
Analyzing and visualizing
spreadsheets

Analyzing and visualizing
spreadsheets

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op woensdag 23 januari om 10:00 uur
door

Félienne Frederieke Johanna HERMANS

ingenieur in de informatica
geboren te Oudenbosch.

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. A. van Deursen
Co-promotor: Dr. M. Pinzger

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Technische Universiteit Delft, promotor
Dr. M. Pinzger Technische Universiteit Delft, co-promotor
Prof. dr. E. Meijer Technische Universiteit Delft & Microsoft
Prof. dr. H. de Ridder Technische Universiteit Delft
Prof. dr. M. Burnett Oregon State University
Prof. dr. M. Chaudron Chalmers University of Technology and

University of Gothenburg
Dr. D. Dig University of Illinois at Urbana-Champaign

Copyright c© 2012 by Felienne Hermans

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without the prior permission of the author.

Author email: felienne@felienne.com

Acknowledgements

First of all, I would like to thank Arie. Thanks for always supporting my decisions,
for being there when times were a bit tough and for loads of fun and inspiration.
Martin, thanks for the gazillion spelling errors you corrected in all my papers,
your patience was amazing. Stefan Jager, thanks for trusting me to experiment
freely at Robeco! You allowed me to really test my ideas in practice, even when
they were very preliminary.

Robert, thanks for several kilos of home made fries and for always, always
laughing at my stupid jokes. Anja, I sincerely enjoyed all the time we spent
‘together’, I hope there is a lot more to come. The two of you are the best
paranymphs a girl could wish for. And Maartje, thanks for the awesome design
of my cover.

Finally, I would like to thank Jan Karel Pieterse for his extensive proof reading
of a draft of this dissertation. Without his eye for detail it would have, without
a doubt, contained numerous more mistakes than it does now.

Delft, Felienne Hermans
September 2012

i

ii ACKNOWLEDGEMENTS

Contents

Acknowledgements i

1 Introduction 1

1.1 Spreadsheets . 1

1.2 A brief history of spreadsheets . 1

1.3 Motivation . 5

1.4 Related work . 6
1.4.1 Taxonomy of spreadsheet errors 6
1.4.2 Automated error detection 7
1.4.3 Spreadsheet testing . 7
1.4.4 Refactoring . 8
1.4.5 Finding high-level structures 8
1.4.6 Modeling spreadsheets . 9

1.5 Research questions . 9

1.6 Methodology . 10

1.7 Background of this dissertation . 11

2 Extracting Class Diagrams from Spreadsheets 15

2.1 Introduction . 15

2.2 Background . 17
2.2.1 Cell types . 17
2.2.2 Pattern languages for two-dimensional languages 18
2.2.3 Pattern grammars . 20

2.3 The Gyro approach to spreadsheet reverse engineering 20

2.4 Pattern recognition . 21
2.4.1 Overview . 21

iii

iv CONTENTS

2.4.2 Finding bounding boxes . 22
2.4.3 Cell classification . 22
2.4.4 Normalization . 23
2.4.5 Filtering . 23
2.4.6 Parsing . 23

2.5 From patterns to class diagrams 24
2.5.1 Using annotations . 24
2.5.2 Class diagrams . 27
2.5.3 Enrichment . 28

2.6 Spreadsheet patterns . 29
2.6.1 Simple class . 29
2.6.2 Simple class including name 30
2.6.3 Simple class including methods 30
2.6.4 Aggregation . 30
2.6.5 Associated data . 31

2.7 Implementation . 32

2.8 Evaluation . 32
2.8.1 The data set . 32
2.8.2 Quality of chosen patterns 33
2.8.3 Quality of mapping . 33

2.9 Discussion . 37
2.9.1 Spreadsheet limitations . 37
2.9.2 Class diagram limitations 37
2.9.3 Beyond class diagrams . 37
2.9.4 Dealing with spreadsheets errors 38
2.9.5 Meaningful identifiers . 38
2.9.6 Threats to validity . 38

2.10 Related work . 39

2.11 Concluding remarks . 40

3 Supporting Professional Spreadsheet Users by Generating Leveled Data-
flow Diagrams 43

3.1 Introduction . 43

3.2 Spreadsheet information needs . 44

3.3 Background . 47
3.3.1 Dataflow diagrams . 47
3.3.2 Leveled dataflow diagrams 47

3.4 Dataflow diagram extraction algorithm 48
3.4.1 Cell classification . 48
3.4.2 Identifying data blocks . 49
3.4.3 Name resolution . 49
3.4.4 Initial dataflow diagram construction 51

CONTENTS v

3.4.5 Name replacement . 51
3.4.6 Grouping . 51

3.5 Dataflow views . 52
3.5.1 Global view . 53
3.5.2 Worksheet view . 54
3.5.3 Formula view . 54

3.6 Implementation . 54

3.7 Evaluation . 54
3.7.1 Interviews . 55
3.7.2 Case Studies . 56
3.7.3 Conclusions . 59

3.8 Discussion . 60
3.8.1 Meaningful identifiers . 61
3.8.2 Spreadsheet comprehension 61
3.8.3 Threats to validity . 61

3.9 Related work . 62

3.10 Concluding remarks . 63

4 Detecting and Visualizing Inter-worksheet Smells in Spreadsheets 65

4.1 Introduction . 65

4.2 Related Work . 66

4.3 Background & motivating example 67

4.4 Inter-worksheet smells . 69
4.4.1 Inappropriate Intimacy . 69
4.4.2 Feature Envy . 70
4.4.3 Middle Man . 70
4.4.4 Shotgun Surgery . 70

4.5 Detecting inter-worksheet smells 71
4.5.1 Inappropriate Intimacy . 71
4.5.2 Feature Envy . 72
4.5.3 Middle Man . 72
4.5.4 Shotgun Surgery . 72
4.5.5 Determining the thresholds 74

4.6 Visualizing inter-worksheet smells 75

4.7 Implementation . 75

4.8 Evaluation . 77
4.8.1 Inter-worksheet smells in the EUSES Corpus 77
4.8.2 Inter-worksheet smells in ten real-life case studies 80
4.8.3 Conclusions . 84

4.9 Discussion . 85
4.9.1 VBA code, pivot tables and charts 85

vi CONTENTS

4.9.2 Mental model of a spreadsheet 85
4.9.3 Understanding spreadsheet design decisions 85
4.9.4 Threats to validity . 86

4.10 Concluding remarks . 86

5 Detecting Code Smells in Spreadsheet Formulas 89

5.1 Introduction . 89

5.2 Formula smells . 90
5.2.1 Multiple Operations . 90
5.2.2 Multiple References . 90
5.2.3 Conditional Complexity . 91
5.2.4 Long Calculation Chain . 91
5.2.5 Duplicated Formulas . 91

5.3 Formula metrics . 92

5.4 Determining smell thresholds . 93

5.5 Risk maps . 94

5.6 Implementation . 95

5.7 Evaluation . 95

5.8 Smell occurrences in the EUSES Corpus 95
5.8.1 Goal . 95
5.8.2 Setup . 96
5.8.3 Results . 96

5.9 Formula smells in an industrial case study 97
5.9.1 Goal . 97
5.9.2 Setup . 97
5.9.3 Results . 98

5.10 Answers to research questions . 105

5.11 Discussion . 106
5.11.1 Named ranges . 106
5.11.2 Applicability of the risk maps 106
5.11.3 Spreadsheet evolution . 106
5.11.4 Threats to validity . 107

