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S1 Dataset

We consider data collected in the Copenhagen Networks Study, spanning years between 2013 and
2015. The data has been collected from a densely-connected freshman population of approximately
1 000 students at a large European university (Technical University of Denmark) and contains high-
resolution traces including close-proximity interactions, telecommunication, online social networks,
and geographical location. Here, densely-connected refers to the high frequency of physical prox-
imity contacts as well as online communication between the individuals. Majority of the data has
been collected with custom-built application installed on smartphones provided to the participants
(Google Nexus 4). Full details of the study can be found in Ref. [1].
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Network Vactive Edynamic Estatic 〈k〉dynamic 〈k〉static

Full-range proximity 532 2 670 547 69 055 1.245 259.6
Short-range proximity 518 428 481 20 690 0.200 77.78
Facebook 410 3 321 1 261 0.007 4.741
Call 345 2 134 354 0.004 1.331

Table 1: Basic statistics of the physical proximity and social networks: active individuals (Vactive),
those having at least one link; total number of temporal links (Edynamic); number of diads or
static links (Estatic); dynamic degree (〈k〉dynamic), that is the average degree for single time bins,
averaged over all time bins; static degree (〈k〉static). Average degrees are calculated using the total
population size, i.e., Vtotal = 532.

All metrics are calculated over the month February 2014.

In this manuscript we select individuals with a data quality of at least 60% during period we
focus on (February 2014), defined by the time coverage of the Bluetooth scans. Data quality is
calculated by binning all Bluetooth scans (that are used for inferring physical proximity interac-
tions) and removing participants that have appeared in scans in less than 60% of the total bins
(i.e., 4838 out of 8064 time bins). This results in a population of 532 individuals. Using Bluetooth,
call detail records (CDRs), and Facebook feed data, we construct four distinct networks of inter-
actions between the selected individuals. We have explored the effects of subsampling the dataset
elsewhere[2] and find that the dataset is robust to subsampling (within reasonable limits)

S1.1 Network creation

Physical proximity networks are built using Bluetooth scans between devices. Each time the device
ID of participant i is listed in a Bluetooth scan of the device of participant j at time t, there is a
link γijt = s between the corresponding participants, where s denotes the received signal strength
indicator (RSSI). From the raw counts, we build temporally-binned contacts with bin size of 5
minutes, such that if there is any observation in the n-th time bin, we add a link. As we do not
expect false positives in a Bluetooth scan, all edges are undirected even if they are observed in
only one direction. We also extend local star-like graphs to cliques, to avoid missing links in case
of a single (or very few) devices reporting data in particular time bin. Such pre-processing results
in physical proximity network capturing interactions at the distance of 10 − 15 meters, which we
denote full-range network. The network is described by a binary-valued adjacency matrix Ai×j×t
with aijt = 1 when interaction is present and aijt = 0 otherwise. We also create short-range
network by thresholding the links based on their RSSI values, i.e., we restrict the links only to
those for which γijt > s0 with s0 = −75 dB. It has been shown that this value corresponds to
a distance up to approximately 1m [3, 4]. Thus, we create two types of proximity networks, one
with full-range interactions and one with only very close proximity events. This constraint on the
signal strength results in a more sparse and tree-like network (18% of the original interactions are
present after thresholding).

Digital social networks, corresponding to social behavior and social ties, are based on calls and
Facebook activity. Each call between two individuals results in a corresponding link in the call
network, and every interaction on Facebook creates a link in the functional Facebook network
(interactions include comments, tags, messages, mentions, posts, etc). Here we do not use the
temporal information in the social networks, i.e., we use networks as aggregated over the month
of interest. We also do not consider directionality of calls nor directionality or type of Facebook
interactions. It is also possible to build other types of networks by including text messages in
addition to calls metadata or using the static friendship links between users (for structural Facebook
graph). However, as we show in the sections Monitoring and Vaccination, these approaches do not
result in significant differences in social monitoring and vaccination. Finally, we summarize the
basic properties for the four networks in the study calculated over February 2014 in Table 1.
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Figure 1: Distribution of Bluetooth based proximity contacts Total temporal coverage of
proximity links versus their average RSSI, that is, the signal strength. Above the horizontal line
are the links that describe contacts of frequent periods with a total length of more than 7 × 28
hours. To the left from the vertical lines lie the links that correspond to the short-range interactions
(RSSI > −75 dB).

S1.2 Limitations of physical proximity contacts

As Bluetooth signals can pass through walls, some fraction of the contact networks built from the
Bluetooth scans are expected to be false contacts, as they are not able to transmit real physical
diseases. To address this problem, we consider the signal strength (RSSI) of the links: it’s feasible
to assume that links passing through walls have a vanishing strength irrespective of the actual
distance. Therefore, in the short-range network we don’t expect fake contacts as it includes only
links with a certain high signal strength. In case of full-range network, weak links are more
common. However, from the simulation perspective those weak links have a relatively high impact
on the spread that are also frequently re-appearing, i.e., signals corresponding to dorm walls. To
investigate these links, in Fig. 1 we plot the total time coverage of the links versus their average
signal strength. Signals crossing dormitory walls are located in the upper-left corner, i.e., the
frequent weak links, however, as the figure shows, these links are rare and they cover a negligible
fraction of the total temporal links.

