Supporting Information

Discovery of a Novel Polyfluoroalkyl Benzenesulfonic Acid around Oilfields in Northern China

Lin Xu,[†] Yali Shi,[†] Chuangxiu Li,^{†, ‡} Xiaowei Song,^{†, #} Zhanfen Qin,[†] Dong Cao,[†]

Yaqi Cai^{†, #, §,}*

[†]State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China

[#]University of Chinese Academy of Sciences, Beijing 100049, China

[‡]Institute of Environmental science and engineering, Qingdao Technological University, Qingdao 266520, China

[§]Institute of Environment and Health, Jianghan University, Wuhan 430056, China

* Corresponding author:

Tel: +86 (10) 62849239; Fax: +86 (10) 62849182; E-mail: caiyaqi@rcees.ac.cn Tables: 5; Figures: 4; Pages: 15

Title Page
Purification process of OBS
Tables
Table S1. Experimental conditions used for electrospray tandem mass
spectrometry
Table S2. The whole method performance for OBS and legacy PFASs, including
extraction efficient, recovery, MLD, MLQ and RSDS6
Table S3 Summary statistics of OBS and legacy PFASs concentrations in surface
water (unit: ng/L)
Table S4. Deaths (cumulative mortality) of Zebrafish and Tadpoles exposed to
each concentrations of OBS and LC50 for Zebrafish and Tadpoles
Table S5. The degradation half-lives of OBS obtained from EPI Suite software
Figures
Figure S1. The synthesis process of OBS
Figure S2. The structure of HFPT and OBS isomers
Figure S3. 19F-NMR spectrometry of OBS standard solutionS13
Figure S4. The chromatograms of OBS commercial product solution and surface
water extract on PFP column
Reference

Purification process of OBS. OBS authentic standard was purified from commercial OBS product using Autopurification HPLC system (Waters 2767, Milford, Massachusetts, American). The analytes were separated on the Xbridge Prep C18 column (19mm×250mm, 5 μ m). The mobile phase composed 0.1% ammonium bicarbonate in water (m/m, eluent A) and acetonitrile (eluent B) running in the gradient mode. The solvent gradient started at 20% B and then ramped to 65% B by 12.0 min, and then linearly increased to 100% by 25.0 min. The flow rate was set at 20 ml/min. Product solution was prepared at 140 mg/ml, and 500 μ L was injected in each separation cycle. The single-quadruple MS detector was used to direct the fraction collection. White solid crystals were obtained after they were lyophilized. The structure were further validated by an nuclear magnetic resonance spectrometer (19F-NMR, Bruker AVANCE III 400Hz, as shown in Figure S3).

Source temperature: 400°C; gas 1: 50 psi; and gas 2: 40 psi								
Commenced	Parent ion	Daughter	Dwell	Declustering	Entrance	Collision Cell	Collision	Collision Cell Exit
(Q1)	(Q1)	ion (Q3)	time (ms)	Potential (V)	Potential (V)	Ent. Potential (V)	Energy (eV)	Potential (V)
PFBA	212.8	168.8	15	-26	-2.3	-7.0	-11	-8
PFPeA	262.8	218.9	15	-26	-2.5	-8.5	-10	-9.5
PFHxA	312.8	269.0	15	-26	-2.6	-10	-10.5	-7
PFHpA	362.8	319.0	15	-27	-3.3	-12	-12	-8
PFOA	412.8	369.0*	15	-22	-4.0	-35	-21	-15
	412.8	169.0	15	-25	-4.0	-8.0	-21	-8
PFNA	462.8	419.1	15	-30	-3.8	-14	-13	-10
PFDA	512.8	469.1	15	-27	-4	-16	-14	-18
PFUnDA	562.8	519.1	15	-28	-4.3	-17	-14.5	-20
PFDoDA	612.8	569.0	15	-29	-5	-37	-24	-23
PFTrDA	662.8	619.0	15	-31	-4.8	-20	-16	-24
PFTeDA	712.8	669.0	15	-40	-5.0	-18	-18	-20

Curtain gas pressure: 25 psi; collision gas pressure: 3 psi; ion spray voltage: -2000 V;

Table S1. Experimental conditions used for electrospray tandem mass spectrometry.