5.12 Related work . 107

5.13 Concluding remarks . 108

6 Data Clone Detection and Visualization in Spreadsheets 109

6.1 Introduction . 109

6.2 Related work . 110

6.3 Motivation . 112

6.4 Data clones . 113

6.5 Data clone detection . 114

CONTENTS vii

6.5.1 Algorithm . 114
6.5.2 Parameters . 116

6.6 Clone visualization . 116
6.6.1 Dataflow diagrams . 116
6.6.2 Pop-ups . 117

6.7 Implementation . 119

6.8 Evaluation overview . 119

6.9 Quantitative evaluation . 119
6.9.1 Goal . 119
6.9.2 Background . 119
6.9.3 Setup . 120
6.9.4 Findings . 120

6.10 The Case studies . 124
6.10.1 Goal . 124
6.10.2 Setup . 124
6.10.3 Background . 125
6.10.4 Findings . 125

6.11 The research questions revisited . 127

6.12 Discussion . 127
6.12.1 Relative settings for parameters 127
6.12.2 Headers . 128
6.12.3 Copied data . 128
6.12.4 Clone genealogy . 128
6.12.5 Spreadsheet maintenance support 128
6.12.6 Threats to validity . 129

6.13 Concluding remarks . 129

7 Conclusion 131

7.1 Contributions . 131

7.2 The different aspects of spreadsheets 132
7.2.1 Metadata . 132
7.2.2 Organization . 133
7.2.3 Formulas . 133
7.2.4 Data . 134

7.3 Reflecting on methodology . 135
7.3.1 Methods used in this dissertation 135
7.3.2 Impact . 135
7.3.3 Risks . 136

7.4 Revisiting the research questions 136

7.5 Future work . 138

A Breviz 141

viii CONTENTS

Bibliography 143

Summary 153

Samenvatting 157

Curriculum Vitae 161

Chapter1
Introduction

1.1 Spreadsheets
Spreadsheets can be considered the most successful programming paradigm in the
history of computers. End-user programmers outnumber software programmers
[Sca05] and it has been estimated that 90% of computers have Excel installed
[Bra09].

Their use is diverse, ranging from inventory administration to educational
applications and from scientific modeling to financial systems, a domain in which
their use is particularly prevailing. Panko [Pan06] estimates that 95% of U.S.
firms, and 80% in Europe, use spreadsheets in some form for financial reporting.

One of the success factors of spreadsheets is their easy-to-use interface and
great flexibility. Users do not have to think about a design of their spreadsheet
programs: they can just start entering data and formulas. However, there are
some scenario’s in which a spreadsheet user wants to have information about
the underlying design of the spreadsheet. For instance, when debugging, when
reading a spreadsheet created by someone else or when making big changes to the
spreadsheets. Given the fact that the design is hidden ‘behind’ the spreadsheet
and inaccessible for the user, difficulties can arise in those scenarios where a user
does need to understand the spreadsheet’s design.

This research aims at providing spreadsheet users with information about their
spreadsheet’s design, whenever they need and want that information.

1.2 A brief history of spreadsheets
Although the electronic spreadsheet was first conceived in the sixties, the idea
of laying out numbers in a grid dates as far back as the Babylonian times. The
Plimpton 322, a Babylonian tablet from 1800 BC, lists the Pythagorean triplets in

1

2 INTRODUCTION 1.2

Figure 1.1: Plimpton 322 showing the Pythagorean triplets: A spreadsheet from 1800
BC

a very spreadsheet-like form, as shown in Figure 1.1. The first two columns can be
considered input and the third column represents the results of the Pythagorean
calculation (which had been known years before Pythagoras was born around
about 570 BC). An interesting fact about this tablet is that there is a copy-paste
error in it: one of the numbers in row 9 actually belongs in row 8. 1

Mathematical tables like Plimpton 322 were used for centuries, both for math-
ematical purposes, such as calculation and teaching, as for administrative pur-
poses like inventory logging. However, spreadsheet-like interfaces became more
mainstream in the 15th century, when the Italian mathematician Luca Pacioli
first described the double-entry bookkeeping system in his famous book ‘Summa
de arithmetica, gemometria, proportioni et proportionalita’. This system consists
of two sides: a debit and a credit side. Each transaction has to be entered twice
(hence “double-entry”), once on each side and both sides have a very spreadsheet
like form. The popularity of this bookkeeping system, which is still used today
in a very similar form, rendered to the grid interface a natural representation for
financial records.

The story of the electronic spreadsheet begins in 1964. In his book Simula-
tion of the Firm through a Budget Computer Program [Mat64] Mattessich “fore-
shadows the basic principles behind today’s computer spreadsheets: the use of
matrices, (budget) simulation, and, most important, the calculation that sup-
ports each matrix cell.” [Cha96].

Mattessich also created 48 spreadsheets with FORTRAN IV and bundled the
output with his book. The spreadsheets concerned many different domains, in-
cluding “labor costs, material costs, purchases, sales, overhead expenses with

1In Chapter 6 of this dissertation, we will address copy-paste errors in modern spreadsheets

1.2 A BRIEF HISTORY OF SPREADSHEETS 3

Figure 1.2: VisiCalc (1979)

proper allocations, as well as a projected income statement and balance sheet”.
These spreadsheets are generally considered the first electronic spreadsheets.

In 1979 VisiCalc 1.2 was created by Dan Bricklin and Bob Frankston. VisiCalc
was the first commercially successful spreadsheet program, selling as much as
20.000 copies a month in 1983 [Sla89]. In many respects, VisiCalc is similar to
modern spreadsheet systems. VisiCalc had the ability to automatically recalculate
the value of a cell when the content was updated and to propagate this update to
cells depending on it. “This feature of automatic updating and propagation to all
spreadsheet cells was so unique for a programming system that it was discussed
in many books on artificial intelligence in the 1980s.” [Fre66]. In addition to
the recalculation of cells, VisiCalc also supported copy-pasting cells and ranges
with relative and absolute references. Also, it was able to construct formulas by
selecting cells.

The first version of VisiCalc ran on an Apple II. When it launched in November
1979, at a retail price of $100, it instantly became a big hit and dealers started to
bundle the software with the Apple II.2 VisiCalc had a big impact on the success
of the Apple II: many companies bought an Apple II solely to run VisiCalc on.
As Steve Jobs himself stated in a 1994 interview with Rolling Stone magazine:
“What drove the success of the Apple II for many years and let consumers have the
benefit of that product was VisiCalc selling into corporate America. Corporate
America was buying Apple IIs and running VisiCalc on them like crazy.”

VisiCalc reigned the spreadsheet world until 1983, the year when Lotus 1-2-3
was released. Lotus 1-2-3 was built in highly optimized 8086 assembly-language,
making it very fast. In addition to higher speed, Lotus 1-2-3 could also use more
memory, which in turn allowed for larger spreadsheets. These benefits made that
it quickly became the new industry spreadsheet standard.

In 1982 Microsoft released their first spreadsheet program: Multiplan. A
fundamental difference between Multiplan and its competitors was Microsoft’s

2http://history-computer.com/ModernComputer/Software/Visicalc.html.

4 INTRODUCTION 1.2

Figure 1.3: Excel 1.0 (1985)

decision to use R1C1 addressing instead of the A1 addressing as introduced by
VisiCalc.

