In-vitro release kinetic analysis results for selected formula gel (SF-gel) | Release
mechanism | Zero order | First order | Second order | Third order | Higuchi diffusion | |-------------------------------|--|---------------------------|--|---------------------------------------|---| | Equation | $C_{t} = C_{0} - K t$ | $\ln C_t = \ln C_0 - K t$ | $\frac{x}{a(a-x)} = kt$ | $\frac{3ax - x^2}{2a^2 (a-x)^2} = kt$ | $Q = \sqrt{D \ t \ (2 \ A - Cs)Cs}$ | | Terms
used | -(C _t) is the concentration of the drug remaining to be released at time (t) -(C ₀) is the initial concentration of the drug -(K) is the release rate constant | | -(X) is the concentration of the drug released at time (t) -(a) is the initial concentration of the drug | | (Q) is the amount of drug released per unit area at time (t) (D) is the diffusion coefficient (A) is the amount of drug present in the matrix per unit volume (Cs) is the drug solubility in the matrix. | | Obtained R ² value | 0.6525 | 0.5368 | 0.4280 | 0.3384 | 0.849885 | Relation between shear rate and shear stress of SF-gel (Power law plot) ## Curves for description of the non –Newtonian system Bingham's plot ## Casson's plot Carreau's plot