PFBS	298.8	79.9*	15	-58	-4.5	-13	-55	-8.5
	298.8	99.0	15	-57	-5.5	-13	-42	-7.5
PFHxS	398.8	79.9*	15	-64	-9.5	-15	-75	-9
	398.8	99.0	15	-62	-9	-14	-51	-8
PFOS	498.8	79.9*	15	-80	-9	-20	-90	-10
	498.8	99.0	15	-78	-8.5	-19	-68	-9
OBS	603.1	172.0*	15	-120	-10	-15	-45	-9
	603.1	465.0	15	-120	-10	-15	-50	-15
13C4 PFBA	216.9	171.9	15	-25	-2.4	-7.5	-11	-8
13C4 PFOA	416.8	372.1	15	-26	-3.5	-36	-21	-15
13C2PFDoDA	614.8	570.0	15	-32	-5	-19	-15	-22
13C4 PFOS	502.8	79.9	15	-80	-9	-19	-90	-10

*quantification ion

Compound	Internal standard	Extraction Efficient (%,mean±SD, n=5)	Recovery (%, mean±SD, n=5)	MLD (ng/L)	MLQ (ng/L)	RSD (%)
PFBA	¹³ C ₄ PFBA	86±5.6	96±5.9	0.09	0.27	6.5
PFPeA	¹³ C ₄ PFBA	104±5.4	110±5.5	0.22	0.65	5.2
PFHxA	¹³ C ₄ PFOA	117±4.5	106±7.0	0.05	0.14	3.8
PFHpA	¹³ C ₄ PFOA	120±5.2	105±4.7	0.02	0.05	4.3
PFOA	¹³ C ₄ PFOA	119±3.7	98±7.0	0.14	0.42	3.1
PFNA	¹³ C ₄ PFOA	114 ± 4.0	89±7.3	0.12	0.35	3.5
PFDA	¹³ C ₄ PFOA	101±5.5	99±4.9	0.08	0.23	5.5
PFUnDA	¹³ C ₂ PFDoDA	93±4.0	91±1.8	0.09	0.28	4.3
PFDoDA	¹³ C ₂ PFDoDA	85±5.4	101±7.9	0.06	0.12	6.4
PFTrDA	¹³ C ₂ PFDoDA	80±4.0	93±9.7	0.06	0.19	5.0
PFTeDA	¹³ C ₂ PFDoDA	70±4.1	80±9.1	0.05	0.16	5.9
PFBS	¹³ C ₄ PFOS	110±5.0	107±6.4	0.05	0.15	4.5

Table S2. The whole method performance for OBS and legacy PFASs, including extraction efficient, recovery, MLD, MLQ and RSD

PFHxS	¹³ C ₄ PFOS	108 ± 4.2	109±6.1	0.02	0.06	3.9
PFOS	¹³ C ₄ PFOS	101±2.8	98±4.7	0.02	0.06	2.8
OBS	¹³ C ₄ PFOS	89±7.5	86±3.7	0.32	0.96	8.4
¹³ C ₄ PFBA	/	86±5.7	/	/	/	6.7
¹³ C ₄ PFOA	/	118±6.0	/	/	/	5.1
¹³ C ₂ PFDoDA	/	83±5.4	/	/	/	6.5
¹³ C ₄ PFOS	/	101±5.8	/	/	/	5.8