In the A1 addressing mode, cells are referenced by a letter indicating their
column and a number denoting their row. B4, for example, means the cells in
the second column and the fourth row. Both the column and the row indication
can be relative—meaning that it will be changed when the formula is copied— or
absolute, indicated by a $ in front of it and meaning that it will not be changed.

In the alternative R1C1 notation, cells are denoted by the letter R followed by
the row number concatenated with the letter C followed by the column number.
By putting the row or column numbers between square brackets, a row or column
relative to the current cells in indicated. In this relative R1C1 notation, that is the
default R1C1 style, SUM(A2:D2) in cell E2 is written as SUM(RC[-4]:RC[-1]).

Multiplan was successful on CP/M systems, but it never became as successful
on MS-DOS. While Microsoft had initially planned to create a Multiplan version
for Windows, this version was never released as Lotus 1-2-3 kept outselling Mul-
tiplan. Instead, Microsoft released Excel for Mac in September of 1985, just 3
years after the introduction of Multiplan. Figure 1.3 shows the interface of Excel
1.0.

Microsoft decided to keep the R1C1 notation in Excel, in addition to the A1
referencing notation and until today, both reference modes are still offered in the
newest version of Excel.

One of the distinguishing features of the new Excel system was its ability to
be operated with a mouse and drop down menus. This made Excel easier and
faster to use than competing spreadsheet systems. A second unique feature that
contributed to Excel’s popularity was the fact that users could change the style of
their spreadsheets with different fonts and markup options. Finally, calculations
in Excel were executed more quickly, because of optimized cell recalculation, in

1.3 MOTIVATION 5

which only dependent cells of a modified cell are updated.

In 1987 Microsoft released Excel for Windows, and since Windows was not
that popular at the time, Microsoft supplied a copy of Windows for free with
each copy of Excel 2.0. Over the next few years, Excel started to challenge the
position of Lotus 1-2-3. By 1988 Excel had overtaken Lotus as the dominant
spreadsheet system, which it remains to date.

1.3 Motivation

Despite the huge success of spreadsheets in practice, their use is not at all without
problems. The European Spreadsheet Risk Interest Group collects horror stories3

about organizations losing substantial amounts of money due to errors in spread-
sheets, among which stories like “$1M went missing as staff managed monstrous
spreadsheets.” and “£4.3M spreadsheet error leads to resignation of its chief exec-
utive”. These stories, although anecdotal, underline the impact that spreadsheets
can have on organizations. While other assets of companies—such as processes
or software—are often validated and controlled, spreadsheets are not.

However big the damage of errors in spreadsheets is, we consider errors as
merely symptoms of the real problems with spreadsheets. The underlying prob-
lem is the fact that the design of a spreadsheet is hidden behind the formulas
and worksheets of a spreadsheet. For instance, if a worksheet dependents on cal-
culations in another worksheet, one cannot easily see this at the worksheet level
unless one looks deep down in the formulas and cells.

Some users initially have a design in mind, but as the spreadsheet is changed
over time and the spreadsheet gets disconnected from its original design. Another
reason the design is hidden is the fact that spreadsheets are often transferred from
one employee to the other. The recipient can only view the spreadsheet itself, but
its design is not transferred.

The disconnectedness between a spreadsheet and its design is the ‘dark side’
of the lack of design and flexibility of spreadsheets: it causes users to be afraid to
modify spreadsheets after some time, since they do not know what might happen.
In that case, spreadsheets are sometimes built anew—which is time-consuming—
or, even worse, kept in business despite their user’s lack of in-depth knowledge on
them.

In this dissertation we assert that the real problem with spreadsheets is the
missing connection between a spreadsheet and its underlying design. While the
invisibility of the design is very useful and user-friendly in most cases, there are
several scenarios in which it is of great importance to the spreadsheet user to be
able to view and even modify this model.

Situations in which a spreadsheet user wants to see the design are, among
others:

3http://eusprig.org/horror-stories.htm

6 INTRODUCTION 1.4

• When receiving a spreadsheet from a colleague

• When asked to judge the quality of a spreadsheet

• When making a major change to the spreadsheet

More powerful end-user programming systems, such as Microsoft Access or
Filemaker, solve this problem by forcing the user to create the design upfront.
However, we consider the flexibility of spreadsheets their greatest power and think
the number of situations where design information is needed are rare, but import-
ant nonetheless. We assert that it is better to allow users to work as they prefer,
while supporting them where needed. Hence, the central thesis of this research is
it is possible to support spreadsheet users in understanding and adapting the design
of their spreadsheets, without losing the flexibility of the spreadsheet programming
paradigm.

1.4 Related work
In this section we present a high-level overview of the state of the art in spread-
sheet research. While the problem of revealing the design of spreadsheets has
not been solved, there is substantial amount of work already done in spreadsheet
analysis. In this introduction, we mainly touch on areas of research that have
been done towards our research question. The main chapters of this dissertation
(Chapters 2-6) provide a more detailed background on related work.

1.4.1 Taxonomy of spreadsheet errors
Panko [Pan98] presents an overview of seven different field audits into spreadsheet
errors and shows that 86% of spreadsheets contain an error.

Ronen, Palley, & Lucas [Ron89] were the first to make a classification of differ-
ent types of errors, which they based on a literature review. It contains categories
that relate to the model itself, such as mistakes in logic and those concerning the
execution of the model, like incorrect cell references.

Panko and Halverson [Pan96] were the first to strive for a complete model of
spreadsheet errors and distinguished between quantitative and qualitative errors.
Quantitative errors are numerical errors and immediately produce a wrong result,
whereas qualitative errors do not lead to an incorrect value, but may produce
them when the spreadsheet is edited. They presented the following three main
categories of errors:

Mechanical Errors result from typing errors, pointing errors, and other simple
slips;

Logic Errors result from choosing the wrong algorithm or creating the wrong
formula;

1.4 RELATED WORK 7

Omission Errors result from leaving parts out of the model and often lead to
misinterpretation of the results of the model.

Most spreadsheet error papers focus on detecting mechanical errors, some
focus on helping the user spot logic errors. This research focuses on extracting
the design from a spreadsheet so errors can be found on the design level. This is
why we expect our method to be able to help the user find logic and even omission
errors.

1.4.2 Automated error detection
Erwig and Burnett have described a method for inferring types from spreadsheets
[Erw02] that can be used for static checking of spreadsheets [Ahm03]. This work
was implemented in the UCheck tool [Abr07a]. Unit analysis catches a specific
type of errors, namely formulas that incorrectly calculate with different (inferred)
types, which can be both a result of logic errors and mechanical ones. UCheck was
tested on spreadsheets created by university students [Abr07a] and an evaluation
with high school teachers was performed [Abr07b], which showed that UCheck
supports users in correcting unit error. We are not aware of industrial evalu-
ations of this method, hence we do not know its effectiveness when applied to
spreadsheets from practice.

Besides academic papers, the presence of errors in spreadsheets has led to
a series of commercial software packages, such as Spreadsheet Detective, Excel
Auditor and Operis Analysis Kit. Research has shown that these tools are quite
suitable for detecting mechanical errors such as values stored as text (82% success
rate) or incomplete range detection (55% success) [And04]. They however do not
catch errors in logic, such as the omission of a variable (18%) or an operator
precedence error (9%).

