =DθP1(σ2Ω)P2D
′
θ = σ

2DθP1D
′
θ

Ψ∞2,2 =DθP2(σ2Ω)P2D
′
θ = σ

2DθΩ
−1D′θ

(C.1)

The solution to the optimization problem will not change if we subtract a constant from every
element. We subtract σ2DθP1D

′
θ, and denote the result by Ψ̃∞. The resulting matrix looks like

Ψ̃∞ =

a1χ
2
noncentral

(
1, (DθC1δ)2/a1

)
− a1 0

0 σ2Dθ(Ω
−1 − P1)D′θ

 . (C.2)

The (1, 1)-element of this matrix can become negative whenever χ2
noncentral

(
1, (DθC1δ)2/a1

)
< 1.

From this point onwards, we consider the case without bias correction. Now,

Ψ̃∞ =

a1χ
2
noncentral

(
1, (DθC1δ)2/a1

)
0

0 σ2Dθ(Ω
−1 − P1)D′θ

 :=
[
κ1 0
0 κ2

]
, (C.3)
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and if we assume Dθ(Ω
−1 − P1)D′θ > 0 (see main text), then we have Ψ̃∞ � 0 hence unique

weights. The optimal weight w∗ is the minimizer of κ1w2 + κ2(1 − w)2 subject to 0 ≤ w ≤ 1. The
unconstrained solution is

w∗ =
κ2

κ1 + κ2
=

σ2Dθ(Ω
−1 − P1)D′θ

a1χ
2
noncentral

(
1, (DθC1δ)2/a1

)
+ σ2Dθ(Ω−1 − P1)D′θ

. (C.4)

This solution is both positive and in the interval [0, 1] because κ1, κ2 > 0. The constraint w ∈ [0, 1]
is thus automatically satisfied. It follows that

Pr (w∗ ≤ x) = Pr
(

κ2

κ1 + κ2
≤ x

)
= Pr

(
κ1 ≥

κ2[1 − x]
x

)
= Pr

(
χ2

noncentral

(
1, (DθC1δ)2/a1

)
≥
σ2Dθ(Ω

−1 − P1)D′θ [1 − x]
a1x

)
.

(C.5)
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D Further Simulation Results on the Simplified Model

(a) (b) (c)

Figure 1: (a) The asymptotic MSE of the models with one and two lags (red and black line, respectively).
The area between the 5% and 95% empirical quantile of F̂IC1 and F̂IC2 are shaded in red and grey. (b) The
empirical selection probabilities of the FIC. (c) The AMSE of the models with m = 1 and m = 2 together
with the empirical MSE of the feasible FIC (red) and infeasible FIC (cyan). This figure was obtained at
T = 1000.

(a) (b) (c)

Figure 2: The 5% and 95% empirical quantile of the weights distribution without bias correction (a) and
with bias correction (b). The infeasible weights are displayed in cyan. The empirical MSE of plug-in
methods is shown in (c). This figure was obtained at T = 1000.
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E No Gradient Dependence in Simplified Model

For yt = αyt−1 +
δ
√

T
yt−2 + ut, we haveΩ = σ2

1−α2

[ 1 α
α 1

]
andΩ−1 = 1

σ2

[ 1 −α
−α 1

]
. The required selection

matrices are S1 =
[ 1

0
]
, S0 =

[ 0
1
]
, andΠ ′

1Π1 = O2×2. Straightforward calculations show

C1 =

{[
1 α

0 0

]
− I2

} [
0
1

]
=

[
α

−1

]
:= y (E.1)

and

Ω−1 − P1 =
1
σ2

[
α2 −α

−α 1

]
=

1
σ2

[
α

−1

] [
α −1

]
=

1
σ2yy

′. (E.2)

The elements of the weighting matrix (with bias correction in red) are now given by:

Ψ11 =Dθ

[
C1(δδ − σ2S′0Ω

−1S0)′C ′1 + σ
2P1

]
D′θ = (δ2−1)(Dθy)2 + σ2DθP1D

′
θ,

Ψ12 = σ
2DθP1D

′
θ,

Ψ22 = σ
2Dθ(Ω

−1 − P1)D′θ + σ
2DθP1D

′
θ = (Dθy)2 + σ2DθP1D

′
θ.

(E.3)

The weights are determined fromw0 = arg minw∈H w
′Ψw = arg minw∈H (Dθy)2w′

[
(δ2−1) 0

0 1

]
w+

σ2DθP1D
′
θ = arg min0≤w≤1(Dθy)2

[
w2(δ2−1) + (1 − w)2

]
+ σ2DθP1D

′
θ. This expression shows

that the weights do not depend on the quantity of interest because Dθ is no longer of importance
for the optimal weight calculation.