Furthermore, the majority of infections take place during lunch breaks, classes and social events
where individuals are located in the same closed area.

S1.3 Target group selection

For the epidemic monitoring and vaccination, we construct target groups based on different types
of ranking: random, colocation, and social.

In some cases, ranking n individuals does not result in a well-defined order, for example, when
the centrality of two or more individuals is the same. In case of such ties we randomly select
individuals from the ranked list of individuals. For example, let us assume we can select a group
of 10 individuals where the last two persons in the group have the same centrality as with 5 others
among the rest of the population. Then after selecting the 8 individuals with distinct centralities,
we randomly pick the remaining 2 people from the 5 + 2 = 7 with tied centrality-scores. In each
of these cases, we averaged the results over 10 groups with randomly sampled tied centralities as
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described above.
For colocation groups, we consider the aggregated weight of individuals in the proximity net-

works. For each participant we calculate wi =
∑

j,t aijt, that is, the total time (expressed in
5-minute bins) spent in the proximity of others. Note that in this case, each temporal link is
considered separately, thus someone spending a given amount of time in a large group has higher
weight than that of spending the same time in a small group. After ranking individuals by their
weight, we select the top n individuals from the population as our target group. As shown in
Ref. [5], in case of epidemic monitoring the colocation-based target group performs close to the
optimal strategy achieved with a greedy algorithm. Vaccination of the colocation-based group is
not strictly optimal, since it does not use the full temporal information. This group, however,
approximates vaccination performance in the “full information” scenario very well [6]. To keep the
terminology as simple as possible, we refer to the colocation strategy as optimal.

Although during vaccination the colocation-based group is not strictly optimal considering
that no temporal information is utilized, it provides a reasonable upper bound of the vaccination
performance with access to full information about close-proximity interactions. Keeping the above
in mind, we refer to the colocation strategy as optimal.

Social target groups are based purely on information extracted from the social networks, with
the assumption that those networks describe, at a fundamental level, social structure of the pop-
ulation. In order to assess the social role and importance of an individual, we calculate their
centrality in the aggregated social networks, rank the population by the centrality, and pick the
n most central individuals. The results in the manuscript are reported with closeness centrality,
however, the exact centrality used does not affect the findings qualitatively. Similarly, even if link
weights (i.e., the number of contacts between individuals) are considered, the corresponding results
do not change and we do not observe significant gain in performance, suggesting that the extent
of the ego-network is more relevant than the strength of the specific links.

In some cases, ranking n individuals does not result in a well-defined order, for example, when
the centrality of two or more individuals is the same. In case of such ties we randomly select
individuals from the ranked list of individuals. For example, let us assume we can select a group
of 10 individuals where the last two persons in the group have the same centrality as with 5 others
among the rest of the population. Then after selecting the 8 individuals with distinct centralities,
we randomly pick the remaining 2 people from the 5 + 2 = 7 with tied centrality-scores In each
of these cases, we averaged the results over 10 groups with randomly sampled tied centralities as
described above.

S1.4 Testing for quality bias

We perform a quality check on the data to ensure that the reported results are not simply a
consequence of quality bias. We test if individuals with high-quality data (those having a high
temporal coverage in Bluetooth scans) are also the ones that have many calls or increased activity
on Facebook. As Bluetooth scanning happens passively on the phones and we consider data
quality based on the number of scans (regardless whether they discovered other participants of the
study or not), we expect no correlation between how socially active the participants are and their
data quality. We plot call and Facebook event counts for each user versus their corresponding
coverage of Bluetooth data, as shown in Fig. 2. For the comparison, we plot data calculated over
a complete year and show both total and internal communications of participants. (for better
visibility, we omitted the top < 10 largely deviating data points). Correlations are low and in
many cases are not significant: r(w, ccall) = −0.0343(0.4286), r(w, ccall total) = 0.2012(0.0000),
r(w, cFacebook) = 0.0009(0.9833), r(w, cFacebook total) = −0.0282(0.5149). We report Spearman
correlations, not assuming linear relation between the intensity of the two activities (social and
proximity), numbers in the parentheses denote the corresponding p-values. The results indicate
that the image of social activity we get about the population is not driven by data quality variation.
Note that the manuscript, we base our results only on internal phone calls.

