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Lemma C.1 Assume that for some r > 2, E|Qτ (Y |X)|r < ∞ and supt∈Tb
E[|Qτ (Y |X)|r|b>1 X =

t]fb(t) <∞ holds for all b ∈ Θ, where Tb = {t : t = b>1 x,x ∈ X0}, X0 is the compact support of X,

and fb is the density of b>1 X. Moreover, assume that Qτ (Y |x) is in Hs(X0) for some s with [s] ≤ k,

where Hs(X0) is defined in Appendix A and k is the order of the local polynomial conditional quantile

estimators Q̂τ (Y |Xi) and Q̂V S
τ (Y |Xi) (used in (2.3) and (2.6), respectively).

1. Under Assumptions GS1-GS2 and Assumptions A1-A5 given in Appendix A,

sup
b∈Θ,t∈Tb

∣∣ĝNW (t|b)− g(t|b)
∣∣ = Op

(
a∗n + an + h2

)
,

where ĝNW (t|b) is defined in (2.3), a∗n = (log n/n)s/(2s+d), and an = [log n/(nh)]1/2.

2. Under the sparsity assumption, Assumptions GS1-GS3, Assumptions A1-A7 given in Appendix

A, and the conditions nh4 = o(1), where h is the bandwidth used in (2.6), λ1 → 0 and
√
nλ1 →

∞ as n→∞, where λ1 is the tuning parameter used in (2.4),

sup
b∈Θ,t∈Tb

∣∣ĝNWV S (t|b)− g(t|b)
∣∣ = Op

(
a∗∗n + an + h2

)
,

where ĝNWV S (t|b) is defined in (2.6), and a∗∗n = (log n/n)s/(2s+d
∗).

Proof. The proof uses the same steps as those in the proof of Proposition 3.1 of Christou and Akritas

(2016). We outline here the basic steps.

Let ĝ(t|b) denote either ĝNW (t|b), defined in (2.3), or ĝNWV S (t|b), defined in (2.6). Also, let

Q̂∗τ (Y |x) denote either Q̂τ (Y |x) or Q̂V S
τ (Y |x); see Section 2. Set Kh(·) = K(·/h), and write ĝ(t|b) =

Ψ̂(t|b)/f̂b(t), where Ψ̂(t|b) = (nh)−1
∑n

i=1 Q̂
∗
τ (Y |Xi)Kh

(
t− b>1 Xi

)
and f̂b(t) = (nh)−1

∑n
i=1Kh

(
t− b>1 Xi

)
.
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For the denominator, we use Theorem 6 of Hansen (2008) [take his β = ∞ and the mixing

coefficients as αm = 0] to obtain

sup
b∈Θ,t∈Tb

∣∣∣f̂b(t)− fb(t)
∣∣∣ = Op

[(
log n

nh

)1/2

+ h2

]
= Op(an + h2). (C.1)

For the numerator, we show that Ψ̂(t|b) is consistent estimator of Ψ(t|b) = g(t|b)fb(t), uniformly in

b ∈ Θ and t ∈ Tb. By letting Ψ∗(t|b) = (nh)−1
∑n

i=1Qτ (Y |Xi)Kh

(
t− b>1 Xi

)
, we can show that

|Ψ̂(t|b)−Ψ∗(t|b)| =

∣∣∣∣∣ 1

nh

n∑
i=1

[
Q̂∗τ (Y |Xi)−Qτ (Y |Xi)

]
Kh

(
t− b>1 Xi

)∣∣∣∣∣
≤ sup

1≤i≤n

∣∣∣Q̂∗τ (Y |Xi)−Qτ (Y |Xi)
∣∣∣ 1

nh

n∑
i=1

Kh

(
t− b>1 Xi

)
,

and

sup
b∈Θ,t∈Tb

|Ψ̂(t|b)−Ψ∗(t|b)| =


Op(a

∗
n), if Q̂∗τ (Y |Xi) = Q̂τ (Y |Xi)

