SUPPLEMENTARY MATERIAL A new12-membered lactone from the stems of Ficus auriculata Tai-Ming Shao^{a,b}, Cai-Juan Zheng^a, Xiao-Bao Li^a, Guang-Ying Chen^a, Xiao-Ping Song^{a*} and Chang-Ri Han^{a,b*} ^aKey Labortory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China: ^bKey Laboratory of Medicinal and Edible Plants Resources of Hainan Province, School of Chemical and Material Engineering, Hainan Institute of Science and Technology, Haikou, P. R. China Abstract: A new lactone ficusine D (1), together with six known compounds (2-7) were isolated from the stems of the Ficus auriculata. The new compound 1 was a rare 12-membered lactone containing a quinone ring skeleton. The structure of the 1 was elucidated by comprehensive spectroscopic data. The relatively and absolute configuration of 1 were elucidated by the ROESY analyses and biogenesis pathway. All compounds were evaluated for their antibacterial activities against six pathogenic bacteria in vitro. Compounds 6 and 7 exhibited antibacterial activities against Bacillus cereus with the MIC values of 2.5 and 5 μ M, respectively. Keywords: Ficus auriculata; Lactone; antibacterial activity * Corresponding author. Tel: 86-898-65889422. Fax: 86-898-65889422. E-mail address: sxp628@126.com, hchr116@126.com 1 ## **List of Supplementary Material** | FigureS1. ¹ H NMR (400 MHz, CD ₃ OD) spectrum of 1 FigureS2. ¹³ C NMR (100 MHz, CD ₃ OD) spectrum of 1 | | | | | | | 3 | |---|------|------|------|---------------------|----------|----|---| | | | | | | | | 3 | | FigureS3. | DEPT | (100 | MHz, | CD ₃ OD) | spectrum | of | 1 | | Figure S4. HSQC (CD ₃ OD) spectrum of 1 | | | | | | | 4 | | Figure S5. HMBC (CD ₃ OD) spectrum of 1 | | | | | | | 5 | | Figure S6. ¹ H- ¹ H COSY (CD ₃ OD) spectrum of 1 | | | | | | | 5 | | Figure S7. ROESY (CD ₃ OD) spectrum of 1 | | | | | | | 6 | | Figure S8. Key HMBC, ¹ H- ¹ HCOSY and ROESY correlations of 1 | | | | | | | 6 | | Figure S9. HRESIMS spectrum of 1 | | | | | | | 7 | | Figure S10. IR spectrum of 1 | | | | | | | 7 | FigureS1. ¹H NMR (400 MHz, CD₃OD) spectrum of 1 FigureS2. ¹³C NMR (100 MHz, CD₃OD) spectrum of 1 FigureS3. DEPT (100 MHz, CD₃OD) spectrum of 1 Figure S4. HSQC (CD₃OD) spectrum of 1 Figure S6. $^{1}\text{H-}^{1}\text{H COSY (CD}_{3}\text{OD)}$ spectrum of 1 Figure S7. ROESY (CD₃OD) spectrum of 1 Figure S8. Key HMBC, ¹H-¹HCOSY and ROESY correlations of 1 Figure S9. HRESIMS spectrum of 1 Figure S10. IR spectrum of 1