As for the social channels, the likelihood of missing data in the Facebook channel is minimal
as the feed of each user has been crawled every 24 hours, providing a high level of redundancy for
data quality. We consider the quality of the call data instead. To investigate whether we perceive
some students that are highly connected in the call network merely due to the quality of recording

4



0

0.2

0.4

0.6

0.8

1

ca
lls

(to
ta

l)

Fa
ce

bo
ok

ac
tiv

iti
es

(to
ta

l)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Bluetooth coverage

ca
lls

(in
te

rn
al

)

0 0.2 0.4 0.6 0.8 1
Bluetooth coverage

Fa
ce

bo
ok

ac
tiv

iti
es

(in
te

rn
al

)

Figure 2: Social activity versus data quality in the proximity layer Call and Facebook
activity intensity compared to the coverage seen by the Bluetooth scans for each participant in
the current study: (top) total number of calls and Facebook events involving the given partic-
ipant, (bottom) internal communication events, i.e., only between individuals considered in the
simulations. Social network counts are normalized by the largest data point shown.

their events better than others’, we compare the calling behavior pattern of all participants in the
month of interest (February 2014) to their yearly behavior.

Figure 3 shows the individual deviations from their yearly average in February compared to
the call intensity in the index month. We first sorted participants according to the total duration
of their calls in the index month of February and assigned the number of calls in this month (n0

i )
to each participant i. As a second step, for every individual i we calculated their standard score
over the year, that is, (n0

i − ni)/σ(ni), where ni and σ(ni) are the mean and standard deviation
calculated over the other months. If there was systemic missing data, we would observe a shift
in the vertical distribution of the dots towards negative values, however, as we can see the dots
are centered around a standard score of zero. This also means that February is not particularly
different from the other months with respect to call behavior. Furthermore, as centrality values
(color of the dots) indicate, high social centrality is not driven by count number nor deviation from
the yearly behavior. This indicates that although we may expect certain amount of noise in the
data, relevant measures on the population are not biased.

S2 Model

S2.1 SIR model

For simulation of epidemic outbreaks, we use a susceptible-infected-recovered (SIR) model taking
place on the network of physical interactions of the individuals. The SIR model assumes that the
entire population—except for the index cases—is initially susceptible. Whenever a susceptible indi-
vidual has contact to an infected one, the susceptible individual becomes infected with probability
β. Infected individuals recover after an average infectious period Tinf which is modeled in this
study by a probability γ to recover at any time. Recovered individuals can not be re-infected. We
use the temporal proximity networks obtained from the Bluetooth scans as the contact network.
In all simulations, the size of the index (initially infected) group is 5 (approximately 1% of the
population).
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Figure 3: Call activity deviations versus call counts Standard score of monthly number of
calls for each participant considered in the current study compared to their rank based on the
actual number of calls in the index month (February, 2014). Participants are ranked according to
the total duration of their calls in the index month. Color denotes the closeness centrality of the
individuals in the aggregated network of calls.

S2.2 Transmission types

We model two different types of disease transmission: full-range and short-range infections, by mod-
ifying the structural properties of the underlying networks as introduced in the previous section.
In the full-range transmission (up to 10-15 meters) we loosely approximate spreading of airborne
diseases (e.g. measles) [4]. Short-range transmission (approximately up to 1 meter) corresponds
roughly to droplet diseases (e.g. influenza). While the proximity networks do not correspond to
disease transmission exactly, they have been considered in the literature a telling approximation
of the potential spreading paths [5, 7, 8, 4].

S2.3 Parameter selection

The applied epidemiological model has two parameters: the probability of infection β and the
probability of recovery γ. Given the temporal resolution (∆t = 1/288day) and temporal aver-

age degree (〈k〉 = 1
N (t)

∫ ti+∆t

ti
〈k〉(t′)dt′, N (t) denoting the number of time bins), the simulation

probabilities correspond to real physical rates in the following way. The rate of infection is given
by

βphysical =
〈k〉β
∆t

, (1)

whereas the expected infectious period is

Tinf =
∆t

γ
. (2)

Based on the physical rates the basic reproduction number is R0 = βphysicalTinf .
Before investigating epidemic surveillance and immunization, we have to set infection probabil-

ity and infectious time by bearing two aspects in mind: first, we intend to have an infectious time
in the order of magnitude of days and second, to measure changes in outbreak sizes accurately we
aim for an outbreak that lies near the boundary of the epidemic threshold: a disease that does
not extinct but it does not result in the full infection of the population either. Figure 4 shows the
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Figure 4: Outbreak size as the function of the various parameters. Absolute size of the
outbreak (total number of infections normalized by the population size) at different values of the
contact rate (β) and average infectious period (Tinf). White circles show the position of the actual
values that were used for the two transmission types. Straight lines correspond to the derived
phyical R0 values. Each tile corresponds to the median outbreak size of 100 SIR simulations.