Op(a
∗∗
n ), if Q̂∗τ (Y |Xi) = Q̂V S

τ (Y |Xi),

(C.2)

where the last equality follows from relation (C.1), Assumption A2, and the uniform consistency results

for Q̂τ (Y |Xi) (cf. Guerre and Sabbah 2012), and for Q̂V S
τ (Y |Xi) (see Proposition 3.2). Next, Theorem

2 of Hansen (2008) yields supb∈Θ,t∈Tb
|Ψ∗(t|b)− E[Ψ∗(t|b)]| = Op (an), where an = [log n/(nh)]1/2,

and recalling the notation Ψ(t|b) = g(t|b)fb(t), and using Assumption A4, E[Ψ∗(t|b)] = Ψ(t|b) +

O(h2). Thus, supb∈Θ,t∈Tb
|Ψ∗(t|b)−Ψ(t|b)| = Op(an + h2) which, together with (C.2) yields

sup
b∈Θ,t∈Tb

∣∣∣Ψ̂(t|b)−Ψ(t|b)
∣∣∣ =


Op (a∗n + an + h2) if Q̂∗τ (Y |Xi) = Q̂τ (Y |Xi)

Op (a∗∗n + an + h2) , if Q̂∗τ (Y |Xi) = Q̂V S
τ (Y |Xi).

(C.3)

Therefore, using (C.1), (C.3) and Assumption A2, we get

∣∣∣∣∣Ψ̂(t|b)

f̂b(t)
− g(t|b)

∣∣∣∣∣ =


Op (a∗n + an + h2) if Q̂∗τ (Y |Xi) = Q̂τ (Y |Xi)

Op (a∗∗n + an + h2) , if Q̂∗τ (Y |Xi) = Q̂V S
τ (Y |Xi)
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uniformly in b ∈ Θ and t ∈ Tb.

Note: For what follows, Pr(·|X) and E(·|X) will denote the conditional probability and conditional

expectation, respectively, on the design matrix X.

Lemma C.2 Let ĝ(t|b) denote either ĝNW (t|b), defined in (2.3), or ĝNWV S (t|b), defined in (2.6).

Define, for any γ ∈ Rd−1,

Ãn(τ,γ) =
n∑
i=1

{
ρτ [Y

∗
i − g̃(Xi|γ/

√
n+ β,β)]− ρτ (Y ∗i )

}
, (C.4)

where Y ∗i = Yi − ĝ(β>1 Xi|β) and g̃(Xi|γ/
√
n + β,β) = ĝ[(γ/

√
n + β)>1 Xi|γ/

√
n + β] − ĝ(β>1 Xi|β),

for (γ/
√
n + β)1 = (1, (γ/

√
n + β)>)>. Then, under the assumptions of Lemma C.1, Assumptions

A6 and A7 given in Appendix A, and the condition nh4 = o(1), the following quadratic approximation

holds uniformly in γ in a compact set, Ãn (τ,γ) = (1/2)γ>Vγ + W>
n γ + op(1), where

V = E
{

[g′(β>1 X|β)]2[X−1 − E(X−1|β>1 X)][X−1 − E(X−1|β>1 X)]>fε|X(0|X)
}
, (C.5)

and

Wn = −n−1/2

n∑
i=1

ρ′τ (Y
∗
i )g′(β>1 Xi|β)[Xi,−1 − E(X−1|β>1 X)], (C.6)

for g′(t|b) = (∂/∂t)g(t|b), and X−1 the (d− 1)-dimensional vector consisting of coordinates 2, . . . , d

of X.

Proof. The proof uses the same steps as those in the proof of Lemma C.6 of Christou and Akritas

(2016). We outline here the basic steps.

