

Modelling Electric Fields In Ireland And UK For Space Weather Applications

Joan Campanyà¹, Peter Gallagher¹, Seán Blake¹, Mark Gibbs², David Jackson², Ciarán Beggan³, Gemma S. Richardson³, Colin Hogg ⁴

- [1] School of Physics, Trinity College Dublin, Dublin, Ireland
- [2] Met Office, Exeter, UK
- [3] British Geological Survey, Edinburgh, UK
- [4] Dublin Institute for Advanced Studies (DIAS)

Why do we want to model the electric fields?

Geomagnetic Induced Currents (GICs)

Solar Activity

Induced Electric Fields

Power Transmission Network

Induced Electric Currents

Area of Interest

Ireland and UK

- Permanent Magnetic Observatories
- Permanent Electric Observatories
- Temporary site (electrics and magnetics)

INTERMAGNET & MagIE

Area of Interest

Ireland and UK

- Permanent Magnetic Observatories
- Permanent Electric Observatories
- Temporary site (electrics and magnetics)

How accurate can we model the electric fields at sites with no permanent recordings?

INTERMAGNET & MagIE

Primary Magnetic Field & Influence of the Subsurface Geology

Primary magnetic field

(Interpolate between Magnetic Observatories)

Influence of the geology

(Magnetotelluric geophysical method: Tensor relationships relating EM fields)

Primary Magnetic Field & Influence of the Subsurface Geology

Primary magnetic field

(Interpolate between Magnetic Observatories)

- Spherical elementary current systems (SECS, ionospheric currents)
- Linear interpolation
- Cubic interpolation

Primary Magnetic Field & Influence of the Subsurface Geology

Primary magnetic field

(Interpolate between Magnetic Observatories)

- Spherical elementary current systems (SECS, ionospheric currents)
- Linear interpolation
- Cubic interpolation

Linear and Cubic interpolation are NOT accurate during storms

Primary Magnetic Field & Influence of the Subsurface Geology

Tensor relationships

MT Impedance Tensor, **Z** (local)

$$\begin{pmatrix} e_x^A(\omega) \\ e_y^A(\omega) \end{pmatrix} = \begin{pmatrix} Z_{xx}(\omega) & Z_{xy}(\omega) \\ Z_{yx}(\omega) & Z_{yy}(\omega) \end{pmatrix} \begin{pmatrix} h_x^A(\omega) \\ h_y^A(\omega) \end{pmatrix}$$

 (ω) : Frequency dependence

Primary Magnetic Field & Influence of the Subsurface Geology

Tensor relationships

MT Impedance Tensor, **Z** (local)

$$\begin{pmatrix} e_x^A(\omega) \\ e_y^A(\omega) \end{pmatrix} = \begin{pmatrix} Z_{xx}(\omega) & Z_{xy}(\omega) \\ Z_{yx}(\omega) & Z_{yy}(\omega) \end{pmatrix} \begin{pmatrix} h_x^A(\omega) \\ h_y^A(\omega) \end{pmatrix}$$

Inter-station Impedance Tensor, Z'

$$\begin{pmatrix} e_{x}^{A}(\omega) \\ e_{y}^{A}(\omega) \end{pmatrix} = \begin{pmatrix} Z_{xx}^{i}(\omega) & Z_{xy}^{i}(\omega) \\ Z_{yx}^{i}(\omega) & Z_{yy}^{i}(\omega) \end{pmatrix} \begin{pmatrix} h_{x}^{B}(\omega) \\ h_{y}^{B}(\omega) \end{pmatrix}_{\text{Reference site}}$$

Inter-station Horizontal Magnetic, M'

$$\begin{pmatrix} h_{x}^{A}(\omega) \\ h_{y}^{A}(\omega) \end{pmatrix} = \begin{pmatrix} M_{xx}^{i}(\omega) & M_{xy}^{i}(\omega) \\ M_{yx}^{i}(\omega) & M_{yy}^{i}(\omega) \end{pmatrix} \begin{pmatrix} h_{x}^{B}(\omega) \\ h_{y}^{B}(\omega) \end{pmatrix}$$
Reference site