Network 〈k〉 β γ βphysical Tinf R0

Full-range 1.245 0.002 11.57 · 10−4 0.717 day−1 3 day 2.151
Short-range 0.200 0.01 8.68 · 10−4 0.591 day−1 4 day 2.364

Table 2: Simulation parameters and the corresponding physical quantities: average temporal degree
(〈k〉), probability of infection for a single infected-susceptible contact (β), physical rate of infection
(βphysical), probability of recovery for a single time step (γ), expected infectious period (Tinf) and
the basic reproduction number (R0).

relative outbreak size (irel, the total number of infected divided by the population size) at different
values of the parameters during airborne and droplet diseases.

Note that parameter values were probed on a logarithmic scale (we tested parameter values of
10n, 2 · 10n and 5 · 10n for various exponents n) and therefore the size of the tiles in the figure
is not uniform. Based on the outbreak size landscape, the following parameters were chosen for
the airborne and droplet networks (marked by the white circles): βfull = 0.002, T full

inf = 3 days and
βshort = 0.01, T short

inf = 4 days, resulting in typical outbreak sizes of ifull
rel = 0.727 and ishort

rel = 0.634.
Table 2 summarizes the simulation parameters and related physical rates for the two proximity
networks. The average degree is calculated for a single time step of δt, similarly, the rate parameters
β and γ are defined for a single step of the simulation. However, as physical parameters of the
epidemic are independent of the temporal resolution, they are corrected for the time window
and therefore are independent of δt. In other words, the physical parameters βphysical and Tinf

correspond to the rate parameters used in the differential equations in the compartment model.
Finally, it is also noteworthy that setting R0 to the same value in the two experiments does not
necessarily result in the same outbreak sizes, contrary to the compartment (differential equation)
model. The contour lines of constant R0 do not follow the constant outbreak size contours (by
comparing the lines to the color). This is due to the inherent difference between compartment
models and network simulations. We conclude that having simulations with the same R0 values
would not provide comparable statistics and the comparison of outbreaks in the two networks
cannot simplified significantly by standardizing the physical epidemic parameters.

As we are interested only in the actual outbreak size (instead of the probability of outbreak or
extinction), in all cases we accept only those simulations with a relative outbreak size of at least 5%,
which results in a corresponding saturation value of the relative outbreak size in our vaccination
curves. As for the monitoring, to obtain a larger ensemble for the statistics, the threshold of
relative outbreak size is 20%, however, the results are robust against the choice of threshold.
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S2.4 Extinction

While we acknowledge the fundamental interest in investigating the peculiar circumstances sur-
rounding extinctions, we did not include the simulations that went extinct intentionally. This is
because these rare (and not systematic) events would result in a bias of the calculated relative
outbreak size that we cannot correct for when comparing relative outbreak sizes. Furthermore, our
preliminary results with the proximity networks revealed that a significant rate of extinction only
appears at very high levels of vaccinations (for the specific R0 values), due to the high network
density (many and frequent contacts). Therefore in practice we are only removing a very small
fraction of runs.

S2.5 Epidemic dynamics

Here we provide a quick overview of the actual dynamics of the epidemics and how it is realized
in the various monitoring and vaccination scenarios. For the two cases of preventive strategies,
we plot the fraction of infected in Fig. 5 in time. During epidemic surveillance, we consider a
non-vaccinated scenario and measure the corresponding statistics inside the target groups of 30
individuals, which is shown in Fig. 5a. Here we show the mean over 1 000 realizations along with
the standard deviation as the median of the normalized curves by a low number (30 individuals)
would result in a step-function shape. As the curves show, for both transmission types, the mean of
the fraction of infected peaks at an earlier stage in social target groups compared to the population
average. Furthermore, in case of the short-range network, the group dynamics is almost identical
to that of the optimal group. The cumulative curves also indicate these differences (Fig. 5a inset).
The significantly large error is the result of averaging over realizations with different starting times
and is a fingerprint of the non-Gaussian samples at each time. Due to the impact of the circadian
rhythm on the momentary fraction of infected, each data point is averaged over a sample with large
deviations. Therefore, the infection dynamics shown in the figure are rather illustrative and in the
analyses provided in the manuscript and the rest of the Supplementary Information are based on
other more accurate statistics.

In the presence of vaccination (Fig. 5b), we immunize those in the target group and plot the
fraction of infected in the total population. Curves represent the median over 1 000 simulations in
each case, error bands show the lower and upper quartiles. For the sake of comparison, we show
the dynamics of a target group of 50 individuals for the short-range interactions and a group of
120 students for the full-range network, corresponding to 0.96% and 22.6% of the population). Al-
though social vaccination displays pronounced effects on the median fraction of infected compared
to the unvaccinated and the random vaccination cases, the slow-down in the dynamics and the
the shrink of the peak is more emphasized during short-range interactions, also approaching the
results of immunizing the optimal target group more. Again, the above effect is more visible in
the integrated number of infected as shown in the inset of Fig. 5b.