Define H to be a class of bounded functions η : Rd → R, whose value at (t,β>)> ∈ Rd can

be written as η(t|β), in the non-separable space l∞(t,β) = {(t,β>)> : Rd → R : ‖η‖(t,β) :=

sup(t,β>)>∈Rd |η(t|β)| < ∞}, and having bounded and continuous partial derivatives, where the first

and second derivatives with respect to t exist and are bounded. Thus, H includes g(t|β), as well as

ĝ(t|β) for n large enough, almost surely. Define Ãn(η, τ,γ) =
∑n

i=1

{
ρτ [ei(β, η)−η̃(Xi|γ/

√
n+β,β)]−
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ρτ [ei(β, η)]
}

, where ei(β, η) = Yi − η(β>1 Xi|β) and η̃(Xi|γ/
√
n+ β,β) = η[(γ/

√
n+ β)>1 Xi|γ/

√
n+

β]− η(β>1 Xi|β), and write Ãn (η, τ,γ) as

E
[
Ãn (η, τ,γ) |X

]
−

n∑
i=1

{
ρ′τ [ei(β, η)]− E{ρ′τ [ei(β, η)]|X}

}
η̃
(
Xi|γ/

√
n+ β,β

)
+Rn (η, τ,γ) , (C.7)

where X denotes the design matrix, and Rn(η, τ,γ) is the remainder term defined by (C.7). Using

the same steps as in the proof of Lemma C.6 of Christou and Akritas (2016), we can show that

E
[
Ãn (η, τ,γ) |X

]
= −

n∑
i=1

E{ρ′τ [ei(β, η)]|X}η̃
(
Xi|γ/

√
n+ β,β

)
+

1

2

n∑
i=1

[η̃(Xi|γ/
√
n+ β,β)]2ϕ′′

[
g(β>1 Xi|β)− η(β>1 Xi|β)

∣∣X]+ op(1), (C.8)

uniformly in η ∈ H. Following, using the Uniform Law of Large Numbers for Triangular Arrays

(Jennrich, 1969), we can show that supη∈H |Rn(η, τ,γ)| = op(1), where Rn(η, τ,γ) is defined in (C.7).

Next, substituting the expression of E[Ãn(η, τ,γ)|X] derived in (C.8), to relation (C.7) and using

the fact that supη∈H |Rn(η, τ,γ)| = op(1), we get, uniformly in η ∈ H,

Ãn(η, τ,γ) =
1

2

n∑
i=1

[η̃(Xi|γ/
√
n+ β,β)]2ϕ′′[g(β>1 Xi|β)− η(β>1 Xi|β)|X]

−
n∑
i=1

ρ′τ [ei(β, η)]η̃(Xi|γ/
√
n+ β,β) + op(1). (C.9)

Since expression (C.9) holds uniformly in η ∈ H, where the class H includes ĝ, we substitute η with

ĝ. Using (a) the fact that Ãn(ĝ, τ,γ) reduces to Ãn(τ,γ) defined in (C.4), (b) relation

n∑
i=1

g̃(Xi|γ/
√
n+ β,β) =

n∑
i=1

{
g[(γ/

√
n+ β)>1 Xi|γ/

√
n+ β]− g(β>1 Xi|β)

}
+ op(n

−1/2),

follows from Lemma C.5 of Christou and Akritas (2016), and (c) relation

g[(γ/
√
n+ β)>1 Xi|γ/

√
n+ β]− g(β>1 Xi|β) =

γ√
n
∇bg(b>1 Xi|b)

∣∣∣
b=β

+Op(n
−1)

=
γ√
n
g′(β>1 Xi|β)[Xi,−1 − E(X−1|β>1 X)],
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where the last equality follows under the Single Index model, we get Ãn(τ,γ) = (1/2)γ>Vγ+W>
n γ+

rn(τ,γ), where rn(τ,γ) = op(1). Finally, noting that Wn has bounded second moment (see Lemma

C.3) and hence is stochastically bounded, the convex function Ãn (τ,γ)−W>
n γ converges in probability

to the convex function (1/2)γ>Vγ. Therefore, it follows from the convexity lemma (Pollard, 1991)

that for any compact set K, supγ∈K |rn (τ,γ)| = op(1). Thus, the quadratic approximation to the

convex function Ãn (τ,γ) holds uniformly for γ in a compact set.

Lemma C.3 Let W∗
n = −n−1/2Wn, where Wn defined in (C.6). Then, under the assumptions of

Lemma C.2,

Pr
{√

n{[τ(1− τ)]−1/2Σ−1W∗
n} ≤ t|X

}
= Φ(t) + op(1),

where Σ = E
{

[g′(β>1 X|β)]2[X−1 − E(X−1|β>1 X)][X−1 − E(X−1|β>1 X)]>
}

and Φ(t) denotes the stan-

dard normal cumulative distribution function.