In 2010 Panko [Aur10] conducted a study in which several of those commercial
tools were compared, both with each other and with human auditors. “Overall,
the two spreadsheet static analysis tools performed terribly, and their detection
strengths paralleled the detection strengths of people instead of compensating
for weaknesses in human error detection. The 33 human inspectors found 54 of
the 97 errors, while only 5 errors were tagged by Error Check and Spreadsheet
Professional.” [Aur10].

We conclude that—although methods for automatic detection can certainly
find errors—they mainly speed up the process of error finding and do not detect
many errors that would not have been found by humans. In their current form,
they do not support users in assessing a spreadsheet’s design.

1.4.3 Spreadsheet testing
A third category of related work concerns the testing of spreadsheets. Centrepiece
in this category is the work of Rothermel et al., who have created [Rot97] and

8 INTRODUCTION 1.4

subsequently validated [Rot00] a method to support end-users in defining and
analyzing tests for spreadsheets. Their evaluation showed that their approach
had an average fault detection percentage of 81% which is “comparable to those
achieved by analogous techniques for testing imperative programs.” Other studies
have confirmed the applicability of testing [Kru06]. The WYSIWYT methodology
requires users to explicitly indicate what cells of a spreadsheet are correct and the
system propagates the testedness of a cell to its dependents. Related is the elegant
work of Burnett on spreadsheet assertions that uses a similar propagation system
[Bur03].

Although we strongly believe in the applicability of testing to spreadsheets,
we conclude that spreadsheet testing in its current form is useful to validate the
results of a spreadsheet and not to validate the design of the spreadsheet itself.
The information a test case gives, whether failing or succeeding, is only local and
does not support the spreadsheet user in understanding and improving the design
of a spreadsheet as a whole.

1.4.4 Refactoring
Refactoring source code is a“disciplined technique for restructuring an exist-
ing body of code, altering its internal structure without changing its external
behavior”[Fow99]. Refactoring can also be applied to spreadsheet formulas and is
related to the extraction of models from spreadsheets. So far two papers on this
topic have been published. O’Beirne [O’B10] describes three classes of spreadsheet
refactorings: for worksheets, for data and for macros (that are written in Visual
Basic for Applications in Excel). Badame and Dig [Bad12] have implemented
and evaluated RefBook: a tool that supports the user in refactoring of formulas.
RefBook offers seven different refactorings. Their evaluation shows that their re-
factorings are widely applicable, increase user productivity and the increase the
quality of the resulting spreadsheets.

While RefBook is very useful to improve formulas, it does not support the user
in finding the complex formulas or understanding their role in the spreadsheet
design. Hence, refactoring only does not solve our research question, but it is a
complimentary approach.

1.4.5 Finding high-level structures
Most related is the work of Mittermeir and Clermont [Mit02; Cle03]. Their aim is
similar to ours: to obtain a higher level view of spreadsheets. They find a higher
level view of a spreadsheet by analyzing the several different types of equivalence:

Copy equivalence As defined in [Saj00], two cells are copy-equivalent, if they
have the same format, and their formulas are equal

Logical equivalence Two formulas are logically equivalent, if they differ only
in constant values and absolute cell-references

1.5 RESEARCH QUESTIONS 9

Structural equivalence Two formulas are structurally equivalent, if they differ
in constant values, absolute- and relative references. Nevertheless, the same
operators and functions are applied in the same order to different data
[Cle03]

By abstracting over groups of cells that are equivalent, called equivalence
classes, Mittermeir and Clermont obtains a higher level view of a given spread-
sheet. This work has been an inspiration to us and was the first step in getting
a high-level overview of large and complex spreadsheets. Our aim however is
broader, as we also consider data and furthermore also take the division of the
formulas in worksheets into account.

1.4.6 Modeling spreadsheets
Abraham et al. have developed a system called ClassSheets [Abr05b; Eng05]
with which the design of a spreadsheet can be described. From this specific-
ation, spreadsheets can be generated. A related effort is the work of Cunha,
who transforms a spreadsheet into a database by analyzing functional dependen-
cies [Cun09a]. This work however does not communicate the extracted inform-
ation to the user, but rather uses it to enhance the spreadsheet system with
features such as auto-completion and safe deletion [Cun09c]. While evaluations
showed that this systems makes users more efficient and effective, the authors
also conclude that “that deeper insight on the spreadsheet models is required to
maximize effectiveness” [Bec11].

1.5 Research questions
From the previous section we can conclude that the problem of design extrac-
tion from spreadsheets has not yet been addressed fully. The central problem of
this dissertation, supporting spreadsheet users in understanding and adapting the
design of their spreadsheets, has not been solved.

Spreadsheet are similar to software in many ways. Firstly, both concern data
and the manipulation of that data, and both are concerned with presenting res-
ults to the user. Also, in both cases organization matters: calculations can be
structured into coherent groups (worksheets and classes for instance). Finally,
both spreadsheets and software are built and maintained by different people with
often different styles and preferences on how to organize them.

However, in contrast to spreadsheet users, software engineers are known and
trained to be very much interested in the design of software systems and the
subsequent evaluation and adaption of software systems. Therefore in software
engineering, much research has already been done in the field of automated ana-
lysis of software that could be potentially transferred to spreadsheets.

In conclusion, software engineering is a feasible topic to get our inspiration
from. This idea leads to the central research questions of this dissertation:

10 INTRODUCTION 1.6

RQ1 To what extent are methods and techniques from software engineering ap-
plicable to the spreadsheet domain?

RQ2 How can we visualize the underlying design of a spreadsheet in order to
support spreadsheet understanding?

RQ3 To what extent does the visualization and analysis of the design of a spread-
sheet support users in assessing quality of their spreadsheet?

When answering these research questions, we consider the different parts of
which a spreadsheet design consist.

First, spreadsheets contain data. Secondly, there is the aspect of metadata:
data entered as a description of other data. While spreadsheet systems do not
distinguish this type of data from ‘ordinary’ data, spreadsheet users often do, by
placing this data in the first row or column or giving it a different layout such
as a bold or larger font. A third and central component are the formulas. This
is the way that calculations are performed in a spreadsheet. Finally, there is the
organization of a spreadsheet. This relates mostly to the way in which the data
is divided into worksheets and into different tables within those worksheets.

For each of the four different aspects, we use different methods and techniques
to analyze and visualize them.

1.6 Methodology
To answer our research questions, we have conducted several different studies.
Central in all these studies has been the use of industrial spreadsheets and, where
possible, the involvement of the users of the spreadsheets into our research.

In the studies, we have followed this research strategy:

1. Observe and learn form spreadsheet users and identify a real-life problem

2. Propose and implement a solution

3. Evaluate the approach with actual spreadsheets and their users

For the first step, the core method of this research is based on grounded the-
ory. Grounded theory is a qualitative research method that discovers theory
from data [Gla67]. When using grounded theory, observations are documented
and subsequently coded into categories. During this coding process, which takes
place after each observation—as opposed to after all observations—a theory might
emerge [Ado08]. Grounded theory is a method especially suited for discovering
problems that exist for the participants. Therefore, in a grounded theory study,
the researcher works with a general area of interest rather than with a specific
problem [McC03]. Before we started our first user study, we performed a study
based on the principles of grounded theory [Her11]. The aim of this study was to

1.7 BACKGROUND OF THIS DISSERTATION 11

collect a set of problems that could be solved in the remainder of the research.
We did not perform this study to validate an idea we already had. We wanted
to learn about problems and find suitable solutions to them, possible from the
software engineering domain.

