

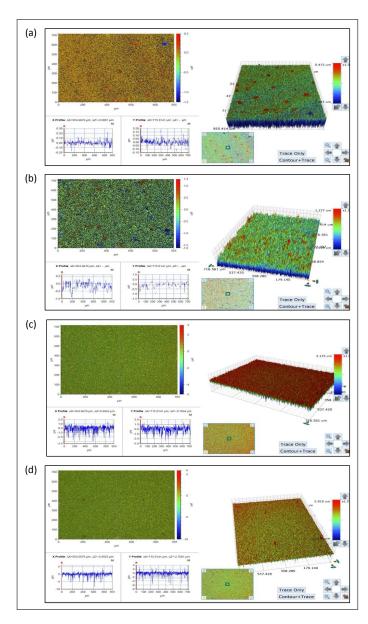
Ultrahigh-transparency, ultrahigh-haze nanograss glass with fluid-induced switchable haze: supplementary material

SAJAD HAGHANIFAR¹, TONGCHUAN GAO¹, RAFAEL T. RODRIGUEZ DE VECCHIS², BRADLEY PAFCHEK², TEVIS D. B. JACOBS², AND PAUL W. LEU^{1,2,*}

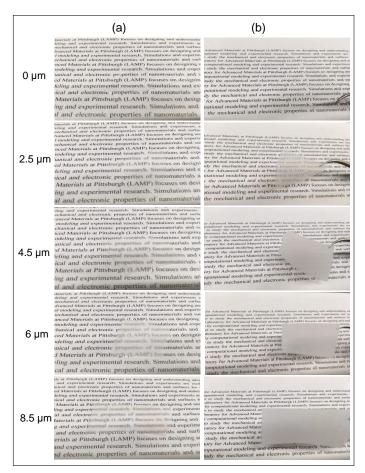
Published 12 December 2017

This document provides supplementary information to "Ultrahigh-transparency, ultrahigh-haze nanograss glass with fluid-induced switchable haze," https://doi.org/10.1364/OPTICA.4.001522.

https://doi.org/10.6084/m9.figshare.5594626


Figures S1-S4 are presented.

¹Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA


²Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA

^{*}Corresponding author: pleu@pitt.edu

Supplementary Material 2

Fig. S1. Optical profilometry images of (a) 2.5, (b) 4.5, (c) 6 and (d) 8.5 μ m height nanograss glass.

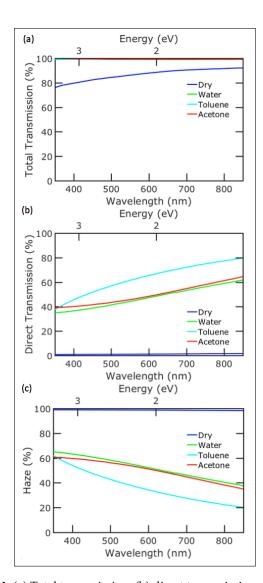


Fig. S2. Optical images of smooth glass and glass with 2.5, 4.5, 6 and 8.5 μ m height nanograss when (a) place directly on paper with text and (b) about 1 cm above.

Fig. S3. (a) Contact angle of water droplet on (i) smooth fused silica and (ii) 6 μ m nanograss glass (b) Transition between transparent and haze mode of 6 μ m ultrahazy glass by putting water on the glass and evaporation in 80 seconds.

Supplementary Material 3

Fig. S4. (a) Total transmission, (b) direct transmission and (c) haze as a function of wavelength for 6 μ m hazy glass in dry state and wet state with different liquids.