Online Supplementary Appendix C for "Variable Selection in Heteroscedastic Single Index Quantile Regression" by Eliana Christou and Michael G. Akritas.

Lemma C. 1 Assume that for some $r>2, \mathrm{E}\left|Q_{\tau}(Y \mid \mathbf{X})\right|^{r}<\infty$ and $\sup _{t \in \mathfrak{T}_{\mathbf{b}}} \mathrm{E}\left[\left|Q_{\tau}(Y \mid \mathbf{X})\right|^{r} \mid \mathbf{b}_{1}^{\top} \mathbf{X}=\right.$ $t] f_{\mathbf{b}}(t)<\infty$ holds for all $\mathbf{b} \in \Theta$, where $\mathfrak{T}_{\mathbf{b}}=\left\{t: t=\mathbf{b}_{1}^{\top} \mathbf{x}, \mathbf{x} \in \mathcal{X}_{0}\right\}, \mathcal{X}_{0}$ is the compact support of \mathbf{X}, and $f_{\mathbf{b}}$ is the density of $\mathbf{b}_{1}^{\top} \mathbf{X}$. Moreover, assume that $Q_{\tau}(Y \mid \mathbf{x})$ is in $H_{s}\left(\mathcal{X}_{0}\right)$ for some s with $[s] \leq k$, where $H_{s}\left(\mathcal{X}_{0}\right)$ is defined in Appendix A and k is the order of the local polynomial conditional quantile estimators $\widehat{Q}_{\tau}\left(Y \mid \mathbf{X}_{i}\right)$ and $\widehat{Q}_{\tau}^{V S}\left(Y \mid \mathbf{X}_{i}\right)$ (used in 2.3) and (2.6), respectively).

1. Under Assumptions GS1-GS2 and Assumptions A1-A5 given in Appendix A,

$$
\sup _{\mathbf{b} \in \Theta, t \in \mathfrak{T}_{\mathbf{b}}}\left|\widehat{g}^{N W}(t \mid \mathbf{b})-g(t \mid \mathbf{b})\right|=O_{p}\left(a_{n}^{*}+a_{n}+h^{2}\right),
$$

where $\widehat{g}^{N W}(t \mid \mathbf{b})$ is defined in 2.3), $a_{n}^{*}=(\log n / n)^{s /(2 s+d)}$, and $a_{n}=[\log n /(n h)]^{1 / 2}$.
2. Under the sparsity assumption, Assumptions GS1-GS3, Assumptions A1-A7 given in Appendix A, and the conditions $n h^{4}=o(1)$, where h is the bandwidth used in (2.6), $\lambda_{1} \rightarrow 0$ and $\sqrt{n} \lambda_{1} \rightarrow$ ∞ as $n \rightarrow \infty$, where λ_{1} is the tuning parameter used in (2.4,

$$
\sup _{\mathbf{b} \in \Theta, t \in \mathfrak{T}_{\mathbf{b}}}\left|\widehat{g}_{V S}^{N W}(t \mid \mathbf{b})-g(t \mid \mathbf{b})\right|=O_{p}\left(a_{n}^{* *}+a_{n}+h^{2}\right),
$$

where $\widehat{g}_{V S}^{N W}(t \mid \mathbf{b})$ is defined in 2.6), and $a_{n}^{* *}=(\log n / n)^{s /\left(2 s+d^{*}\right)}$.

Proof. The proof uses the same steps as those in the proof of Proposition 3.1 of Christou and Akritas (2016). We outline here the basic steps.

Let $\widehat{g}(t \mid \mathbf{b})$ denote either $\widehat{g}^{N W}(t \mid \mathbf{b})$, defined in 2.3), or $\widehat{g}_{V S}^{N W}(t \mid \mathbf{b})$, defined in 2.6. Also, let $\widehat{Q}_{\tau}^{*}(Y \mid \mathbf{x})$ denote either $\widehat{Q}_{\tau}(Y \mid \mathbf{x})$ or $\widehat{Q}_{\tau}^{V S}(Y \mid \mathbf{x})$; see Section 2 . Set $K_{h}(\cdot)=K(\cdot / h)$, and write $\widehat{g}(t \mid \mathbf{b})=$ $\widehat{\Psi}(t \mid \mathbf{b}) / \widehat{f}_{\mathbf{b}}(t)$, where $\widehat{\Psi}(t \mid \mathbf{b})=(n h)^{-1} \sum_{i=1}^{n} \widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right) K_{h}\left(t-\mathbf{b}_{1}^{\top} \mathbf{X}_{i}\right)$ and $\widehat{f}_{\mathbf{b}}(t)=(n h)^{-1} \sum_{i=1}^{n} K_{h}\left(t-\mathbf{b}_{1}^{\top} \mathbf{X}_{i}\right)$.