S3 Monitoring

In epidemic surveillance candidates in effective target groups are preferred to be in the high-risk
subset of the population and preferably are infected early in the outbreak. This way, status of
target individuals can be used to notice epidemic outbreak before it infects a high fraction of the
population and may help in forecasting outbreak statistics. Therefore, the good target group is
small compared to the population (so that monitoring is feasible and requires a lower level of
resource allocation) and has high infection probability and low infection time. Here we consider
various target group sizes and, in order to obtain a large number of samples for the statistics,
we only consider outbreaks above 20% of relative outbreak size. In each case, we measure two
quantities for target individuals related to epidemic surveillance. First we calculate the probability
of infection—the fraction of simulations in which an individual becomes infected, provided that
they are not part of the index group:

Pinf(i) =
Ninf(i)

N(i)
, (3)
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Figure 5: Typical dynamics of the outbreak. a) Fraction of infected of the disease inside
the monitor group compared to random target groups (that shows the same dynamics as the
population average). For each curve, monitor groups include the 30 individuals with the highest
rank according to the given strategy. Curves show the mean over 1 000 realizations, error bands
mark the standard deviation. b) Fraction of infected measured in the total population during
vaccination. Each curve represents the dynamics of the infection when the corresponding target
groups are immunized, compared to the unvaccinated case and also to randomly selected target
groups. Size of the target groups is 120 for full-range and 50 for short-range transmission. In
both panels, insets show the cumulative fraction of infected. Curves indicate the median over 1 000
simulations, error bands display the standard deviation.

where N(i) is the number of simulations in which individual i was not an index case and Ninf(i)
is the number of simulations in which individual i was infected during the outbreak. We also
measure a corrected infection time that accounts for the level of exposure of an individual to the
disease—the average time of their infection, divided by the probability of infection:

τinf(i) =
tinf(i)

Pinf(i)
. (4)

where tinf(i) is the average time of getting the infection for individual i. In case of individuals who
are never infected, the total duration of the outbreak is considered.

S3.1 Social monitoring

Figure 6 shows the infection probability and infection time for the four types of target groups dur-
ing full- and short-range infection outbreaks. In both transmission types, social monitor groups
outperform random groups in the probability of infection, with performance close to optimal (colo-
cation) groups, indicating that socially central individuals are indeed members of the high-risk
subpopulation, irrespective of the infection range. Infection times in these groups are significantly
lower compared to the population average, displaying temporal gain of 1.5 - 4 days, translating to
leading times of 15-25% compared to the population mean, depending on the transmission type
and group size.

Social networks contain sufficient information about the population to effectively monitor the
population in case of an epidemic, and various layers of social interaction (calls, text messages,
Facebook events) show similar performance in inferring good candidates for monitoring. Further-
more, as long as the selection of target individuals is based on a centrality that grasps the global
structure of the corresponding networks, the details of the method is less relevant. These obser-
vations are summarized in Fig. 7, where we compare various centralities as well as social network
channels. Comparison of different centralities considered in the call-based network results in similar
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Figure 6: Monitoring performance of social target groups Median infection probability
(left) and median infection time (right) of social target groups of different size, compared to the
population average (random, grey) and optimal (purple) groups. Each curve is the result of 104

simulations with a minimum relative outbreak size of 20% in an unvaccinated population. Curves
corresponding to the random groups show the median over 100 random realizations, error bars
denote lower and upper quartiles of the samples.

performance (with the exception of the raw count-based ranking), and we also notice that closeness
centrality shows the best performance, although only marginally better than other strategies.

In addition to various centrality measures, we also consider social sensors strategy [9, 10, 11].
We simulate friendship based target groups from the phone network (calls and text messages) in
the following way. First, we consider the three most frequent contacts for each individual and
denote them as friends. Based on these top-contact lists, we rank the participants according to the
number of times they appear on the friends list. As Fig. 7b shows, the resulting target groups have
similar performance as the centrality-based ones. Finally, if additional or other channels as text
messages or structural Facebook connections are considered, the monitoring performance does not
change significantly (Fig. 7c-d).

S3.2 Effect of network structure

Since monitoring does not alter the structure of the network but probes the outbreaks dynamics
using small number of individuals, we can simplify the question of finding good candidates to pos-
sible correlations between network properties and monitoring efficiency, e.g., infection probability.
We remove various correlations from the proximity networks, and plot infection probability versus
the weight of individuals in the network. Results are shown in Fig. 8 for both full- and short-range
proximity networks. We apply three types of correlation removal:

Temporal We remove all circadian rhythm effects and re-distribute links homogeneously in
time, keeping both aggregated degree-distribution and degree-correlations. We simply re-
assign time stamps so that their distribution became uniform in time. Individual weights are
kept fixed.

Spatial All degree-correlations are removed, but both circadian rhythm and the static degree-
distributions are kept fixed. This corresponds to a redistribution of temporal links according
to the degree-distributions and temporal edge density. Individual weights remain the same.

