SUPPLEMENTARY MATERIAL

12-Epi-9-deacetoxyxenicin, New Cytotoxic Diterpenoid from a Bornean

Soft Coral, Xenia sp.

Chin-Soon Phan¹, Takashi Kamada¹, Takahiro Ishii², Toshiyuki Hamada³

and Charles Santhanaraju Vairappan¹*

¹Laboratory of Natural Products Chemistry, Institute for Tropical Biology and

Conservation, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

 2 Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the

Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan

³Graduate School of Science and Engineering, Kagoshima University, 1-21-35

Korimoto, Kagoshima 890-0065, Japan

*Author to whom correspondence should be addressed; *E-Mail: csv@ums.edu.my

Tel.: +60-88-320-000 ext. 2397; Fax: +60-88-320-291.

One new compound, 12-epi-9-deacetoxyxenicin (1) along with a hydoperoxide

product, 12-epi-9-deacetoxy-8-hydroperoxyxenicin (2) and two

sesquiterpenoids (3-4) were isolated from a population of Bornean soft coral Xenia

sp. The structures of these metabolites were elucidated based on their

spectroscopic data. Compounds 1 and 2 showed cytotoxic activity against ATL cell

line, S1T. In addition, compound 3 exhibited hyphal inhibition of Lagenidium

thermophilum.

Keywords: soft coral; *Xenia* sp.; xenicane; diterpene; adult T-cell leukemia

Supplementary Information

Table S1. NMR data of 1-2 and 13-epi-9-deacetoxyxenicin (δ in ppm, J in Hz).

Table S2. MICs of compounds 1-4 against seven strains of marine fungi.

Figure S2. The ¹H-¹H COSY and selective HMBC correlation of 1.

Figure S3. The summary of diastereomeric xenicins with relative configurations

Figure S3. The summary of diastereomeric xenicins with relative β-OAc/α-OAc, α-OAc/β-OAc and α-OAc/α-OAc at C-12/C-13. Figure S4. ¹H NMR spectrum of **1** in CDCl₃ (600 MHz). Figure S5. ¹³C NMR spectrum of **1** in CDCl₃ (150 MHz). Figure S6. HSQC spectrum of **1** in CDCl₃. Figure S7. ¹H-¹H COSY spectrum of **1** in CDCl₃. Figure S8. HMBC spectrum of **1** in CDCl₃. Figure S9. NOESY spectrum of **1** in CDCl₃. Figure S10. HR-ESI-MS spectrum of **1**. Figure S11. ¹H NMR spectrum of **2** in CDCl₂ (600 MHz).

Figure S10. HR-ESI-MS spectrum of 1.

Figure S11. H NMR spectrum of 2 in CDCl₃ (600 MHz).

Figure S12. C NMR spectrum of 2 in CDCl₃ (150 MHz).

Figure S13. HSQC spectrum of 2 in CDCl₃.

Figure S14. H-H COSY spectrum of 2 in CDCl₃.

Figure S15. HMBC spectrum of 2 in CDCl₃.

Figure S16. NOESY spectrum of 2 in CDCl₃.

Figure S17. HR-ESI-MS spectrum of 2.

Table S1. ¹³C and ¹H NMR (150 and 600 MHz) data of **1-2** (CDCl₃, δ in ppm, J in Hz).

		1	2		
No	$\delta_{\!\scriptscriptstyle m C}$	$\delta_{\!\scriptscriptstyle m H}$	$\delta_{\!\scriptscriptstyle m C}$	$\delta_{\! ext{H}}$	
1	91.5	5.85 d (1.8)	92.9	6.00 d (4.8)	
3	137.4	6.39 br s	138.5	6.34 br s	
4	113.4		111.8		
4α	37.7	2.00 m	33.8	2.29 m	
5	29.6	1.95 m; 1.53 m	28.9	2.24 m; 1.83 m	
6	40.1	2.26 m; 2.06 m	26.3	2.42 m; 2.26 m	
7	135.9		145.9		
8	124.2	5.34 t (8.3)	89.6	4.42 dd (10.0, 5.1)	
9	25.1	2.48 m; 2.09 m	27.1	2.05 m; 1.74 m	
10	35.6	2.26 m	31.4	2.34 m; 2.17 m	
11	151.1		146.6		
11a	49.2	1.95 m	40.8	2.68 t (4.8)	
12	71.7	5.67 d (3.4)	71.3	5.60 d (3.4)	
13	70.7	5.63 dd (9.6, 3.4)	70.6	5.57 dd (8.9, 3.4)	
14	117.7	5.27 d (9.6)	117.4	5.20 d (9.2)	
15	141.1		140.8		
16	25.8	1.75 s	25.8	1.74 s	
17	18.8	1.72 s	18.7	1.67 s	
18	16.8	1.66 s	118.7	5.42 s; 5.35 s	
19	113.1	4.86 s; 4.77 s	112.7	4.93 s; 4.81 s	
1-OAc	169.8		169.5		
	21.1	2.04 s	21.0	2.06 s	
12-OAc	170.3		170.3		
	21.1	2.02 s	21.1	2.02 s	
13-OAc	169.8		169.8		
	21.0	2.12 s	21.0	2.10 s	

Table S2. MICs of compounds 1-4 against seven strains of marine fungi.

	MIC (μg/mL)				
Strains	1	2	3	4	
F. moniliforme	100	100	100	100	
F. oxysporum	100	100	100	100	
F. solani	100	100	100	100	
Exophiala sp.	50	50	50	50	
O. humicola	100	100	100	100	
L. thermophilum	50	50	25	50	
H. sabahensis	50	50	50	50	

Positive control: itraconazole with MIC 3.2 µg/mL.

Figure S2. The ¹H-¹H COSY and selective HMBC correlations of **1**.

Figure S3. The summary of diastereomeric xenicins with relative configurations β-OAc/ α -OAc, α -OAc/ β -OAc and α -OAc/ α -OAc at C-12/C-13.

$$\begin{array}{c} 12\beta\text{-OAc}/13\alpha\text{-OAc} \\ \delta_{C} = \sim 70.0 - 72.0 \\ \delta_{H} = \sim 5.60 \\ {}^{3}J_{12\text{-}13} = \sim 3.0\,\text{Hz} \\ \end{array}$$

Figure S4. ¹H NMR spectrum of 1 in CDCl₃ (600 MHz).

SCSV#065#PHAN#MM06H#F3-2-1H-3.jdf

Figure S5. ¹³C NMR spectrum of **1** in CDCl₃ (150 MHz).

Figure S6. HSQC spectrum of **1** in CDCl₃.

Figure S7. ¹H-¹H COSY spectrum of **1** in CDCl₃.

Figure S8. HMBC spectrum of $\bf 1$ in CDCl₃.

Figure S9. NOESY spectrum of $\bf 1$ in CDCl₃.

Figure S10. HRESIMS spectrum of 1.

Figure S11. ¹H NMR spectrum of **2** in CDCl₃ (600 MHz).

TCSV#978#MM06H#F3-2-4-1-1-H-3.jdf

Figure S12. ¹³C NMR spectrum of **2** in CDCl₃ (150 MHz).

Figure S13. HSQC spectrum of 2 in CDCl₃.

Figure S14. ¹H-¹H COSY spectrum of **2** in CDCl₃.

Figure S15. HMBC spectrum of $\bf 2$ in CDCl₃.

Figure S16. NOESY spectrum of 2 in CDCl₃.

Figure S17. HRESIMS spectrum of 2.