For the denominator, we use Theorem 6 of Hansen (2008) [take his $\beta=\infty$ and the mixing coefficients as $\alpha_{m}=0$] to obtain

$$
\begin{equation*}
\sup _{\mathbf{b} \in \Theta, t \in \mathfrak{T}_{\mathbf{b}}}\left|\widehat{f}_{\mathbf{b}}(t)-f_{\mathbf{b}}(t)\right|=O_{p}\left[\left(\frac{\log n}{n h}\right)^{1 / 2}+h^{2}\right]=O_{p}\left(a_{n}+h^{2}\right) \tag{C.1}
\end{equation*}
$$

For the numerator, we show that $\widehat{\Psi}(t \mid \mathbf{b})$ is consistent estimator of $\Psi(t \mid \mathbf{b})=g(t \mid \mathbf{b}) f_{\mathbf{b}}(t)$, uniformly in $\mathbf{b} \in \Theta$ and $t \in \mathfrak{T}_{\mathbf{b}}$. By letting $\Psi^{*}(t \mid \mathbf{b})=(n h)^{-1} \sum_{i=1}^{n} Q_{\tau}\left(Y \mid \mathbf{X}_{i}\right) K_{h}\left(t-\mathbf{b}_{1}^{\top} \mathbf{X}_{i}\right)$, we can show that

$$
\begin{aligned}
& \left|\widehat{\Psi}(t \mid \mathbf{b})-\Psi^{*}(t \mid \mathbf{b})\right|=\left|\frac{1}{n h} \sum_{i=1}^{n}\left[\widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right)-Q_{\tau}\left(Y \mid \mathbf{X}_{i}\right)\right] K_{h}\left(t-\mathbf{b}_{1}^{\top} \mathbf{X}_{i}\right)\right| \\
\leq & \sup _{1 \leq i \leq n}\left|\widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right)-Q_{\tau}\left(Y \mid \mathbf{X}_{i}\right)\right| \frac{1}{n h} \sum_{i=1}^{n} K_{h}\left(t-\mathbf{b}_{1}^{\top} \mathbf{X}_{i}\right),
\end{aligned}
$$

and

$$
\sup _{\mathbf{b} \in \Theta, t \in \mathfrak{T}_{\mathbf{b}}}\left|\widehat{\Psi}(t \mid \mathbf{b})-\Psi^{*}(t \mid \mathbf{b})\right|= \begin{cases}O_{p}\left(a_{n}^{*}\right), & \text { if } \widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right)=\widehat{Q}_{\tau}\left(Y \mid \mathbf{X}_{i}\right) \tag{C.2}\\ O_{p}\left(a_{n}^{* *}\right), & \text { if } \widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right)=\widehat{Q}_{\tau}^{V S}\left(Y \mid \mathbf{X}_{i}\right)\end{cases}
$$

where the last equality follows from relation (C.1), Assumption A2, and the uniform consistency results for $\widehat{Q}_{\tau}\left(Y \mid \mathbf{X}_{i}\right)$ (cf. Guerre and Sabbah 2012), and for $\widehat{Q}_{\tau}^{V S}\left(Y \mid \mathbf{X}_{i}\right)$ (see Proposition 3.2). Next, Theorem 2 of Hansen (2008) yields $\sup _{\mathbf{b} \in \Theta, t \in \mathfrak{T}_{\mathbf{b}}}\left|\Psi^{*}(t \mid \mathbf{b})-E\left[\Psi^{*}(t \mid \mathbf{b})\right]\right|=O_{p}\left(a_{n}\right)$, where $a_{n}=[\log n /(n h)]^{1 / 2}$, and recalling the notation $\Psi(t \mid \mathbf{b})=g(t \mid \mathbf{b}) f_{\mathbf{b}}(t)$, and using Assumption A4, $\mathrm{E}\left[\Psi^{*}(t \mid \mathbf{b})\right]=\Psi(t \mid \mathbf{b})+$ $O\left(h^{2}\right)$. Thus, $\sup _{\mathbf{b} \in \Theta, t \in \mathfrak{T}_{\mathbf{b}}}\left|\Psi^{*}(t \mid \mathbf{b})-\Psi(t \mid \mathbf{b})\right|=O_{p}\left(a_{n}+h^{2}\right)$ which, together with C.2 yields

$$
\sup _{\mathbf{b} \in \Theta, t \in \mathfrak{T}_{\mathbf{b}}}|\widehat{\Psi}(t \mid \mathbf{b})-\Psi(t \mid \mathbf{b})|= \begin{cases}O_{p}\left(a_{n}^{*}+a_{n}+h^{2}\right) & \text { if } \widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right)=\widehat{Q}_{\tau}\left(Y \mid \mathbf{X}_{i}\right) \tag{C.3}\\ O_{p}\left(a_{n}^{* *}+a_{n}+h^{2}\right), & \text { if } \widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right)=\widehat{Q}_{\tau}^{V S}\left(Y \mid \mathbf{X}_{i}\right)\end{cases}
$$

Therefore, using (C.1), (C.3) and Assumption A2, we get

$$
\left|\frac{\widehat{\Psi}(t \mid \mathbf{b})}{\widehat{f}_{\mathbf{b}}(t)}-g(t \mid \mathbf{b})\right|= \begin{cases}O_{p}\left(a_{n}^{*}+a_{n}+h^{2}\right) & \text { if } \widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right)=\widehat{Q}_{\tau}\left(Y \mid \mathbf{X}_{i}\right) \\ O_{p}\left(a_{n}^{* *}+a_{n}+h^{2}\right), & \text { if } \widehat{Q}_{\tau}^{*}\left(Y \mid \mathbf{X}_{i}\right)=\widehat{Q}_{\tau}^{V S}\left(Y \mid \mathbf{X}_{i}\right)\end{cases}
$$

uniformly in $\mathbf{b} \in \Theta$ and $t \in \mathfrak{T}_{\mathbf{b}}$.
Note: For what follows, $\operatorname{Pr}(\cdot \mid \mathbb{X})$ and $\mathrm{E}(\cdot \mid \mathbb{X})$ will denote the conditional probability and conditional expectation, respectively, on the design matrix \mathbb{X}.