Only after we had collected a set of problems, of which understandability and
quality control were the most prominent ones, we started to create prototypes.
While building prototypes, we took our inspiration from analyses that are well es-
tablished in the domain of software engineering, and adapted them to the domain
of spreadsheets.

For the third step, we have employed a mixed method evaluation: a combin-
ation of both qualitative and quantitative evaluations [Cre03]. More specifically,
we used an explanatory sequential design in these mixed methods studies [Tas98].
An explanatory sequential study starts with a quantitative study to get initial an-
swers to research questions and then searches for context in real-life case studies.

In two of the case studies, the spreadsheets under study were confidential and
thus we could not share them. While we are strong believers in open data, we
value research in a real industry setting even higher and this sometimes comes
at the price of reduced repeatability. When possible, we have shared our data
online.

We furthermore consider it important to share results from research with those
who might benefit from it and have therefore, through our spinoff Infotron, made
our tool Breviz available as a service.4 While some researchers choose to make
there tools open source, we consider a low threshold for trying more important
and a simple upload-analysis service suits the needs of the end-users our tool aims
at.

1.7 Background of this dissertation
The main chapters (Chapters 2-6) of this dissertation are slight adaptations of
previously published conference papers. Since these papers were published inde-
pendently, they can be read independent of each other. This is why there is some
redundancy in background, motivation and examples in these chapters.

The following section gives on overview of this dissertation. In Chapter 2
we introduce a technique to automatically extract metadata information from
spreadsheets and transform this information into class diagrams. The resulting
class diagram can be used to understand, refine, or re-implement the spread-
sheet’s functionality. To enable this transformation we create a library of common
spreadsheet usage patterns. These patterns are localized in the spreadsheet us-
ing a two dimensional parsing algorithm. The resulting parse tree is transformed
and enriched with information from the library. We evaluate our approach on
the spreadsheets from the EUSES Corpus [Fis05a] by comparing a subset of the
generated class diagrams with reference class diagrams created manually. This

4app.infotron.nl

12 INTRODUCTION 1.7

chapter previously appeared in the Proceedings of the 2010 European Conference
on Object Oriented Programming (ECOOP) [Her10].

Chapter 3 describes a study of the problems and information needs of pro-
fessional spreadsheet users by means of a survey conducted at a large financial
company. The chapter furthermore proposes an approach that extracts needed in-
formation from spreadsheets and presents it in a compact and easy to understand
way: with leveled data flow diagrams. Our approach comes with three different
views on the data flow that allow the user to analyze the data flow diagrams
in a top-down fashion. To evaluate the usefulness of the proposed approach, we
conducted a series of interviews as well as nine case studies in an industrial set-
ting. The results of the evaluation clearly indicate the demand for and usefulness
of our approach in easing the understanding of spreadsheets. This chapter was
published in the Proceedings of the 2011 International Conference on Software
Engineering (ICSE)[Her11].

Subsequently, in Chapter 4 we aim at developing an approach for detecting
smells that indicate weak points in a spreadsheet’s design. To that end we first
study code smells and transform these code smells to their spreadsheet counter-
parts. We then present an approach to detect the smells, and to communicate
located smells to spreadsheet users with data flow diagrams. To evaluate the
approach, we analyzed occurrences of these smells in the EUSES corpus. Fur-
thermore we conducted a case study with ten spreadsheets and their users in
an industrial setting. The results of the evaluation indicate that smells can in-
deed reveal weaknesses in a spreadsheet’s design, and that data flow diagrams
are an appropriate way to show those weaknesses. This work appeared in the
2012 Proceedings of the International Conference on Software Engineering (ICSE)
[Her12b].

In Chapter 5 we study smells in spreadsheets, however in this chapter we fo-
cus on smells at the formula level. Again we take our inspiration from known
code smells and apply them to spreadsheet formulas. To that end we present a
list of metrics by which we can detect smelly formulas and a visualization tech-
nique to highlight these formulas in spreadsheets. We implemented the metrics
and visualization technique in a prototype tool to evaluate our approach in two
ways. Firstly, we analyze the EUSES spreadsheet corpus, to study the occurrence
of the formula smells. Secondly, we analyze ten real life spreadsheets, and in-
terview the spreadsheet owners about the identified smells. The results of these
evaluations indicate that formula smells are common and that they can reveal
real errors and weaknesses in spreadsheet formulas. This chapter appeared in the
2012 Proceedings of International Conference on Software Maintenance (ICSM)
[Her12c].

In Chapter 6 we study cloning in spreadsheets. Based on existing text-based
clone detection algorithms, we have developed an algorithm to detect data clones
in spreadsheets: formulas whose values are copied as plain text in a different
location. To evaluate the usefulness of the proposed approach, we conducted
two evaluations: A quantitative evaluation in which we analyzed the EUSES

1.7 BACKGROUND OF THIS DISSERTATION 13

Corpus and a qualitative evaluation consisting of two case studies. The results
of the evaluation clearly indicate that 1) data clones are common, 2) data clones
pose threats to spreadsheet quality and 3) our approach supports users in finding
and resolving data clones. The final chapter of this dissertation will appear in
the 2013 Proceedings of the International Conference on Software Engineering
(ICSE) [Her13]. Finally, Chapter 7 presents the conclusions of this dissertation
and discusses future work.

In addition to the above listed papers, we have written several other public-
ation over the course of the PhD project. Firstly, there is the 2010 MODELS
publication: Domain-specific languages in practice: A user study on the success
factors, which studies the success of domain specific languages in practice. We
analyzed the impact of ACA.NET, a DSL developed by Avanade, that it is used to
build web services that communicate via Windows Communication Foundation.
We evaluated the success of this DSL by interviewing developers. The question-
naire that we developed for this evaluation has been built upon by several other
researchers [Gon10; Gab10].

The research conducted for this paper led to the insight that spreadsheets
could be a viable topic for research. While interviewing business professionals, we
noticed that they were not so interested in learning to program in a DSL, since
they were already programming in Excel.

In 2010 we furthermore published a position paper at ICSE workshop Flex-
iTools on the possibility of extracting the information in documents to support
the requirements analysis phase of a software project. In 2011, we wrote a short
overview of our analysis tool Breviz that was published at the 2011 annual con-
ference of the European Spreadsheet Risk Interest Group (Eusprig). This paper
was awarded the David Chadwick prize for best student paper. At Eusprig 2012
we published a paper on spreadsheet formula metrics that formed the basis for
our ICSM 2012 paper that is incorporated in this dissertation as Chapter 5.

14 INTRODUCTION 1.7

Chapter2
Extracting Class Diagrams from
Spreadsheets

2.1 Introduction
To design and implement a software system a high degree of familiarity with the
domain of the software is needed. We conjecture that a significant portion of this
domain knowledge is already available in digital form. In particular spreadsheets,
which are widely used for many professional tasks, are likely to contain a wealth
of implicit knowledge of the underlying application domain. It is the purpose of
this chaper to help make this knowledge explicit.