12°W 0° 6°W 60°N 57°N 54°N h field e field Site A 51°N Site B

 (ω) : Frequency dependence

Primary Magnetic Field & Influence of the Subsurface Geology

Tensor relationships

MT Impedance Tensor, **Z** (local)

$$\begin{pmatrix} e_x^A(\omega) \\ e_y^A(\omega) \end{pmatrix} = \begin{pmatrix} Z_{xx}(\omega) & Z_{xy}(\omega) \\ Z_{yx}(\omega) & Z_{yy}(\omega) \end{pmatrix} \begin{pmatrix} h_x^A(\omega) \\ h_y^A(\omega) \end{pmatrix}$$

Inter-station Impedance Tensor, Z'

$$\begin{pmatrix} e_{x}^{A}(\omega) \\ e_{y}^{A}(\omega) \end{pmatrix} = \begin{pmatrix} Z_{xx}^{i}(\omega) & Z_{xy}^{i}(\omega) \\ Z_{yx}^{i}(\omega) & Z_{yy}^{i}(\omega) \end{pmatrix} \begin{pmatrix} h_{x}^{B}(\omega) \\ h_{y}^{B}(\omega) \end{pmatrix}_{\text{Reference site}}$$

Inter-station Horizontal Magnetic, M'

$$\begin{pmatrix} h_{x}^{A}(\omega) \\ h_{y}^{A}(\omega) \end{pmatrix} = \begin{pmatrix} M_{xx}^{i}(\omega) & M_{xy}^{i}(\omega) \\ M_{yx}^{i}(\omega) & M_{yy}^{i}(\omega) \end{pmatrix} \begin{pmatrix} h_{x}^{B}(\omega) \\ h_{y}^{B}(\omega) \end{pmatrix}$$
Reference site

- Data needs to be measured at least ones at the site of interest to compute the Tensor relationships
 - Works under the Plane-Wave approximation: similar primary magnetic field in both sites

 (ω) : Frequency dependence

Primary Magnetic Field & Influence of the Subsurface Geology

Influence of the geology on the magnetic field (Secondary/Induced magnetic field)

Tensor Relationship between magnetic fields

(assuming same magnetic source for all the sites)

$$\begin{pmatrix} h_x^A(\omega) \\ h_y^A(\omega) \end{pmatrix} = \begin{pmatrix} \underline{M_{xx}^{\iota}(\omega)} & \underline{M_{xy}^{\iota}(\omega)} \\ \underline{M_{yx}^{\iota}(\omega)} & \underline{M_{yy}^{\iota}(\omega)} \end{pmatrix} \begin{pmatrix} h_x^B(\omega) \\ h_y^B(\omega) \end{pmatrix}$$

12°W 12°E 60°N 57°N 54°N 51°N 48°N CLF

Site A: ESK

Site B: HAD, ESK, LER, VAL, BIR, ARM

Primary Magnetic Field & Influence of the Subsurface Geology

Influence of the geology on the magnetic field (Secondary/Induced magnetic field)

Testing different approaches

Method 1

$$E_T^A = Z^A B^A$$

B^A as a result of SECS interpolation using measured magnetic fields as inputs

Testing different approaches

Method 1

$$E_T^A = Z^A B^A$$

B^A as a result of SECS interpolation using measured magnetic fields as inputs

Method 2

"Total" = "regional" + "local"
$$E_T^A = E_{reg}^A + E_{loc}^A$$

Testing different approaches

Method 1

$$E_T^A = Z^A B^A$$

B^A as a result of SECS interpolation using measured magnetic fields as inputs

Method 2

"Total" = "regional" + "local"
$$-\Delta$$

$$E_T^A = E_{reg}^A + E_{loc}^A$$

"regional"

$$E_{reg}^A = Z^{AMr} B^{Mr}$$

Not account for different magnetic sources (plane wave approx.)

Mr: Magnetic Reference site, such as CLF (less affected by local storms)

Testing different approaches

Method 1

$$E_T^A = Z^A B^A$$

B^A as a result of SECS interpolation using measured magnetic fields as inputs

Method 2

"Total" = "regional" + "local"
$$E_T^A = E_{reg}^A + E_{loc}^A$$

"regional"

$$E_{reg}^{A} = Z^{AMr}B^{Mr}$$

Not account for different magnetic sources (plane wave approx.)