Lemma C. 2 Let $\widehat{g}(t \mid \mathbf{b})$ denote either $\widehat{g}^{N W}(t \mid \mathbf{b})$, defined in (2.3), or $\widehat{g}_{V S}^{N W}(t \mid \mathbf{b})$, defined in (2.6). Define, for any $\gamma \in \mathbb{R}^{d-1}$,

$$
\begin{equation*}
\widetilde{A}_{n}(\tau, \boldsymbol{\gamma})=\sum_{i=1}^{n}\left\{\rho_{\tau}\left[Y_{i}^{*}-\widetilde{g}\left(\mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)\right]-\rho_{\tau}\left(Y_{i}^{*}\right)\right\} \tag{C.4}
\end{equation*}
$$

where $Y_{i}^{*}=Y_{i}-\widehat{g}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$ and $\widetilde{g}\left(\mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)=\widehat{g}\left[(\boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta})_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}\right]-\widehat{g}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$, for $(\boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta})_{1}=\left(1,(\boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta})^{\top}\right)^{\top}$. Then, under the assumptions of Lemma C.1, Assumptions A6 and A7 given in Appendix A, and the condition $n h^{4}=o(1)$, the following quadratic approximation holds uniformly in $\boldsymbol{\gamma}$ in a compact set, $\widetilde{A}_{n}(\tau, \boldsymbol{\gamma})=(1 / 2) \boldsymbol{\gamma}^{\top} \mathbb{V} \boldsymbol{\gamma}+\mathbf{W}_{n}^{\top} \boldsymbol{\gamma}+o_{p}(1)$, where

$$
\begin{equation*}
\mathbb{V}=\mathrm{E}\left\{\left[g^{\prime}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X} \mid \boldsymbol{\beta}\right)\right]^{2}\left[\mathbf{X}_{-1}-\mathrm{E}\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]\left[\mathbf{X}_{-1}-\mathrm{E}\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]^{\top} f_{\epsilon \mid \mathbf{X}}(0 \mid \mathbf{X})\right\} \tag{C.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{W}_{n}=-n^{-1 / 2} \sum_{i=1}^{n} \rho_{\tau}^{\prime}\left(Y_{i}^{*}\right) g^{\prime}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)\left[\mathbf{X}_{i,-1}-\mathrm{E}\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right] \tag{C.6}
\end{equation*}
$$

for $g^{\prime}(t \mid \mathbf{b})=(\partial / \partial t) g(t \mid \mathbf{b})$, and \mathbf{X}_{-1} the $(d-1)$-dimensional vector consisting of coordinates $2, \ldots, d$ of \mathbf{X}.

Proof. The proof uses the same steps as those in the proof of Lemma C. 6 of Christou and Akritas (2016). We outline here the basic steps.

Define H to be a class of bounded functions $\eta: \mathbb{R}^{d} \rightarrow \mathbb{R}$, whose value at $\left(t, \boldsymbol{\beta}^{\top}\right)^{\top} \in \mathbb{R}^{d}$ can be written as $\eta(t \mid \boldsymbol{\beta})$, in the non-separable space $l^{\infty}(t, \boldsymbol{\beta})=\left\{\left(t, \boldsymbol{\beta}^{\top}\right)^{\top}: \mathbb{R}^{d} \rightarrow \mathbb{R}:\|\eta\|_{(t, \boldsymbol{\beta})}:=\right.$ $\left.\sup _{\left(t, \boldsymbol{\beta}^{\top}\right)^{\top} \in \mathbb{R}^{d}}|\eta(t \mid \boldsymbol{\beta})|<\infty\right\}$, and having bounded and continuous partial derivatives, where the first and second derivatives with respect to t exist and are bounded. Thus, H includes $g(t \mid \boldsymbol{\beta})$, as well as $\widehat{g}(t \mid \boldsymbol{\beta})$ for n large enough, almost surely. Define $\widetilde{A}_{n}(\eta, \tau, \boldsymbol{\gamma})=\sum_{i=1}^{n}\left\{\rho_{\tau}\left[e_{i}(\boldsymbol{\beta}, \eta)-\widetilde{\eta}\left(\mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)\right]-\right.$
$\left.\rho_{\tau}\left[e_{i}(\boldsymbol{\beta}, \eta)\right]\right\}$, where $e_{i}(\boldsymbol{\beta}, \eta)=Y_{i}-\eta\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$ and $\widetilde{\eta}\left(\mathbf{X}_{i} \mid \gamma / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)=\eta\left[(\gamma / \sqrt{n}+\boldsymbol{\beta})_{1}^{\top} \mathbf{X}_{i} \mid \gamma / \sqrt{n}+\right.$ $\boldsymbol{\beta}]-\eta\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$, and write $\widetilde{A}_{n}(\eta, \tau, \boldsymbol{\gamma})$ as

$$
\begin{equation*}
\mathrm{E}\left[\widetilde{A}_{n}(\eta, \tau, \gamma) \mid \mathbb{X}\right]-\sum_{i=1}^{n}\left\{\rho_{\tau}^{\prime}\left[e_{i}(\boldsymbol{\beta}, \eta)\right]-\mathrm{E}\left\{\rho_{\tau}^{\prime}\left[e_{i}(\boldsymbol{\beta}, \eta)\right] \mid \mathbb{X}\right\}\right\} \widetilde{\eta}\left(\mathbf{X}_{i} \mid \gamma / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)+R_{n}(\eta, \tau, \boldsymbol{\gamma}) \tag{C.7}
\end{equation*}
$$

where \mathbb{X} denotes the design matrix, and $R_{n}(\eta, \tau, \gamma)$ is the remainder term defined by (C.7). Using the same steps as in the proof of Lemma C. 6 of Christou and Akritas (2016), we can show that