Spreadsheets were introduced in the early 1980’s with the first spreadsheet
tool called VisiCalc. This tool was then followed by SuperCalc and Lotus 123
and later on by Excel which currently is one of the most prominent spreadsheet
tools. Since their introduction, spreadsheets are heavily used in industry. A study
from the year 2005 shows about 23 million American workers use spreadsheets,
which amounts to about 30% of the workforce [Sca05].

Spreadsheets can be a rich source of information concerning the structure of
the underlying domain. They contain groups of data, computations over these
groups, and data dependencies between them. In our approach, we will attempt
to make this structure explicit, by representing it as a class diagram. Groups of
data are turned into classes, formula’s into methods, and data dependencies into
associations. The resulting class diagram can be used by software engineers to
understand, refine, or re-implement the spreadsheet’s functionality.

The research community noticed the importance of spreadsheets and devoted
considerable research effort to them. This research mainly aims at two directions:
1) the localizations of errors within existing spreadsheets [Abr04; Abr06; Abr09;
Abr07b; Ahm03; Mit02] and 2) the development of guidelines on how to cre-

15

16 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.1

Figure 2.1: Fruit example taken from [Abr04].

name
Fruit

name
Month**

value
Amount

total(Fruit)
total(Month)
total()

Reporter

*
1

Figure 2.2: Class diagram extracted from the fruit example.

ate well-structured and maintainable spreadsheets [Fis02; Jan00; Kni00; Pan94;
Ron89]. Both directions share the goal of improving spreadsheet quality, which is
necessary because the current state of spreadsheet use leads to numerous problems
as described in several papers, most notably in the work of Panko [Pan98].

While some guidelines for designing spreadsheets and algorithms for detecting
errors in spreadsheets exist, the elicitation of the domain information stored in
spreadsheets for developing software systems has, to the best of our knowledge,
not been addressed, yet (See Section 2.10 for a discussion of the most directly
related literature).

To illustrate our approach, we will use the example presented in Figure 2.1,
taken from Abraham and Erwig [Abr04].

This spreadsheet is used to list the number of different fruits (i.e., apples and
oranges) that have been harvested in May and June. It also provides functions to
calculate the total numbers per fruit, per month, and a function for the calculation
of the overall number of harvested fruits. The structure of this spreadsheet is a
common pattern that occurs in many spreadsheets. Taking a closer look at this
spreadsheet, the information it contains could be represented by the class diagram
shown in Figure 2.2.

For the extraction of this class diagram, first the two classes Fruit and Month
were identyfied, with instances Apple and Orange and May and June respect-
ively. The two classes are linked with each other by the cells B3 to C4 that spe-
cify the amount of fruits (instances of class Fruit) for each instance of the class
Month. This link is represented by the association class Amount with an attrib-
ute value. Furthermore the spreadsheet contains operations to calculate the Total

2.2 BACKGROUND 17

per fruit, per month, and the overall total number of fruits. These operations can
be provided by a Reporter class that we added to the class diagram. The result-
ing class diagram contains the core design elements to represent this spreadsheet
and might be used by a developer, for example, to design a simple fruit-statistic
application, or to reason about (errors in) the structure of the spreadsheet.

In this chapter we focus on the automation of the extraction of such class dia-
grams from spreadsheets. We propose a systematic approach, called Gyro, which
is supported by a tool capable of analyzing Microsoft Excel sheets. Gyro trans-
forms spreadsheets into class diagrams automatically by exploiting commonality
in spreadsheets, like the pattern in Figure 2.1. To that end we create a library
containing common spreadsheet patterns, inspired by both related work in the
field of spreadsheet design and analysis of a range of existing spreadsheets. These
patterns are detected within the spreadsheet using a combination of parsing and
pattern matching algorithms. Each pattern in the library is associated with a
mapping to a class diagram.

In order to evaluate our approach we made use of the EUSES Spreadsheet
Corpus [Fis05b]. This corpus contains over 4000 real world spreadsheets from
domains such as finance, biology, and education. In our evaluation we demonstrate
that our patterns can be found in around 40% of the spreadsheets. Furthermore
we provide a systematic comparison of the generated class diagrams for a random
selection of 50 spreadsheets for which we manually derived class diagrams.

The remainder of this chapter is structured as follows: Section 2.2 intro-
duces the necessary background information on modeling spreadsheets and two-
dimensional language theory. The Gyro approach is presented in Section 2.3 with
details of the parsing and transformation described in the Sections 2.4, 2.5 and
2.6. Section 2.7 gives a brief description of the current implementation of the
Gyro prototype. The evaluation of the approach is presented in Section 2.8. The
results are discussed in Section 2.9 followed by Section 2.10 that presents an over-
view of the work in the field of spreadsheets. The conclusions can be found in
Section 2.11.

2.2 Background
Before presenting our Gyro approach for recognizing spreadsheet patterns, we
provide a brief survey of the preliminaries we build upon. These originate from
the realm of spreadsheet testing and analysis [Abr04; Mit02], as well as from the
domain of two-dimensional languages [Gia96].

2.2.1 Cell types
Most papers on spreadsheet analysis distinguish between different cell types [Abr04;
Mit02]. Abraham and Erwig [Abr04] for instance identifies header, footer, data
and filler cells. Mittermeir and Clermont [Mit02] on the other hand defines empty

18 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.2

cells, formulas and constant values. We mostly follow the approach of the former,
but we replace filler cells by empty cells. We do so because we use patterns to
identify structure in a spreadsheet. Therefore we are not interested in filler cells,
which usually occur between patterns. With this, the following basic cell types
are recognized by our approach:

Label A cell that only contains text, giving information about other cells (called
header in [Abr04])

Data A cell filled with data

Formula A cell containing a calculation over other cells (called footer in [Abr04])

Empty An empty cell

We prefer the terms label and formula over header and footer, because the
latter have some kind of intrinsic meaning concerning their position. We want
to be able to freely define any pattern, including some with ’footers’ on top. To
determine the type of a cell, we use a simple strategy, which basically follows the
approach of [Abr06]. This algorithm is described in Section 2.4.3.

2.2.2 Pattern languages for two-dimensional languages

To define patterns over spreadsheets we make use of existing notations from the
theory of two-dimensional languages [Gia96] which is a generalization of the stand-
ard theory of regular languages and finite automata.

Let Σ be a finite alphabet. Then we define:

Definition 1. A two-dimensional pattern over Σ is a two-dimensional array of
elements of Σ.

Definition 2. The set of all two-dimensional patterns over Σ is denoted by Σ∗∗.
A two-dimensional language over Σ is a subset of Σ∗∗.

Given a pattern p over an alphabet Σ, let l1(p) denote the number of rows of
p and l2(p) denote the number of columns of p. The pair 〈l1(p), l2(p)〉 is called
the size of p. Furthermore, if 0 ≤ i < l1(p) and 0 ≤ j < l2(p) then p(i, j) denotes
the symbol ∈ Σ on position (i, j). The pattern with size 〈0, 0〉 is called the empty
pattern and is denoted with λ. Patterns of the size 〈0, n〉 or 〈n, 0〉 with n > 0 are
not defined.