Remark 2
The diagonal elements of the weighting matrix without bias correction are also the AMSE’s of the
individual model. We would prefer the model with one lag if δ2 < 1. This is supported by Figure 2.
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F Full Simulation Results on Misspecified AR(3) Model

(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 3: The empirical MSE for model selection based on Akaike’s Information Criterion (AIC), the
Bayesian Information Criterion (BIC), and the Focused Information Criteria (FIC). ‘Infeas’ denotes an in-
feasible version of the FIC for which all quantities (and especially δ) are replaced by their true values. The
DGP is yT,t = 0.5yT,t−1 +

δ√
T

yT,t−2 +
δ

2
√

T
yT,t−3 + ut with T = 100.
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(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 4: Idem Figure 3, but for T = 1000.
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(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 5: The empirical MSE for model averaging based on smoothed AIC (sAIC), smoothed BIC (sBIC),
the plug-in average without bias correction (Plug-in), the plug-in average with bias correction (Plug-in
Corr.), the infeasible plug-in average (Infeas) and the average with Jackknife weights (Jackknife). The DGP
is yT,t = 0.5yT,t−1 +

δ√
T

yT,t−2 +
δ

2
√

T
yT,t−3 + ut with T = 100.
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(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 6: Idem Figure 5, but for T = 1000.
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(a) h = 1 (b) h = 2.

(c) h = 3 (d) h = 4.

(e) h = 5 (f) h = 6

Figure 7: The empirical MSE of the OLS estimator of the model with 1 lag (OLS1), 2 lags (OLS2) and
the full model with 3 lags (OLS3) for T = 100. Gray lines show the asymptotic MSE approximations as
provided by the delta method.
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(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 8: Idem Figure 7, but T = 1000.
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(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 9: The selection frequencies of the various models for AIC (blue), BIC (green), FIC (red) and the
infeasible estimator (cyan) as a function of the amount of misspecification, δ. The data was generated by
yT,t = 0.5yT,t−1 +

δ√
T

yT,t−2 +
δ

2
√

T
yT,t−3 + ut with a sample size of T = 100.
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(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 10: Idem Figure 9, but for T = 1000.
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(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 11: The empirical weights on the various models for sAIC (blue), sBIC (green), FIC (red) and the
infeasible estimator (cyan) as a function of the amount of misspecification, δ. The data was generated by
yT,t = 0.5yT,t−1 +

δ√
T

yT,t−2 +
δ

2
√

T
yT,t−3 + ut at a sample size of T = 100.
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(a) h = 1. (b) h = 2.

(c) h = 3. (d) h = 4.

(e) h = 5. (f) h = 6

Figure 12: Idem Figure 11, but for T = 1000.
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(a) Model Selection, T = 100. (b) Model Selection, T = 1000.

(c) Model Averaging, T = 100. (d) Model Averaging, T = 1000.

Figure 13: Simulation results for a multiple quantities of interest. Model selection/averaging is based on
the impulse responses from horizon 1 up to 6. The trace of the AMSE matrix is used to map the AMSE
matrix to a scalar, i.e. model selection/averaging is based on the sum of the asymptotic mean-squared errors.
Therefore, we also report the sum of the empirical MSE of the first six horizons on the vertical axis.
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G Full Simulation Results on Misspecified VAR model

(a) h = 1, 1→ 1. (b) h = 1, 2→ 1.

(c) h = 1, 1→ 2. (d) h = 1, 2→ 2.

Figure 14: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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(a) h = 2, 1→ 1. (b) h = 2, 2→ 1.

(c) h = 2, 1→ 2. (d) h = 2, 2→ 2.

Figure 15: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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(a) h = 3, 1→ 1. (b) h = 3, 2→ 1.

(c) h = 3, 1→ 2. (d) h = 3, 2→ 2.

Figure 16: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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(a) h = 4, 1→ 1. (b) h = 4, 2→ 1.

(c) h = 4, 1→ 2. (d) h = 4, 2→ 2.

Figure 17: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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(a) h = 5, 1→ 1. (b) h = 5, 2→ 1.

(c) h = 5, 1→ 2. (d) h = 5, 2→ 2.

Figure 18: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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(a) h = 6, 1→ 1. (b) h = 6, 2→ 1.

(c) h = 6, 1→ 2. (d) h = 6, 2→ 2.

Figure 19: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 100. See Equation (3.2) of the paper for the DGP.
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(a) h = 1, 1→ 1. (b) h = 1, 2→ 1.

(c) h = 1, 1→ 2. (d) h = 1, 2→ 2.

Figure 20: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

25



(a) h = 2, 1→ 1. (b) h = 2, 2→ 1.

(c) h = 2, 1→ 2. (d) h = 2, 2→ 2.

Figure 21: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

26



(a) h = 3, 1→ 1. (b) h = 3, 2→ 1.

(c) h = 3, 1→ 2. (d) h = 3, 2→ 2.