$$
\begin{align*}
\mathrm{E}\left[\widetilde{A}_{n}(\eta, \tau, \boldsymbol{\gamma}) \mid \mathbb{X}\right]= & -\sum_{i=1}^{n} \mathrm{E}\left\{\rho_{\tau}^{\prime}\left[e_{i}(\boldsymbol{\beta}, \eta)\right] \mid \mathbb{X}\right\} \widetilde{\eta}\left(\mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right) \\
& +\frac{1}{2} \sum_{i=1}^{n}\left[\widetilde{\eta}\left(\mathbf{X}_{i} \mid \gamma / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)\right]^{2} \varphi^{\prime \prime}\left[g\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)-\eta\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right) \mid \mathbb{X}\right]+o_{p}(1) \tag{C.8}
\end{align*}
$$

uniformly in $\eta \in H$. Following, using the Uniform Law of Large Numbers for Triangular Arrays (Jennrich, 1969), we can show that $\sup _{\eta \in H}\left|R_{n}(\eta, \tau, \gamma)\right|=o_{p}(1)$, where $R_{n}(\eta, \tau, \gamma)$ is defined in (C.7).

Next, substituting the expression of $\mathrm{E}\left[\widetilde{A}_{n}(\eta, \tau, \gamma) \mid \mathbb{X}\right]$ derived in (C.8), to relation C.7) and using the fact that $\sup _{\eta \in H}\left|R_{n}(\eta, \tau, \gamma)\right|=o_{p}(1)$, we get, uniformly in $\eta \in H$,

$$
\begin{align*}
\widetilde{A}_{n}(\eta, \tau, \boldsymbol{\gamma})= & \frac{1}{2} \sum_{i=1}^{n}\left[\widetilde{\eta}\left(\mathbf{X}_{i} \mid \gamma / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)\right]^{2} \varphi^{\prime \prime}\left[g\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)-\eta\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right) \mid \mathbb{X}\right] \\
& -\sum_{i=1}^{n} \rho_{\tau}^{\prime}\left[e_{i}(\boldsymbol{\beta}, \eta)\right] \widetilde{\eta}\left(\mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)+o_{p}(1) \tag{C.9}
\end{align*}
$$

Since expression (C.9) holds uniformly in $\eta \in H$, where the class H includes \widehat{g}, we substitute η with \widehat{g}. Using (a) the fact that $\widetilde{A}_{n}(\widehat{g}, \tau, \gamma)$ reduces to $\widetilde{A}_{n}(\tau, \gamma)$ defined in C.4, (b) relation

$$
\sum_{i=1}^{n} \widetilde{g}\left(\mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)=\sum_{i=1}^{n}\left\{g\left[(\boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta})_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}\right]-g\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)\right\}+o_{p}\left(n^{-1 / 2}\right)
$$

follows from Lemma C. 5 of Christou and Akritas (2016), and (c) relation

$$
\begin{aligned}
g\left[(\boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta})_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\gamma} / \sqrt{n}+\boldsymbol{\beta}\right]-g\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right) & =\left.\frac{\boldsymbol{\gamma}}{\sqrt{n}} \nabla_{\mathbf{b}} g\left(\mathbf{b}_{1}^{\top} \mathbf{X}_{i} \mid \mathbf{b}\right)\right|_{\mathbf{b}=\boldsymbol{\beta}}+O_{p}\left(n^{-1}\right) \\
& =\frac{\gamma}{\sqrt{n}} g^{\prime}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)\left[\mathbf{X}_{i,-1}-E\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]
\end{aligned}
$$

where the last equality follows under the Single Index model, we get $\widetilde{A}_{n}(\tau, \boldsymbol{\gamma})=(1 / 2) \boldsymbol{\gamma}^{\top} \mathbb{V} \boldsymbol{\gamma}+\mathbf{W}_{n}^{\top} \boldsymbol{\gamma}+$ $r_{n}(\tau, \boldsymbol{\gamma})$, where $r_{n}(\tau, \boldsymbol{\gamma})=o_{p}(1)$. Finally, noting that \mathbf{W}_{n} has bounded second moment (see Lemma C.3) and hence is stochastically bounded, the convex function $\widetilde{A}_{n}(\tau, \boldsymbol{\gamma})-\mathbf{W}_{n}^{\top} \boldsymbol{\gamma}$ converges in probability to the convex function $(1 / 2) \boldsymbol{\gamma}^{\top} \mathbb{V} \boldsymbol{\gamma}$. Therefore, it follows from the convexity lemma (Pollard, 1991) that for any compact set $K, \sup _{\gamma \in K}\left|r_{n}(\tau, \gamma)\right|=o_{p}(1)$. Thus, the quadratic approximation to the convex function $\widetilde{A}_{n}(\tau, \gamma)$ holds uniformly for γ in a compact set.

Lemma C. 3 Let $\mathbf{W}_{n}^{*}=-n^{-1 / 2} \mathbf{W}_{n}$, where \mathbf{W}_{n} defined in C.6. Then, under the assumptions of Lemma C.2,

$$
\operatorname{Pr}\left\{\sqrt{n}\left\{[\tau(1-\tau)]^{-1 / 2} \Sigma^{-1} \mathbf{W}_{n}^{*}\right\} \leq t \mid \mathbb{X}\right\}=\Phi(t)+o_{p}(1),
$$

where $\Sigma=\mathrm{E}\left\{\left[g^{\prime}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X} \mid \boldsymbol{\beta}\right)\right]^{2}\left[\mathbf{X}_{-1}-\mathrm{E}\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]\left[\mathbf{X}_{-1}-\mathrm{E}\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]^{\top}\right\}$ and $\Phi(t)$ denotes the standard normal cumulative distribution function.