		OBS	PFOS	PFBS	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA
	Min	<mlq< td=""><td><mlq< td=""><td><mlq< td=""><td>7.7</td><td>0.73</td><td>1.4</td><td>2.4</td><td>2.2</td><td>0.68</td></mlq<></td></mlq<></td></mlq<>	<mlq< td=""><td><mlq< td=""><td>7.7</td><td>0.73</td><td>1.4</td><td>2.4</td><td>2.2</td><td>0.68</td></mlq<></td></mlq<>	<mlq< td=""><td>7.7</td><td>0.73</td><td>1.4</td><td>2.4</td><td>2.2</td><td>0.68</td></mlq<>	7.7	0.73	1.4	2.4	2.2	0.68
	Max	19	24	9.6	86	40	15	14	46	11
DC	Mean	6.9	3.7	3.0	31	12	5.0	5.4	12	2.3
	Median	5.5	0.23	2.0	18	4.1	3.8	3.6	5.5	1.0
	Min	9.9	0.07	<mlq< td=""><td>11</td><td>1.7</td><td>2.1</td><td>2.3</td><td>4.0</td><td>0.99</td></mlq<>	11	1.7	2.1	2.3	4.0	0.99
NOE	Max	1.1×10^{2}	4.4	0.55	80	52	7.7	8.2	13	3.2
NOF	Mean	50	0.81	0.11	27	11	4.6	4.5	6.8	2.1
	Median	57	0.37	0.06	21	3.7	4.7	3.5	5.2	2.0
	Min	10	0.65	<mlq< td=""><td>3.0</td><td>0.67</td><td>1.6</td><td>1.9</td><td>2.7</td><td>0.58</td></mlq<>	3.0	0.67	1.6	1.9	2.7	0.58
OOE	Max	3.2×10^{3}	1.5×10^{2}	19	2.4×10^{2}	1.8×10^{2}	42	23	28	5.2
UUF	Mean	5.6×10^{2}	14	5.0	37	23	9.2	6.6	12	2.4
	Median	2.3×10^{2}	2.3	1.4	20	7.3	4.3	4.2	9.6	2.1

Table S3. Summary statistics of OBS and legacy PFASs concentrations in surface water (unit: ng/L)

Group	Time (h)	Zebrafish (n=30)	Tadpoles (n=30)
(mg/L)	Time (n)	Deaths (Mortality / %)	Deaths (Mortality / %)
0(0)*	24	0 (0)	0 (0)
	48	0 (0)	0 (0)
	72	0 (0)	0 (0)
	96	0 (0)	0 (0)
11.3 (13.7)	24	0 (0)	0 (0)
	48	0 (0)	0 (0)
	72	0 (0)	0 (0)
	96	0 (0)	0 (0)
14.5 (19.2)	24	0 (0)	0 (0)
	48	0 (0)	0 (0)
	72	0 (0)	0 (0)
	96	0 (0)	0 (0)
18.9 (26.9) 24		0 (0)	10 (33.3)
	48	0 (0)	12 (40)
	72	0 (0)	13 (43.3)
	96	0 (0)	18 (60)
24.6 (37.6)	24	6 (20)	30 (100)
	48	8 (26.7)	30 (100)
	72	9 (30)	30 (100)
	96	9 (30)	30 (100)
32 (52.7)	24	30 (100)	30 (100)
	48	30 (100)	30 (100)
	72	30 (100)	30 (100)
	96	30 (100)	30 (100)
LC 50 (mg/L)		25.5	28.4

Table S4. Deaths (cumulative mortality) of Zebrafish and Tadpoles exposed toeach concentrations of OBS and LC50 for Zebrafish and Tadpoles

*exposed concentrations for Zebrafish (Frog tadpoles)

	Half-life in	Half-life in	Half-life in	Half-life in	Persistence
	air (h)	water (h)	soil (h)	sediment (h)	time
OBS-Na	4.21	4.32×10^{3}	8.64×10^{3}	3.89×10^4	9.98×10^3 h
OBS-H	4.19	4.32×10^{3}	8.64×10^{3}	3.89×10^4	9.61×10^3 h
PFOS-Na	1.83×10^{5}	4.32×10^{3}	8.64×10^{3}	3.89×10^4	8.65×10^3 h
PFOS-H	1.83×10^{3}	4.32×10^{3}	8.64×10^{3}	3.89×10^4	4.04×10^3 h

Table S5. The degradation half-lives of OBS obtained from EPI Suite software

¹ Synthesis 1:

^{1, 2} Synthesis 2:

Figure S1. The synthesis process of OBS

Figure S2. The structure of HFPT and OBS isomers

Figure S3. 19F-NMR spectrometry of OBS standard solution

Figure S4. The chromatograms of OBS commercial product solution and surface water extract on PFP column

Reference:

1. Chen, L.; Shi, H.; Wu, H.; Xiang, J. Synthesis and combined properties of novel fluorinated anionic surfactant, *Colloi. Surface. A* **2011**, 384, 331-336

2. Sha, M.; Xing, P.; Jiang, B. Strategies for synthesizing non-bioaccumulable alternatives to PFOA and PFOS, *Chinese Chem. Lett.* **2015**, 26, 491-498