Next we define concatenation operations used to combine patterns. Let p be a
pattern over Σ of size 〈m,n〉 and q be a pattern over Σ′ of size 〈m′, n′〉. We first
define the rectangle we can obtain by putting q to the right of p, assuming p and
q have the same number of rows, resulting in a rectangle of size 〈m = m′, n+ n′〉

2.2 BACKGROUND 19

Definition 3. The column concatenation of p and q (denoted by p:q) is a partial
operation, only defined if m = m′, is a pattern over Σ ∪ Σ′ given by

(p: q)(i, j) =

{
p(i, j) if j ≤ n

q(i, j − n) otherwise

Similarly, we define how we can position q directly below p if p and q have the
same number of columns, resulting in a rectangle of size 〈m+m′, n = n′〉

Definition 4. The row concatenation of p and q (denoted by p	 q) is a partial
operation, only defined if n = n′, is a pattern over Σ ∪ Σ′ given by

(p	 q)(i, j) =

{
p(i, j) if i ≤ m

q(i−m, j) otherwise

We will refer to these two operations as the catenation operations. Catenation
operations of p and the empty picture λ are always defined and λ is the neutral
element for both catenation operations. The catenation operators can be extended
to define concatenations between two-dimensional languages.

Definition 5. Let L1, L2 be two-dimensional languages over alphabets Σ1 and Σ2

respectively, the column concatenation of L1 and L2 is a language over Σ1 ∪ Σ2

denoted by L1 : L2 is defined by

L1 : L2 = {p: q|p ∈ L1 ∧ q ∈ L2}

Similarly the row concatenation of L1 and L2 is a language over Σ1 ∪ Σ2

denoted by L1 	 L2 is defined by

L1 	 L2 = {p	 q|p ∈ L1 ∧ q ∈ L2}

Definition 6. Let L be a pattern language. The column closure of L (denoted by

L
∗:

) is defined as

L
∗:

=
⋃
i≥1

Li:

where L1: = L and Ln: = L:L(n−1):. Similarly, the row closure of L (denoted

by L
∗	

) is defined as

L
∗	

=
⋃
i≥1

Li	

where L1	 = L and Ln	 = L	 L(n−1)	.

We will refer to these two operations as the closure operations. With respect
to priorities we define that closure operations bind stronger than catenation op-
erations.

20 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.3

2.2.3 Pattern grammars
To describe common spreadsheet patterns, we make use of pattern grammars.
Pattern grammars are a two-dimensional generalization of ordinary grammars.
This generalization is based on the observation that a production rule of the form
S → ab actually means that S may be replaced by a followed by b. In regular
rewriting, the ’followed by’ can only occur in one direction, so this is not expressed
in the grammar. To define production rules in two dimensions, we use two symbols
from two-dimensional language theory that express direction, 	 and : and their
closure operations ∗	 and ∗:

Definition 7. The set of all two-dimensional pattern languages over Σ is a subset
of Σ∗∗ called L(Σ) is inductively defined by:

λ ∈ P(Σ)
a ∈ P(Σ) , if a ∈ Σ

L
∗	 ∈ P(Σ) , if L ∈ L(Σ)

L
∗: ∈ P(Σ) , if L ∈ L(Σ)

L1 	 L2 ∈ P(Σ) , if L1, L2 ∈ L(Σ)
L1 : L2 ∈ P(Σ) , if L1, L2 ∈ L(Σ)

To avoid ambiguity we use the convention that closure operations bind stronger
than catenation operations.

Definition 8. Just as a normal grammar, a pattern grammar G is defined as a
quadruple

G = (V, T, S, P)

where V is a finite set of non-terminals, T is a finite set of terminal symbols, S ∈
V is a special symbol called the start symbol, and P is a finite set of productions.

Productions are tuples (v, p) of a non-terminal v and a pattern p, denoted as
v → p. v is also indicated with lefthand side, whereas p is called righthand side.
Since we only allow non-terminals on the lefthand side, this is a context free gram-
mar. The pattern grammars in our work will always consist of the basic cell types,
thus the alphabet of terminals is always equal to {Label, Empty, Formula,Data},
therefore we will omit T in definitions of grammars. Unless indicated otherwise,
Pattern is the start symbol S of any grammar in this chapter.

2.3 The Gyro approach to spreadsheet reverse engineering
The goal of this chapter is to distill class diagrams from spreadsheets. To that
end we propose the Gyro approach, in which typical spreadsheet usage patterns
can be specified, automatically recognized and transformed into class diagrams.

When investigating the way people use spreadsheets, we noticed that there
are some common ways in which people represent information in spreadsheets.

2.4 PATTERN RECOGNITION 21

Typically data that concerns the same topic is found grouped together in rows
or columns separated by empty cells. These spreadsheet patterns are found in all
kinds of spreadsheets, independent of the business area the spreadsheet originates
from. We exploit this commonality by introducing a library of common spread-
sheet structures. The transformation into class diagrams is done in two steps, as
shown in Figure 2.3.

Figure 2.3: Overview of the Gyro approach showing the two basic steps Parsing and
Transformation to transform spreadsheets into class diagrams

We start by localizing patterns from the library in the spreadsheet, by using
a two-dimensional parsing algorithm. If a pattern is found the result of this al-
gorithm is a parse tree. Each of the patterns in the library contains additional
information that defines how the parse tree is transformed into a class diagram.
This transformation represents the second step of our approach. The parsing is
explained in more detail in Section 2.4 and Section 2.5 describes the transforma-
tion step.

The use of a library of patterns was greatly motivated by the need for flexible
information extraction. We do not believe the current library contains all pattern
grammars needed. So when we encounter a common spreadsheet that is not part
of our library, we can add it to the library. Gyro is then able to recognize it imme-
diately, without adaptation of the implementation. The patterns in the library are
based both on existing work on spreadsheet design patterns [Jan00; Pan94; Ron89]
and on the analysis of patterns encountered in the EUSES Corpus [Fis05b].

2.4 Pattern recognition

2.4.1 Overview
In order to identify regions in a spreadsheet that adhere to a given pattern, we
follow the pattern recognition approach outlined in Figure 2.4. First, we identify
rectangles in the spreadsheet that are filled with Data, Formula or Label cells, by
using an algorithm to determine bounding boxes (Section 2.4.2). In Figure 2.1
for instance, this bounding box is given by the cells A1 × D5. Because we assume

22 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.4

occurrences of pattern are separated by empty cells, we evaluate these rectangles
as possible occurrences of patterns. Next each cell is assigned one of the basic cell
types: Data, Formula, Label or Empty (Section 2.4.3).

Figure 2.4: Overview of the pattern recognition process

In parallel, the grammar is normalized to a form that only contains catenation
operations, in order to simplify the parsing step (Section 2.4.4). Then a filtering
step is applied, in which we check the type of the left-most upper-most corner
of the bounding box. We determine which of the patterns in the library have
this symbol as a possible first terminal (Section 2.4.5) We only start the parsing
algorithm if the cell in the left-most upport most corner matches a first terminal of
one of the patters in the library. The parsing algorithm is an adaption of standard
recursive descent parsing [Aho86] adjusted to handle two-dimensional grammars
(Section 2.4.6).

It is possible several patterns are applicable for processing the cells of a bound-
ing box. In such cases the algorithm returns the set of all matched patterns.

2.4.2 Finding bounding boxes
A bounding box is defined as the smallest rectangle containing a connected group
of cells of type Data, Label or Formula. Two cells are connected if they touch
each other horizontally, vertically or diagonally. To find such a bounding box, we
apply the following strategy: Find the left-most upper-most non-empty cell that
is not yet contained within a bounding box. The initial bounding is set to contain
only this cell. Next this bounding box is expanded until the size remains stable.
Expanding is done by inspecting all cells that connect to the bounding box. If
one of these cells is non empty, the bounding box is enlarged to include this cell.
In Figure 2.4 the identified bounding boxes are marked grey.