Proof. The proof uses the same steps as those in the proof of Lemma C. 7 of Christou and Akritas (2016). We outline here the basic steps.

Let H define the class of functions as described in the proof of Lemma C. 2 and define $\mathbf{Z}_{i}(\eta)=$ $\rho_{\tau}^{\prime}\left[e_{i}(\boldsymbol{\beta}, \eta)\right] g^{\prime}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)\left[\mathbf{X}_{i,-1}-\mathrm{E}\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]$, where $e_{i}(\boldsymbol{\beta}, \eta)=Y_{i}-\eta\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$, and let $\mathbf{T}_{i}(\eta)=$ $\mathbf{Z}_{i}(\eta)-\mathrm{E}\left[\mathbf{Z}_{i}(\eta) \mid \mathbb{X}\right]$. Using the Berry-Esseen theorem (Berry 1941, and Esseen 1942), we can show that $n^{-1 / 2} \sum_{i=1}^{n} \mathbf{T}_{i}(\eta)$ converges to a multivariate normal distribution, uniformly in $\eta \in H$; see Christou and Akritas (2016) for details. Specifically, for any $\mathbf{t} \in \mathbb{R}^{d-1}$, and conditionally on the design matrix \mathbb{X},

$$
\left|\operatorname{Pr}\left[\left.\frac{\sum_{i=1}^{n} \mathbf{t}^{\top} \mathbf{T}_{i}(\eta)}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}(\eta)}} \leq t \right\rvert\, \mathbb{X}\right]-\Phi(t)\right| \leq C_{0}\left[\sum_{i=1}^{n} \sigma_{i}^{2}(\eta)\right]^{-3 / 2} \sum_{i=1}^{n} \rho_{i}(\eta)
$$

where $\sigma_{i}^{2}(\eta)=\operatorname{Var}\left[\mathbf{t}^{\top} \mathbf{T}_{i}(\eta) \mid \mathbb{X}\right]$ and $\rho_{i}(\eta)=\mathrm{E}\left[\left|\mathbf{t}^{\top} \mathbf{T}_{i}(\eta)\right|^{3} \mid \mathbb{X}\right]<\infty$. Noting that

$$
\begin{equation*}
\sup _{\eta \in H}\left|\frac{1}{n \sqrt{n}} \sum_{i=1}^{n} \rho_{i}(\eta)\right| \leq \frac{1}{n \sqrt{n}} \sum_{i=1}^{n} \sup _{\eta \in H}\left|\rho_{i}(\eta)\right|=o(1) \tag{C.10}
\end{equation*}
$$

a.s., and

$$
\begin{equation*}
\sup _{\eta \in H}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}(\eta)-\widetilde{v}^{2}(\eta)\right|=o(1) \tag{C.11}
\end{equation*}
$$

a.s., where

$$
\begin{aligned}
\widetilde{v}^{2}(\eta)= & \mathbf{t}^{\top} \mathrm{E}\left\{F_{\epsilon \mid \mathbf{X}}\left[\eta\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X} \mid \boldsymbol{\beta}\right)-g\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X} \mid \boldsymbol{\beta}\right) \mid \mathbf{X}\right]\left\{1-F_{\epsilon \mid \mathbf{X}}\left[\eta\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X} \mid \boldsymbol{\beta}\right)-g\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X} \mid \boldsymbol{\beta}\right) \mid \mathbf{X}\right]\right\}\right. \\
& {\left.\left[g^{\prime}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X} \mid \boldsymbol{\beta}\right)\right]^{2}\left[\mathbf{X}_{-1}-\mathrm{E}\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]\left[\mathbf{X}_{-1}-\mathrm{E}\left(\mathbf{X}_{-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]^{\top}\right\} \mathbf{t} }
\end{aligned}
$$

we have, conditionally on \mathbb{X},

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\left.\frac{\sum_{i=1}^{n} \mathbf{t}^{\top} \mathbf{T}_{i}(\eta)}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}(\eta)}} \leq t \right\rvert\, \mathbb{X}\right]-\Phi(t)\right|=o_{p}(1) \tag{C.12}
\end{equation*}
$$

uniformly in $\eta \in H$. Since (C.12) holds uniformly in $\eta \in H$, it also holds for $\eta=\widehat{g}$, where

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathrm{E}\left[\mathbf{t}^{\top} \mathbf{Z}_{i}(\widehat{g}) \mid \mathbb{X}\right]=o_{p}(1) \text { and } \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}(\widehat{g})=\mathbf{t}^{\top} \tau(1-\tau) \Sigma \mathbf{t}+o_{p}(1) \tag{C.13}
\end{equation*}
$$

Therefore, using C.12, C.13, and Slutsky's theorem, we get that, conditionally on $\mathbb{X}, \sqrt{n} \mathbf{W}_{n}^{*} \xrightarrow{d}$ $\mathcal{N}(0, \tau(1-\tau) \Sigma)$, where the unconditional case follows from the Dominated Convergence theorem and the almost sure convergence of (C.10) and (C.11).