Proof. The proof uses the same steps as those in the proof of Lemma C.7 of Christou and Akritas

(2016). We outline here the basic steps.

Let H define the class of functions as described in the proof of Lemma C.2 and define Zi(η) =

ρ′τ [ei(β, η)]g′(β>1 Xi|β)[Xi,−1 − E(X−1|β>1 X)], where ei(β, η) = Yi − η(β>1 Xi|β), and let Ti(η) =

Zi(η)−E[Zi(η)|X]. Using the Berry-Esseen theorem (Berry 1941, and Esseen 1942), we can show that

n−1/2
∑n

i=1 Ti(η) converges to a multivariate normal distribution, uniformly in η ∈ H; see Christou

and Akritas (2016) for details. Specifically, for any t ∈ Rd−1, and conditionally on the design matrix

X,

∣∣∣∣∣Pr

[∑n
i=1 t

>Ti(η)√∑n
i=1 σ

2
i (η)

≤ t
∣∣∣X]− Φ(t)

∣∣∣∣∣ ≤ C0

[
n∑
i=1

σ2
i (η)

]−3/2 n∑
i=1

ρi(η),

where σ2
i (η) = Var[t>Ti(η)|X] and ρi(η) = E[|t>Ti(η)|3|X] <∞. Noting that

sup
η∈H

∣∣∣∣∣ 1

n
√
n

n∑
i=1

ρi(η)

∣∣∣∣∣ ≤ 1

n
√
n

n∑
i=1

sup
η∈H
|ρi(η)| = o(1) (C.10)
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a.s., and

sup
η∈H

∣∣∣∣∣ 1n
n∑
i=1

σ2
i (η)− ṽ2(η)

∣∣∣∣∣ = o(1) (C.11)

a.s., where

ṽ2(η) = t>E
{
Fε|X[η(β>1 X|β)− g(β>1 X|β)|X]{1− Fε|X[η(β>1 X|β)− g(β>1 X|β)|X]}

[g′(β>1 X|β)]2[X−1 − E(X−1|β>1 X)][X−1 − E(X−1|β>1 X)]>
}
t,

we have, conditionally on X,

∣∣∣∣∣Pr

[∑n
i=1 t

>Ti(η)√∑n
i=1 σ

2
i (η)

≤ t
∣∣∣X]− Φ(t)

∣∣∣∣∣ = op(1), (C.12)

uniformly in η ∈ H. Since (C.12) holds uniformly in η ∈ H, it also holds for η = ĝ, where

1√
n

n∑
i=1

E
[
t>Zi(ĝ)

∣∣X] = op(1) and
1

n

n∑
i=1

σ2
i (ĝ) = t>τ(1− τ)Σt + op(1). (C.13)

Therefore, using (C.12), (C.13), and Slutsky’s theorem, we get that, conditionally on X,
√
nW∗

n
d→

N (0, τ(1− τ)Σ), where the unconditional case follows from the Dominated Convergence theorem and

the almost sure convergence of (C.10) and (C.11).

Lemma C.4 Let ĝ(t|b) denote either ĝNW (t|b), defined in (2.3), or ĝNWV S (t|b), defined in (2.6), and

let β̂ to be

β̂ = arg min
b∈Θ

{
n∑
i=1

ρτ [Yi − ĝ(b>1 Xi|b)] + n
d∑
j=2

pλ(|bj|)

}
, (C.14)

where b1 = (1,b>)> = (1, b2, . . . , bd)
>, and λ → 0 as n → ∞. Then, under the assumptions of

Lemma C.2, β̂ is
√
n-consistent estimator of β. Moreover, for β̂ = (β̂>11, β̂

>
12)>, where β̂11 is of

cardinality (d̂∗ − 1) = card({j ∈ (2, . . . , d) : β̂j 6= 0}), and for
√
nλ → ∞ as n → ∞, we have that,

with probability tending to one,
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1. Sparsity: β̂12 = 0 and

2. Asymptotic Normality:
√
n(β̂11−β11)

d→ N (0, τ(1− τ)V−1
11 Σ11V−1

11 ), where V11 and Σ11 are

defined in (3.1) and (3.2) respectively.