Spatio-temporal Both temporal and spatial correlations are removed, together with the ag-
gregated degree-distribution. Only the individual weights are conserved from the original
structure of the networks.
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Figure 7: Different monitoring strategies. Monitoring power of target groups selected by
various methods and using different channels: (a) testing centrality measures based on the call
network, dashed lines denote weighted measures; (b) social sensors estimated from the call + text
messages network as well as from the short-range proximity network, dashed lines correspond to
social sensors estimated from the short-range proximity network; (c) networks constructed from
calls only compared to calles + text messages; (d) functional Facebook network (based on user
activity) compared to structural Facebook network (that is, the sole structure of friendships). All
lines are the result of 1000 simulations with a relative outbreak size larger than 20%.
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Figure 8: Structural effects on monitoring performance Infection probability of individuals
versus their corresponding weight in the proximity networks after several correlations are removed:
the original networks (yellow), after temporal correlations are removed (green), after structural
correlations are removed (red) and when all correlations are eliminated (blue). In all cases, the
personal weights are kept fixed as it forms the basis of the curves shown.

In both short- and full-range networks, removing spatio-temporal correlations also removes the
vast majority of noise from the structure, and results in a clear trend of infection probability as
a function of weight, saturating at some point (Figure 8). The higher level of initial noise in the
original networks seen in the short-range case indicates that structure plays a major role in the
strength of weight-based target groups. Spatial randomization also removes more noise from the
trends, suggesting that the temporal nature of the networks has a smaller effect during epidemic
surveillance. These observations point our that weight is the most relevant property when the sus-
ceptibility of individuals is considered. This is supported by the fact that highly central individuals
in social networks are more likely to have high weight, we find the correlations between social net-
work centralities and physical proximity networks to be approximately rSpearman = 0.4. However,
as we have seen, the structural correlation between social networks and proximity networks does
not prove to be sufficient for efficient vaccination, as vaccination corresponds to a fundamentally
different challenge, by effectively removing individuals from the network, thus changing the under-
lying network structure.

S4 Vaccination

S4.1 Criteria for assessing vaccination efficiency

The main finding in this paper is that vaccination strategies based on communication networks
(which are fundamentally different from the person-to-person networks on which the disease is
transmitted) have comparable performance in case of short-range transmission, whereas vaccination
based on communication networks proves to be less efficient in the full-range transmission case.

Because the inherent efficiency of vaccination differs in the two networks (short/full-range),
our focus is not on the performance of vaccination, but how different strategies compare to each
other. For this reason, our argument is based on comparing the typical relative outbreak size as a
function of the vaccinated population (as shown in Fig 2B of the main text), rather than looking
at absolute numbers.
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S4.2 Characteristic differences

Vaccination efficacy was shown to be qualitatively different in the two types of transmission modeled
by the short-range and full-range contact networks. In the manuscript we compared the median
along with the SEM of the measured relative outbreak sizes, and Fig. 9 depicts the statistical
comparison of the curves at the level of individual simulations. In the figure, we compare the
distribution of relative outbreak sizes to the optimal relative outbreak sizes at each vaccination level
using the Mann–Whitney statistics. On the vertical axis, we show the derived z-index calculated
as

z =
U − n1n2

2√
n1n2(n1+n2+1)

12

, (5)

where n1 and n2 denote the size of the two populations (number of simulations for the two strategies
at the same vaccination level), and U is the Mann–Whitney statistics. We chose this statistics based
on the observation that the distributions (shown in Fig. 2 in the main text) do not follow Gaussian
distribution. Clearly, cyber-based vaccination shows a significantly lower statistics compared to
random in the short-range network, suggesting that the separation observed in the median is an
overall behavior of the outbreak sizes over a wide range of vaccination levels. However, in case of
full-range transmission, we observe no statistical difference between the cyber-based vaccination
and random strategy.
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Figure 9: Mann–Whitney test z-indices. Curves show the calculated z-index from Mann–
Whitney tests with a null hypothesis that the relative outbreak size has the same distribution for
the optimal and another strategy.

Here we explore further epidemiologically relevant measures that describe the efficacy of vac-
cination. Vaccination has a decreasing effect on the outbreak duration (number of days until the
disease dies out) in case of both transmission types (Fig. 10), however, in the full-range network,
social vaccination does not display observable difference compared to the random strategy. No-
tably, as shown by the error bands, differences are blurred compared to the actual size of the
outbreak, even between optimal and random vaccination.

Metrics related to the peak of the outbreak are depicted in Figs. 11-12. The peak of the outbreak
is defined by the highest momentary fraction of infected throughout the course of the infection. The
same trends can be observed as in the relative outbreak size: as the level of vaccination increases,
curves corresponding to the cyber-based vaccination are separated from the random strategy in
the short-range network, contrary to the case of full-range interactions. Similarly, peak times are
more noisy and differences are not significant in this respect.