Lemma C. 4 Let $\widehat{g}(t \mid \mathbf{b})$ denote either $\widehat{g}^{N W}(t \mid \mathbf{b})$, defined in (2.3), or $\widehat{g}_{V S}^{N W}(t \mid \mathbf{b})$, defined in (2.6), and let $\widehat{\boldsymbol{\beta}}$ to be

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\arg \min _{\mathbf{b} \in \Theta}\left\{\sum_{i=1}^{n} \rho_{\tau}\left[Y_{i}-\widehat{g}\left(\mathbf{b}_{1}^{\top} \mathbf{X}_{i} \mid \mathbf{b}\right)\right]+n \sum_{j=2}^{d} p_{\lambda}\left(\left|b_{j}\right|\right)\right\} \tag{C.14}
\end{equation*}
$$

where $\mathbf{b}_{1}=\left(1, \mathbf{b}^{\top}\right)^{\top}=\left(1, b_{2}, \ldots, b_{d}\right)^{\top}$, and $\lambda \rightarrow 0$ as $n \rightarrow \infty$. Then, under the assumptions of Lemma C.2, $\widehat{\boldsymbol{\beta}}$ is \sqrt{n}-consistent estimator of $\boldsymbol{\beta}$. Moreover, for $\widehat{\boldsymbol{\beta}}=\left(\widehat{\boldsymbol{\beta}}_{11}^{\top}, \widehat{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top}$, where $\widehat{\boldsymbol{\beta}}_{11}$ is of cardinality $\left(\widehat{d}^{*}-1\right)=\operatorname{card}\left(\left\{j \in(2, \ldots, d): \widehat{\beta}_{j} \neq 0\right\}\right)$, and for $\sqrt{n} \lambda \rightarrow \infty$ as $n \rightarrow \infty$, we have that, with probability tending to one,

1. Sparsity: $\widehat{\boldsymbol{\beta}}_{12}=0$ and
2. Asymptotic Normality: $\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right) \xrightarrow{d} \mathcal{N}\left(0, \tau(1-\tau) \mathbb{V}_{11}^{-1} \Sigma_{11} \mathbb{V}_{11}^{-1}\right)$, where \mathbb{V}_{11} and Σ_{11} are defined in (3.1) and (3.2) respectively.

Proof. To study the asymptotic properties of $\widehat{\boldsymbol{\beta}}$ defined in C.14, we consider an equivalent objective function. Observe that by adding and subtracting the quantity $\widehat{g}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$ in the first part of the objective function (C.14), we get

$$
\begin{equation*}
\sum_{i=1}^{n} \rho_{\tau}\left\{Y_{i}^{*}-\left[\widehat{g}\left(\mathbf{b}_{1}^{\top} \mathbf{X}_{i} \mid \mathbf{b}\right)-\widehat{g}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)\right]\right\}=\sum_{i=1}^{n} \rho_{\tau}\left[Y_{i}^{*}-\widetilde{g}\left(\mathbf{X}_{i} \mid \mathbf{b}, \boldsymbol{\beta}\right)\right] \tag{C.15}
\end{equation*}
$$

where $Y_{i}^{*}=Y_{i}-\widehat{g}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$ and, for any $\boldsymbol{\gamma} \in \mathbb{R}^{d-1}$ such that $\boldsymbol{\gamma}+\boldsymbol{\beta} \in \Theta$, we define $\widetilde{g}\left(\mathbf{X}_{i} \mid \boldsymbol{\gamma}+\boldsymbol{\beta}, \boldsymbol{\beta}\right)=$ $\widehat{g}\left[(\boldsymbol{\gamma}+\boldsymbol{\beta})_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\gamma}+\boldsymbol{\beta}\right]-\widehat{g}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$, where according to the convention used, $(\boldsymbol{\gamma}+\boldsymbol{\beta})_{1}=\left(1,(\boldsymbol{\gamma}+\boldsymbol{\beta})^{\top}\right)^{\top}$. For the sake of convenience in the derivation of the asymptotic results we replace relation (C.15) with $\sum_{i=1}^{n}\left\{\rho_{\tau}\left[Y_{i}^{*}-\widetilde{g}\left(\mathbf{X}_{i} \mid \mathbf{b}, \boldsymbol{\beta}\right)\right]-\rho_{\tau}\left(Y_{i}^{*}\right)\right\}$ and we define the new objective function

$$
\widehat{A}_{n}(\tau, \gamma)=\widetilde{A}_{n}(\tau, \gamma)+n \sum_{j=2}^{d} p_{\lambda}\left(\left|\gamma_{j} / \sqrt{n}+\beta_{j}\right|\right)
$$

where $\boldsymbol{\gamma}=\sqrt{n}(\mathbf{b}-\boldsymbol{\beta})$, and $\widetilde{A}_{n}(\tau, \gamma)$ is defined in (C.4).
For the proof we use the same strategy as in Wu and Liu (2009). To prove the \sqrt{n}-consistency of $\widehat{\boldsymbol{\beta}}$, enough to show that for any given $\delta>0$, there exists a constant C such that

$$
\begin{equation*}
\operatorname{Pr}\left[\inf _{\|\gamma\| \geq C} \widehat{A}_{n}(\tau, \gamma)>\widehat{A}_{n}(\tau, \mathbf{0})\right] \geq 1-\delta, \tag{C.16}
\end{equation*}
$$

since this implies that with probability at least $1-\delta$ there exists a local minimum in the ball $\{\gamma / \sqrt{n}+$ $\boldsymbol{\beta}:\|\gamma\| \leq C\}$. Write

$$
\begin{aligned}
\widehat{A}_{n}(\tau, \gamma)-\widehat{A}_{n}(\tau, \mathbf{0}) & =\widetilde{A}_{n}(\tau, \gamma)-\widetilde{A}_{n}(\tau, \mathbf{0})+n \sum_{j=2}^{d}\left[p_{\lambda}\left(\left|\gamma_{j} / \sqrt{n}+\beta_{j}\right|\right)-p_{\lambda}\left(\left|\beta_{j}\right|\right)\right] \\
& \geq \widetilde{A}_{n}(\tau, \gamma)-\widetilde{A}_{n}(\tau, \mathbf{0})+n \sum_{j=2}^{d^{*}}\left[p_{\lambda}\left(\left|\gamma_{j} / \sqrt{n}+\beta_{j}\right|\right)-p_{\lambda}\left(\left|\beta_{j}\right|\right)\right]
\end{aligned}
$$

where, for large n,

$$
\begin{equation*}
n \sum_{j=2}^{d^{*}}\left[p_{\lambda}\left(\left|\gamma_{j} / \sqrt{n}+\beta_{j}\right|\right)-p_{\lambda}\left(\left|\beta_{j}\right|\right)\right]=0 \tag{C.17}
\end{equation*}
$$