Figure 22: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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(a) h = 4, 1→ 1. (b) h = 4, 2→ 1.

(c) h = 4, 1→ 2. (d) h = 4, 2→ 2.

Figure 23: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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(a) h = 5, 1→ 1. (b) h = 5, 2→ 1.

(c) h = 5, 1→ 2. (d) h = 5, 2→ 2.

Figure 24: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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(a) h = 6, 1→ 1. (b) h = 6, 2→ 1.

(c) h = 6, 1→ 2. (d) h = 6, 2→ 2.

Figure 25: The empirical MSE of the impulse response estimator for several averaging methods. We use
the notation i → j to indicate the impulse response of variable j to a structural shock in variable i. The
sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

30



Figure 1: (a) The asymptotic MSE of the models with one and two lags (red and black line,
respectively). The area between the 5% and 95% empirical quantile of F̂IC1 and F̂IC2 are shaded
in red and grey. (b) The empirical selection probabilities of the FIC. (c) The AMSE of the models
with m = 1 and m = 2 together with the empirical MSE of the feasible FIC (red) and infeasible
FIC (cyan). This figure was obtained at T = 1000.

Figure 2: The 5% and 95% empirical quantile of the weights distribution without bias correction
(a) and with bias correction (b). The infeasible weights are displayed in cyan. The empirical MSE
of plug-in methods is shown in (c). This figure was obtained at T = 1000.

Figure 3: The empirical MSE for model selection based on Akaike’s Information Criterion (AIC),
the Bayesian Information Criterion (BIC), and the Focused Information Criteria (FIC). ‘Infeas’
denotes an infeasible version of the FIC for which all quantities (and especially δ) are replaced by
their true values. The DGP is yT,t = 0.5yT,t−1 +

δ
√

T
yT,t−2 +

δ

2
√

T
yT,t−3 + ut with T = 100.

Figure 4: Idem Figure 3, but for T = 1000.

Figure 5: The empirical MSE for model averaging based on smoothed AIC (sAIC), smoothed
BIC (sBIC), the plug-in average without bias correction (Plug-in), the plug-in average with bias
correction (Plug-in Corr.), the infeasible plug-in average (Infeas) and the average with Jackknife
weights (Jackknife). The DGP is yT,t = 0.5yT,t−1 +

δ
√

T
yT,t−2 +

δ

2
√

T
yT,t−3 + ut with T = 100.

Figure 6: Idem Figure 5, but for T = 1000.

Figure 7: The empirical MSE of the OLS estimator of the model with 1 lag (OLS1), 2 lags (OLS2)
and the full model with 3 lags (OLS3) for T = 100. Gray lines show the asymptotic MSE approx-
imations as provided by the delta method.

Figure 8: Idem Figure 7, but T = 1000.

Figure 9: The selection frequencies of the various models for AIC (blue), BIC (green), FIC (red)
and the infeasible estimator (cyan) as a function of the amount of misspecification, δ. The data
was generated by yT,t = 0.5yT,t−1 +

δ
√

T
yT,t−2 +

δ

2
√

T
yT,t−3 + ut with a sample size of T = 100.

Figure 10: Idem Figure 9, but for T = 1000.

Figure 11: The empirical weights on the various models for sAIC (blue), sBIC (green), FIC (red)
and the infeasible estimator (cyan) as a function of the amount of misspecification, δ. The data
was generated by yT,t = 0.5yT,t−1 +

δ
√

T
yT,t−2 +

δ

2
√

T
yT,t−3 + ut at a sample size of T = 100.

Figure 12: Idem Figure 11, but for T = 1000.

Figure 13: Simulation results for a multiple quantities of interest. Model selection/averaging is
based on the impulse responses from horizon 1 up to 6. The trace of the AMSE matrix is used
to map the AMSE matrix to a scalar, i.e. model selection/averaging is based on the sum of the
asymptotic mean-squared errors. Therefore, we also report the sum of the empirical MSE of the
first six horizons on the vertical axis.
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Figure 14: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 15: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 16: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 17: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 18: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 19: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 100. See Equation (3.2) of the paper for the DGP.

Figure 20: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 21: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 22: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 23: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 24: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.

Figure 25: The empirical MSE of the impulse response estimator for several averaging methods.
We use the notation i → j to indicate the impulse response of variable j to a structural shock in
variable i. The sample size is T = 1000. See Equation (3.2) of the paper for the DGP.
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Table 1: The empirical coverage of 90% confidence intervals for the horizons: two, three and six.
For several choices of δ and T in the DGP yT,t = 0.5yT,t−1 +

δ
√

T
yT,t−2 +

δ

2
√

T
yT,t−3 + ut.

Table 2: The empirical coverage of the confidence regions as a function of sample size T and
misspecification parameter δ.
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