Finally, we calculated the estiated attack-rate of the disease for various vaccination levels. The
attack rate is defined by the fraction of new infections relative to the susceptible population, and we
estimate this rate by calculating the average rate during the first 5 days of the outbreak. Figure 13
shows the results. Differences are less pronounced as this metric is prone to noise in our simulations.
However, note that results are robust against the number of days attack rate is approximated for.
Using Facebook activity as proxy, the initial attack rate in the short-range network shows a clear
separation from the random strategy, but it saturates at a level similar to the random strategy.
Calls are capable of significantly decreasing the attack rate in both transmission types.

The above metrics further support the main message that communication networks prove to
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be a good candidates for the basis of efficient vaccinations provided that the disease spreads by
short-range interactions.
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Figure 10: Outbreak duration in days. Curves show the median duration of the outbreaks at
different vaccination levels for the two networks: short-range (left) and full-range (right).
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Figure 11: Peak levels during the outbreaks. Curves show the median peak level (highest
fraction of infected during the spread) at different vaccination levels for the two networks: short-
range (left) and full-range (right).

S4.3 Social vaccination

In the manuscript we have shown that social vaccination is effective in short-range transmission,
here we explore robustness of the observed performance against various definition of ‘central in-
dividuals’. Several strategies exploiting the structure of social networks have been proposed for
efficient immunization [12, 13, 11]. Figure 14a shows the performance of social vaccination (in
short-range transmission) based on different strategies for determining target individuals. The
network measures in the population are highly correlated and lead to qualitatively similar results,
independent of whether degree, k-cores, or betweenness centrality are considered. We also exam-
ine different configurations of the social network channels used for social vaccination, adding text
message metadata to call metadata and using the Facebook friendship graph. We find no signifi-
cant difference in the efficacy by using these different views, indicating that the epidemiologically
relevant individuals can be robustly identified based on the digital social networks.

To overcome the difficulty of collecting a complete network of interactions for targeted inter-
ventions, a scheme of social sensors (acquaintance immunization) has been proposed [9, 10, 11].
By vaccinating friends of randomly selected individuals—as such friends tend to be more central in
the social network—strictly local information can be used (majority of the above measures rely on
global network information). Here we evaluate the performance of social sensors scheme directly,
choosing three strongest contacts from the call and SMS lists of each individual as a proxy for
naming someone a friend[1]. Individuals nominated as friends most often were then included in
the target groups. We show that social sensors are a useful strategy for selecting individuals using
strictly local information in the network, with the performance close to using full network structure
(Fig. 14a lower right panel).
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Figure 12: Peak times during the outbreaks. Curves show the median peak time (time to
arrive at the highest level of infection during the outbreak) in hours at different vaccination levels
for the two networks: short-range (left) and full-range (right).
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Figure 13: Attack rate during the first 5 days. Curves show the median attack rate (fraction
of new infections divided by the number of susceptible) in percentages of the whole population at
different vaccination levels for the two networks: short-range (left) and full-range (right).

S4.4 Models of social target groups

To understand the performance of social vaccination, here we provide a qualitative explanation of
the observed vaccination curves. The performance of the social vaccination in the short- and full-
range transmission networks can we be decomposed into the result of two basic mechanisms. For a
given vaccination size, social networks manage to identify certain fraction of individuals from the
optimal (colocation) group, the the core. Those target individuals not included in the colocation
group (the the periphery) also contribute to the performance and in the case of an effective target
group these individuals also display increased relevance during immunization. To understand the
impact of these two components, we consider three modified models of target groups:

Model A We keep the core fixed and replace the periphery with individuals sampled from
outside the optimal group randomly.

Model B We keep the periphery fixed and replace the core by randomly chosen individuals
from the optimal group.

Model C We keep the periphery fixed and replace the core with the same number of most
connected participants from the optimal group.

Results are shown in Figure 15. The decrease of performance in model A indicates that social
networks are able to locate more appropriate candidates (compared to random) outside of the
optimal group in addition to the optimal ones (Fig. 15a). This observation is more pronounced in
the short-range network (Fig. 15b). In case of the core however, social networks highlight optimal
individuals with the same efficiency as one would obtain by sampling the optimal group randomly,
as indicated by negligible change in performance in model B. Finally, the performance change of
model C compared to the original strategy is higher in the full-range network than that in the