This follows from (a) $\left|\beta_{j}\right|>0$ for $j=2, \ldots, d^{*}$, (b) the SCAD penalty is flat for arguments of magnitude larger than $a \lambda$, and (c) $\lambda \rightarrow 0$. Following, Lemma C. 2 yields that

$$
\begin{equation*}
\widetilde{A}_{n}(\tau, \boldsymbol{\gamma})-\widetilde{A}_{n}(\tau, \mathbf{0})=\frac{1}{2} \boldsymbol{\gamma}^{\top} \mathbb{V} \boldsymbol{\gamma}+\mathbf{W}_{n}^{\top} \boldsymbol{\gamma}+o_{p}(1) \tag{C.18}
\end{equation*}
$$

where \mathbb{V} and \mathbf{W}_{n} are defined in (C.5 and (C.6 respectively, for any γ in a compact subset of \mathbb{R}^{d-1}. Therefore, the difference (C.18) is dominated by the quadratic term $(1 / 2) \boldsymbol{\gamma}^{\top} \mathbb{V} \boldsymbol{\gamma}$ for $\|\boldsymbol{\gamma}\|$ greater than or equal to sufficiently large C. Using (C.17) and C.18, the difference $\widehat{A}_{n}(\tau, \boldsymbol{\gamma})-\widehat{A}_{n}(\tau, \mathbf{0})$ is also dominated by the quadratic term $(1 / 2) \gamma^{\top} \mathbb{V} \gamma$ for $\|\gamma\|$ greater than or equal to sufficiently large C, and (C.16) follows.

Next, we will show the sparsity part. To prove that, with probability tending to one, $\widehat{\boldsymbol{\beta}}_{12}=0$, we will show that for any given $\widetilde{\boldsymbol{\beta}}_{11}$ satisfying $\left\|\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right\|=O_{p}\left(n^{-1 / 2}\right)$ and any constant C,

$$
\begin{equation*}
\widehat{A}_{n}\left[\tau, \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]=\min _{\left\|\widetilde{\boldsymbol{\beta}}_{12}\right\| \leq C n^{-1 / 2}} \widehat{A}_{n}\left[\tau, \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top}\right] \tag{C.19}
\end{equation*}
$$

Write

$$
\begin{aligned}
& \widehat{A}_{n}\left[\tau, \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]-\widehat{A}_{n}\left[\tau, \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top}\right] \\
= & \widetilde{A}_{n}\left[\tau, \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]-\widetilde{A}_{n}\left[\tau, \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top}\right]-n \sum_{j=d^{*}+1}^{d} p_{\lambda}\left(\left|\widetilde{\beta}_{j}\right|\right) \\
= & \frac{1}{2} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right) \mathbb{V} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top}+\mathbf{W}_{n}^{\top} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top} \\
& -\frac{1}{2} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right) \mathbb{V} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top}-\mathbf{W}_{n}^{\top} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top} \\
& -n \sum_{j=d^{*}+1}^{d} p_{\lambda}\left(\left|\widetilde{\beta}_{j}\right|\right),
\end{aligned}
$$

where the last equality follows from the quadratic approximation derived in Lemma C.2, and \mathbb{V} and
\mathbf{W}_{n} are defined in C.5 and C.6 respectively. Using the facts that $\left\|\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right\|=O_{p}\left(n^{-1 / 2}\right)$ and $0<\left\|\widetilde{\boldsymbol{\beta}}_{12}\right\| \leq C n^{-1 / 2}$, we get that

$$
\begin{align*}
& \frac{1}{2} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right) \mathbb{V} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top}=O_{p}(1) \tag{C.20}\\
& \frac{1}{2} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right) \mathbb{V} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top}=O_{p}(1) \tag{C.21}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{W}_{n}^{\top} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top}-\mathbf{W}_{n}^{\top} \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top}=-\sqrt{n}\left(\mathbf{0}^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right) \mathbf{W}_{n}=O_{p}(\sqrt{n}) \tag{C.22}
\end{equation*}
$$

where the last equality follows from the asymptotic normality result derived in Lemma C.3. Therefore, using relation $n \sum_{j=d^{*}+1}^{d} p_{\lambda}\left(\left|\widetilde{\beta}_{j}\right|\right) \geq n \lambda\left(\sum_{j=d^{*}+1}^{d}\left|\widetilde{\beta}_{j}\right|\right)[1+o(1)]$, (see Wu and Liu 2009, proof of Lemma 1, online supplement, page S24, for the proof), relations (C.20, C.21, (C.22) and the facts that (a) $\sqrt{n} \lambda \rightarrow \infty$ and (b) the term $n \lambda=\sqrt{n}(\sqrt{n} \lambda)$ is of higher order than \sqrt{n}, we get that the difference $\widehat{A}_{n}\left[\tau, \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]-\widehat{A}_{n}\left[\tau, \sqrt{n}\left(\left(\widetilde{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \widetilde{\boldsymbol{\beta}}_{12}^{\top}\right)^{\top}\right]$ is dominated by $-n \sum_{j=d^{*}+1}^{d} p_{\lambda}\left(\left|\widetilde{\beta}_{j}\right|\right)$. Hence, (C.19 follows.