Proof. To study the asymptotic properties of β̂ defined in (C.14), we consider an equivalent objective

function. Observe that by adding and subtracting the quantity ĝ(β>1 Xi|β) in the first part of the

objective function (C.14), we get

n∑
i=1

ρτ
{
Y ∗i − [ĝ(b>1 Xi|b)− ĝ(β>1 Xi|β)]

}
=

n∑
i=1

ρτ [Y
∗
i − g̃(Xi|b,β)], (C.15)

where Y ∗i = Yi − ĝ(β>1 Xi|β) and, for any γ ∈ Rd−1 such that γ + β ∈ Θ, we define g̃(Xi|γ + β,β) =

ĝ[(γ+β)>1 Xi|γ+β]− ĝ(β>1 Xi|β), where according to the convention used, (γ+β)1 = (1, (γ+β)>)>.

For the sake of convenience in the derivation of the asymptotic results we replace relation (C.15) with∑n
i=1

{
ρτ [Y

∗
i − g̃(Xi|b,β)]− ρτ (Y ∗i )

}
and we define the new objective function

Ân(τ,γ) = Ãn(τ,γ) + n
d∑
j=2

pλ(|γj/
√
n+ βj|),

where γ =
√
n(b− β), and Ãn(τ,γ) is defined in (C.4).

For the proof we use the same strategy as in Wu and Liu (2009). To prove the
√
n-consistency of

β̂, enough to show that for any given δ > 0, there exists a constant C such that

Pr

[
inf
‖γ‖≥C

Ân (τ,γ) > Ân(τ,0)

]
≥ 1− δ, (C.16)

since this implies that with probability at least 1−δ there exists a local minimum in the ball {γ/
√
n+

β : ‖γ‖ ≤ C}. Write

Ân(τ,γ)− Ân(τ,0) = Ãn(τ,γ)− Ãn(τ,0) + n

d∑
j=2

[
pλ(|γj/

√
n+ βj|)− pλ(|βj|)

]
≥ Ãn(τ,γ)− Ãn(τ,0) + n

d∗∑
j=2

[
pλ(|γj/

√
n+ βj|)− pλ(|βj|)

]
,
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where, for large n,

n
d∗∑
j=2

[
pλ(|γj/

√
n+ βj|)− pλ(|βj|)

]
= 0. (C.17)

This follows from (a) |βj| > 0 for j = 2, . . . , d∗, (b) the SCAD penalty is flat for arguments of

magnitude larger than aλ, and (c) λ→ 0. Following, Lemma C.2 yields that

Ãn(τ,γ)− Ãn(τ,0) =
1

2
γ>Vγ + W>

n γ + op(1), (C.18)

where V and Wn are defined in (C.5) and (C.6) respectively, for any γ in a compact subset of Rd−1.

Therefore, the difference (C.18) is dominated by the quadratic term (1/2)γ>Vγ for ‖γ‖ greater than

or equal to sufficiently large C. Using (C.17) and (C.18), the difference Ân(τ,γ) − Ân(τ,0) is also

dominated by the quadratic term (1/2)γ>Vγ for ‖γ‖ greater than or equal to sufficiently large C,

and (C.16) follows.

Next, we will show the sparsity part. To prove that, with probability tending to one, β̂12 = 0, we

will show that for any given β̃11 satisfying
∥∥∥β̃11 − β11

∥∥∥ = Op(n
−1/2) and any constant C,

Ân[τ,
√
n((β̃11 − β11)>,0>)>] = min

‖β̃12‖≤Cn−1/2

Ân[τ,
√
n((β̃11 − β11)>, β̃>12)>]. (C.19)

Write

Ân[τ,
√
n((β̃11 − β11)>,0>)>]− Ân[τ,

√
n((β̃11 − β11)>, β̃>12)>]