15



�

�.�

�.�

�.�
degree call + text

�

�.�

�.�

�.�
k-coreness

re
la

tiv
e

ou
tb

re
ak

si
ze

Facebook
structural

� �.�� �.��

�.�

�.�

�.�
betweenness

fraction of vaccinated individuals
� �.�� �.�

social
sensors
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Figure 15: Role of target individuals in social target groups. a) Median relative outbreak
size in three models (see text for their definitions) compared to random (light gray), optimal
(light purple) and the call network (light green). b) Relative differences in the outbreak sizes
of the original and the modified social groups as the function of the outbreak size in the optimal
vaccination, the curves of the corresponding proximity network are highlighted. c) Top: illustration
of the cosine similarity. For each individual, we define their weighted degree as the total fraction of
interactions with all other participants (weighted degrees are normalized to have unit component
sum). For a given proximity network, the cosine similarity between the weighted degrees of the
same individual is calculated, and the distribution of similarities is constructed. Bottom: point-wise
ratio of the probabilities of similarity values in short-range and full-range networks, when compared
to the call (green) and Facebook (blue) graphs. Inset shows the original similarity distributions
for the short-range (yellow) and full-range (red) graphs with the call network. d) Weight removed
from the remainer of the graph after the removal of the vaccinated individuals. Top: illustration of
the weights distributed among the removed (gray) and remaining (white) individuals. Solid lines
correspond to internal, dashed denote external weights being removed from the network. Bottom:
total external weight removed from the graphs when the overlap of the social and optimal target
groups are replaced by the highest-weight (solid) or randomly chosen (dashed) individuals from
the optimal group. Inset shows the ratio of internal / external weights in the two networks for
different target groups.
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short-range, indicating that this effect is a major driver (together with difference uncovered by
model A) behind the superior performance of the social vaccination in the short-range network.

The difference in the performance due to the contribution of the periphery can be explained
by the structural differences between the proximity networks. Calculating cosine similarity of the
participants’ weighted degree v (the fraction of interactions they have with the rest of the popula-
tion) between digital social and physical proximity networks for all participants θ(vdigital, vphysical),
we show that short-range network displays higher frequency of high similarity values (θ > 0.5)
(Fig. 15c). Digital social networks capture the local structure of the short-range network to a
higher extent than that of the full-range network, which includes a high fraction of incidental
interactions[4]. As a consequence, social networks are able to locate epidemiologically relevant
target individuals outside of the optimal group, as central participants in the social networks are
also exhibit high centrality in the short-range network.

On the other hand, performance change with respect to the core is related to whether the con-
tacts of the vaccinated nodes are internal or external. Vaccinating individuals effectively removes
them from the network along with all of their contacts. Internal links are connecting target indi-
viduals, and so their interactions do not contribute to the improvement in the vaccination. Thus,
even though the total weight of the removed links may be equal in short- and full-range networks,
the actual impact of the removed links can be different if the distribution of internal/external links
differ. Interactions in the short-range network tend to take place between participants socially
more related[4], and we observe that target groups in that network also tend to be more inter-
connected (Fig. 15d). Thus choosing the individuals with the highest level of interactions (weight)
in the short-range network does not lead to pronounced increment in performance, as we remove
individuals from a more interconnected subgraph (compared to the full-range network).

S4.5 Epidemic spread on the social networks

The main aim of the work presented in the manuscript is to find individuals based on their social
network (which is approximated from their digital fingerprint) while probing their impact in case of
an epidemic outbreak that takes place on the physical proximity networks. Our results show that
social and proximity networks are structured in a way that allows for a decreased performance
for vaccination, however, the efficacy of state-of-the-art strategies proposed in the literature is
related to the fact that both finding target individuals and evaluating their impact was performed
on the same network. Figure 16b shows how we would understand the performance of targeted
vaccination if both the selection and the spread of took place on the social networks. As we can
see, if the disease spreads in the same network that is the basis for the target group selection,
degree immunization (that is, one of the most efficient strategy) performs well in both dynamic
and static cases, and significant performance change is observed compared to the, e.g., closeness
centrality based strategy.

S5 Robustness

So far we have investigated the performance of the target group in the same period that formed
the basis for their selection, however, in case of real epidemic scenarios it is preferred to collect
data from a preceding periods so that we can infer to upcoming months. In this spirit, here we
use the target groups of February (in the index month) for monitoring and vaccination in the
consecutive months March, April and May. As an evaluation, we compare social target groups to
the colocation based groups from both the index and later months.

Figure 17 shows the infection probability and infection time observed in the social target groups
for different months, using the short-range proximity network. In the top panel, we show the
infection probability relative to the probability measures in the optimal target groups based on
the colocation data in the actual month. In all months, social target groups outperform random
monitoring, and also show similar probability values to the optimal that can be obtained using
proximity data of the same period. However, as the period in interest becomes further in time
from the index month, efficacy becomes less stable and it decreases as well. Regarding infection
time, we show the raw results in units of days compared to the optimal of the month. Again, social
groups display significantly earlier times of infection than that of random groups but they are also
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Figure 16: Vaccination performance of outbreaks taking place on the social networks.
Efficient immunization strategies against epidemic that spreads via the ties in the digital social
networks. In this case, both the target individuals are selected by and the epidemic takes place on
the same social network. a) The network dynamics is also considered as they evolve in time, b)
the static aggregated networks are used and the epidemic spreads rapidly on the static links.

less effective as the true optimal is. Interestingly, the decreasing performance trend observed in
case of infection probability is not present here and social target groups perform equally well in all
months.
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