Finally, we will show the asymptotic normality part. The \sqrt{n}-consistency of $\widehat{\boldsymbol{\beta}}$ yields that there exists a \sqrt{n}-consistent minimizer $\widehat{\boldsymbol{\beta}}_{11}$ of $\widehat{A}_{n}\left[\tau, \sqrt{n}\left(\left(\mathbf{b}_{11}-\boldsymbol{\beta}_{11}\right)^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]$. Thus, define $\widehat{\boldsymbol{\gamma}}_{11}=\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right)$ to be the minimizer of

$$
\begin{equation*}
\widehat{A}_{n}\left[\tau,\left(\gamma_{11}^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]=\widetilde{A}_{n}\left[\tau,\left(\boldsymbol{\gamma}_{11}^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]+n \sum_{j=2}^{d^{*}} p_{\lambda}\left(\left|\gamma_{j} / \sqrt{n}+\beta_{j}\right|\right) \tag{C.23}
\end{equation*}
$$

The quadratic approximation derived in Lemma C. 2 yields that

$$
\begin{align*}
\widetilde{A}_{n}\left[\tau,\left(\boldsymbol{\gamma}_{11}^{\top}, \mathbf{0}^{\top}\right)^{\top}\right] & =\frac{1}{2}\left(\boldsymbol{\gamma}_{11}^{\top}, \mathbf{0}^{\top}\right) \mathbb{V}\left(\boldsymbol{\gamma}_{11}^{\top}, \mathbf{0}^{\top}\right)^{\top}+\mathbf{W}_{n}^{\top}\left(\boldsymbol{\gamma}_{11}^{\top}, \mathbf{0}^{\top}\right)^{\top}+o_{p}(1) \\
& =\frac{1}{2} \boldsymbol{\gamma}_{11}^{\top} \mathbb{V}_{11} \boldsymbol{\gamma}_{11}+\mathbf{W}_{n, 1}^{\top} \boldsymbol{\gamma}_{11}+o_{p}(1) \tag{C.24}
\end{align*}
$$

where \mathbb{V}_{11} is defined in (3.1) and

$$
\mathbf{W}_{n, 1}=-n^{-1 / 2} \sum_{i=1}^{n} \rho_{\tau}^{\prime}\left(Y_{i}^{*}\right) g^{\prime}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)\left[\mathbf{X}_{i 1,-1}-\mathrm{E}\left(\mathbf{X}_{1,-1} \mid \boldsymbol{\beta}_{1}^{\top} \mathbf{X}\right)\right]
$$

for $Y_{i}^{*}=Y_{i}-\widehat{g}\left(\boldsymbol{\beta}_{1}^{\top} \mathbf{X}_{i} \mid \boldsymbol{\beta}\right)$. Therefore, for large n, and using relations (C.17) and C.24), the objective function $\widehat{A}_{n}\left[\tau,\left(\boldsymbol{\gamma}_{11}^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]$ in C.23) can be written as

$$
\widehat{A}_{n}\left[\tau,\left(\boldsymbol{\gamma}_{11}^{\top}, \mathbf{0}^{\top}\right)^{\top}\right]=\frac{1}{2} \boldsymbol{\gamma}_{11}^{\top} \mathbb{V}_{11} \boldsymbol{\gamma}_{11}+\mathbf{W}_{n, 1}^{\top} \boldsymbol{\gamma}_{11}+o_{p}(1)+n \sum_{j=2}^{d^{*}} p_{\lambda}\left(\left|\beta_{j}\right|\right)
$$

where the last term does not depend on $\boldsymbol{\gamma}_{11}$. Thus, for large n, the minimizer $\widehat{\gamma}_{11}$ is only $o_{p}(1)$ away from $\widehat{\gamma}_{11}^{*}=\mathbb{V}_{11}^{-1} \mathbf{W}_{n, 1}$. Therefore, the asymptotic normality of $\mathbf{W}_{n, 1}$, which is a direct consequence of Lemma C.3. yields $\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{11}-\boldsymbol{\beta}_{11}\right) \xrightarrow{d} \mathcal{N}\left(0, \tau(1-\tau) \mathbb{V}_{11}^{-1} \Sigma_{11} \mathbb{V}_{11}^{-1}\right)$, where Σ_{11} is defined in (3.2).

References

[1] Berry, A. C. (1941). The Accuracy of the Gaussian Approximation to the Sum of Independent Variates. Transactions of the American Mathematical Society 49(1) 122-136.
[2] Christou, E. and Akritas, M. G. (2016). Single index quantile regression for heteroscedastic data. Journal of Multivariate Analysis 150 169-182.
[3] Esseen, C. G. (1942). On the Liapunoff limit of error in the theory of probability. Arkiv for matematik astronomi och fysik A28 1-19.
[4] Guerre, E. and Sabbah, C. (2012). Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econometric Theory 28(01) 87-129.
[5] Hansen, B. (2008). Uniform Convergence Rates for kernel estimation with dependent data. Econometric Theory 24 726-748.
[6] Jennrich, R. I. (1969). Asymptotic Properties of Non-Linear Least Squares Estimators. The Annals of Mathematical Statistics 40 633-646.
[7] Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory 7(2) 186-199.
[8] Wu, Y. and Liu, Y. (2009). Variable Selection in Quantile Regression. Statistica Sinica 19 801-817.