= Ãn[τ,
√
n((β̃11 − β11)>,0>)>]− Ãn[τ,

√
n((β̃11 − β11)>, β̃>12)>]− n

d∑
j=d∗+1

pλ(|β̃j|)

=
1

2

√
n((β̃11 − β11)>,0>)V

√
n((β̃11 − β11)>,0>)> + W>

n

√
n((β̃11 − β11)>,0>)>

−1

2

√
n((β̃11 − β11)>, β̃>12)V

√
n((β̃11 − β11)>, β̃>12)> −W>

n

√
n((β̃11 − β11)>, β̃>12)>

−n
d∑

j=d∗+1

pλ(|β̃j|),

where the last equality follows from the quadratic approximation derived in Lemma C.2, and V and
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Wn are defined in (C.5) and (C.6) respectively. Using the facts that
∥∥∥β̃11 − β11

∥∥∥ = Op(n
−1/2) and

0 <
∥∥∥β̃12

∥∥∥ ≤ Cn−1/2, we get that

1

2

√
n((β̃11 − β11)>,0>)V

√
n((β̃11 − β11)>,0>)> = Op(1), (C.20)

1

2

√
n((β̃11 − β11)>, β̃>12)V

√
n((β̃11 − β11)>, β̃>12)> = Op(1) (C.21)

and

W>
n

√
n((β̃11 − β11)>,0>)> −W>

n

√
n((β̃11 − β11)>, β̃>12)> = −

√
n(0>, β̃>12)Wn = Op(

√
n), (C.22)

where the last equality follows from the asymptotic normality result derived in Lemma C.3. Therefore,

using relation n
∑d

j=d∗+1 pλ(|β̃j|) ≥ nλ
(∑d

j=d∗+1 |β̃j|
)

[1+o(1)], (see Wu and Liu 2009, proof of Lemma

1, online supplement, page S24, for the proof), relations (C.20), (C.21), (C.22) and the facts that (a)

√
nλ → ∞ and (b) the term nλ =

√
n(
√
nλ) is of higher order than

√
n, we get that the difference

Ân[τ,
√
n((β̃11 − β11)>,0>)>] − Ân[τ,

√
n((β̃11 − β11)>, β̃>12)>] is dominated by −n

∑d
j=d∗+1 pλ(|β̃j|).

Hence, (C.19) follows.

Finally, we will show the asymptotic normality part. The
√
n-consistency of β̂ yields that there

exists a
√
n-consistent minimizer β̂11 of Ân[τ,

√
n((b11−β11)>,0>)>]. Thus, define γ̂11 =

√
n(β̂11−β11)

to be the minimizer of

Ân[τ, (γ>11,0
>)>] = Ãn[τ, (γ>11,0

>)>] + n
d∗∑
j=2

pλ(|γj/
√
n+ βj|). (C.23)

The quadratic approximation derived in Lemma C.2 yields that

Ãn[τ, (γ>11,0
>)>] =

1

2
(γ>11,0

>)V(γ>11,0
>)> + W>

n (γ>11,0
>)> + op(1)

=
1

2
γ>11V11γ11 + W>

n,1γ11 + op(1), (C.24)
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where V11 is defined in (3.1) and

Wn,1 = −n−1/2

n∑
i=1

ρ′τ (Y
∗
i )g′(β>1 Xi|β)[Xi1,−1 − E(X1,−1|β>1 X)],

for Y ∗i = Yi− ĝ(β>1 Xi|β). Therefore, for large n, and using relations (C.17) and (C.24), the objective

function Ân[τ, (γ>11,0
>)>] in (C.23) can be written as

Ân[τ, (γ>11,0
>)>] =

1

2
γ>11V11γ11 + W>

n,1γ11 + op(1) + n
d∗∑
j=2

pλ(|βj|),

where the last term does not depend on γ11. Thus, for large n, the minimizer γ̂11 is only op(1) away

from γ̂∗11 = V−1
11 Wn,1. Therefore, the asymptotic normality of Wn,1, which is a direct consequence of

Lemma C.3, yields
√
n(β̂11 − β11)

d→ N (0, τ(1− τ)V−1
11 Σ11V−1

11 ), where Σ11 is defined in (3.2).
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