Mr: Magnetic Reference site, such as CLF (less affected by local storms)

$$E_{loc}^{A} = Z^{A}B_{loc}^{A}$$

Correction for local storms

 B_{loc}^{A} as a result SECS interpolation using local magnetic storms as input (B_{loc}^{i} for i = VAL, BIR, ARM, LER, ESK, HAD ...).

$$B_{loc}^i = B^i - M^{iMr}B^{Mr}$$

Testing different approaches

Method 1

$$E_T^A = Z^A B^A$$

B^A as a result of SECS interpolation using measured magnetic fields as inputs

Method 2

 $E_T^A = E_{reg}^A + E_{loc}^A$ "regional"

$$E_{reg}^{A} = Z^{AMr}B^{Mr}$$

$$E_{loc}^A = Z^A B_{loc}^A$$

"local"

Not account for different magnetic sources (plane wave approx.)

Correction for local storms

We aim to reduce the influence of the interpolation methods

Mr: Magnetic F
(less affected by tocal

storms)

12°W 12°E 60°N 57°N 54°N 51°N 48°N CLF

Trinity College Dublin, The University of Dublin

using , for i =

22-23 June 2015 Storm, ESK Observatory

Method 1

Method 2

	Ex	Ey
Coherence	0.81	0.76
RMS	12.65	7.29
Pp	0.40	0.34

	Ex	Ey
Coherence	0.86	0.80
RMS	10.32	6.31
Pp	0.47	0.39

22-23 June 2015 Storm, ESK Observatory

MT with Besk

Method 2

	Ex	Ey
Coherence	0.97	0.98
RMS	7.22	2.99
Pp	0.68	0.76

	Ex	Ey
Coherence	0.86	0.80
RMS	10.32	6.31
Pp	0.47	0.39

ESK and LEI sites for two different storms

17-18 March, 2015										Dist.
	Method_1				Method_2			Local B		
	Coh	RMS	Рр	Coh	RMS	Рр	Coh	RMS	Рр	[km]
ESK	0.64	7.12	0.24	0.72	6.60	0.30	0.98	3.35	0.73	400
LEI	0.86	2.61	0.37	0.87	1.86	0.43	0.98	0.98	0.69	125

^{*}ARM Observatory stop recording

22-23 June, 2015										Dist.
Method_1				Method_2			Local B			Obs.
	Coh	RMS	Рр	Coh	RMS	Рр	Coh	RMS	Рр	[km]
ESK	0.79	9.92	0.37	0.83	8.21	0.44	0.97	4.67	0.72	250
LEI	0.93	1.42	0.56	0.93	1.21	0.60	0.96	1.11	0.64	95

 $^{1 \}ge |Coherence (Coh)| \ge 0$

 $1 \ge Performance Parameter (Pp) \ge 0$

New EM data

Ireland and UK

Permanent magnetic observatories

Modelling electric fields in Ireland and UK

- New approach for modelling E fields (*Method 2*)
 - Higher accuracy
 - Differentiate between local and regional signal

Modelling electric fields in Ireland and UK

- New approach for modelling E fields (*Method 2*)
 - Higher accuracy
 - Differentiate between local and regional signal
- Constrained levels of accuracy (approx.):
 - Ireland: Coh \geq 0.8; Pp \geq 0.4
 - UK: Coh \geq 0.65; Pp \geq 0.3
 - RMS depends on the storm; larger storms larger RMS

Modelling electric fields in Ireland and UK

- New approach for modelling E fields (*Method 2*)
 - Higher accuracy
 - Differentiate between local and regional signal
- Constrained levels of accuracy (approx.):
 - Ireland: Coh \geq 0.8; Pp \geq 0.4
 - UK: Coh \geq 0.65; Pp \geq 0.3
 - RMS depends on the storm; larger storms larger RMS
- New EM data in Ireland and UK
 - Modelling EM fields at country scale.

Modelling electric fields in Ireland and UK

- New approach for modelling E fields (*Method 2*)
 - Higher accuracy
 - Differentiate between local and regional signal
- Constrained levels of accuracy (approx.):
 - Ireland: Coh \geq 0.8; Pp \geq 0.4
 - UK: Coh \geq 0.65; Pp \geq 0.3
 - RMS depends on the storm; larger storms larger RMS
- New EM data in Ireland and UK
 - Modelling EM fields at country scale.
- Computational costs
 - Over 7 min with standard PC, mostly to calculate SECS, which is not ideal for monitoring (Machine learning?)