2.4.3 Cell classification
To distinguish between cell types, we use the cell classification strategy described
by Abraham and Erwig [Abr04]. This algorithm starts with identifying all cells
containing a formula and mark them as type Formula (green cells in Figure 2.4).
Next we look at the content of the formula’s. Cells that are referred to a formula
are marked Data, unless they also contain a formula (orange cells in Figure 2.4).

2.4 PATTERN RECOGNITION 23

In that case they are marked as Formula as well. Remaining cells that are empty
are identified as Empty (white cells in Figure 2.4); all others are recognized as a
Label (grey cells in Figure 2.4).

2.4.4 Normalization
To simplify the parsing algorithm, we assume that the pattern under consideration
only consists of 	 and : symbols. Therefore, we first transform the pattern to
this form, which we call catenation normal form. Every possible pattern has an
equivalent pattern in catenation normal form. To obtain this normal form row or
column concatenation closures are replaced by right recursion. For instance

Pattern → (Label :Data)∗	

becomes

Pattern → A

A → Label :Data

(A → Label :Data)	A

This strategy is applied repeatedly until the grammar does not contain any
closure symbol.

2.4.5 Filtering
In two-dimensional pattern matching filtering is a widely used approach [Bak78;
Bir77; Zhu89]. Filtering reduces the problem of finding a pattern P in an array T
to finding a substring p in string t, where a detected match of p in t corresponds
to a possible match of P in T . We use this idea by calculating all possible first
terminals of a given pattern grammar. Next we determine whether there is a
detected bounding box that has this symbol in its upper-left corner. We only
start parsing the given pattern for these bounding boxes.

2.4.6 Parsing
To determine whether a given bounding box complies with a given pattern Q,
we apply a recursive descent parsing strategy with some small modifications to
handle two-dimensional structures.

Algorithm 1 provides an outline of our approach. This procedure takes a
bounding box B and a pattern grammar G as its parameters. We begin with the
start symbol of the grammar and expand it until the first symbol is a terminal.

24 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.5

Expanding means replacing the left-hand side of a production rule by a corres-
ponding right-hand side (Algorithm 1, lines 7-12). If a non-terminal occurs as
the left-hand side of multiple production rules, all of them are evaluated. If a
terminal is found, we examine whether this is the expected terminal. If it is, the
parsing continues, otherwise it fails (Algorithm 1, lines 14-19).

This process requires some administration, for which we introduce a data-
type Position, containing an x- and y-coordinate, representing a position in the
spreadsheet, and a string T that has to be parsed at that position. The set S
represents all Positions that still have to be evaluated. At the start of Algorithm
1, S is initialized to contain only one Position with coordinates (i, j) and string
X. (i, j) is the upper left corner of the bounding box B and X is the start symbol
of grammar G. The set T represents all successfully parsed patterns, so if parsing
succeeds for a given pattern at a given position, this position is added to the set
T .

The evaluation of a Position P is done in the body of the While-loop on lines
6-21 and works as follows. If P starts with a non-terminal, say Y , a new Position
is added to S for every possible right-hand side r belonging to Y . That new
Position has the same coordinates as P , and contains string T , where the first
occurrence of Y is replaced by right-hand side r. Since S now contains all possible
scenarios from the parsing of P , we can remove P from S. Evaluation continues
with the remainder of set S.

If P starts with a terminal, say t, the actual parsing happens. (Lines 14-19)
We determine if the symbol at position (x, y) is equal to t. If that is not the case,
parsing for this particular position fails, and P is removed from S. If (x, y) is equal
to t, t is removed from T . Since terminals are always followed by a catenation
symbol, the first symbol of T is a catenation symbol, say c. The cursor is then
moved according to c. If this is a column catenation symbol, the cursor moves to
the right, if it is a row concatenation, the cursor moves downward. This moving
is aware of the size of the bounding box and will fail if the cursor is about to go
out of bounds. After that the evaluation continues with the modified P .

2.5 From patterns to class diagrams

2.5.1 Using annotations

Given a pattern and a spreadsheet, the two-dimensional parsing algorithm just
described can identify rectangles in the spreadsheet that match the pattern. The
result is a parse tree, representing the full content of the rectangle, as well as the
hierarchy of productions applied to match the rectangle to the pattern.

In order to turn this parse tree into a class diagram, our primary interest is in
the structure of the spreadsheet, not in the actual cell contents. Therefore, our
next step consists of identifying those nodes in the parse tree that can help to
reveal this structure. We do so by offering the user of our tool the possibility to add

2.5 FROM PATTERNS TO CLASS DIAGRAMS 25

Algorithm 1 Two-dimensional Parsing(BoundingBox B, Grammar G)

1: Position P ← (B.i, B.j,G.X)
2: Set T ← ∅
3: Set S ← {P}
4: while S 6= ∅ do
5: P ← a position from S
6: while P.T 6= ”” do
7: if FirstSymbol(P.T) is non-terminal Y then
8: for all Productions Y → r do
9: Create new Position Pl,

10: with x = P.x, y = P.y and T = r ·Rest(P.T)
11: Add Pl to S
12: end for
13: else
14: if FirstSymbol(P.T) == B(P.x,P.y) then
15: Remove First Symbol of P.T
16: Move Cursor according to FirstSymbol(P.T)
17: else
18: Remove P from S {Parsing fails for this position}
19: end if
20: end if
21: end while
22: Add P to T
23: Remove P from S
24: end while

26 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.5

Figure 2.5: Overview of the Transformation step to transform a parse tree into a class
diagram

Figure 2.6: Simple Customer spreadsheet

annotations to pattern definitions, which will subsequently guide a transformation
of the parse tree into class diagram.

Using annotations to turn a parse tree into a class diagram is done in two
steps, as depicted in Figure 2.5. First, the annotations are used to prune the
parse tree into a representation tree only containing relevant nodes. Next, this
representation tree is enriched so that a meaningful class diagram can emerge.

To see annotations in action, consider the simple spreadsheet shown in Figure
2.6. In this spreadsheet, one can recognize a class “Customer”, with fields “Sur-
name” and “Address”. Thus, we define a pattern that can recognize spreadsheets
like this one:

G :

Pattern → Headerrow 	 (Datarow
∗	

)

Headerrow → Label: Empty

Datarow → Label: Data

In this pattern definition, the classname can be obtained from the headerrow,
and the field names from the data rows. Thus, we add annotations to capture

2.5 FROM PATTERNS TO CLASS DIAGRAMS 27

Figure 2.7: Parse tree generated for the Customer spreadsheet

exactly this:

G :

Pattern : class → Headerrow 	 (Datarow
∗	

)

Headerrow → Label : name: Empty

Datarow → Label : field: Data

Here we see that the Label of a header row represents the name of the class,
and that the Label of a data row represents the field name.

Annotations are permitted on both terminals and non-terminals. For terminals
they are an indication that the content of the cell contains relevant information
(such as the name of a field). For non-terminals they are an indication that the
non-terminal in question should be kept in the representation tree. Note that an
annotation for the root is not required: Hence the result of the transformation
can be either a tree or a forest.

Algorithm 2 Tree transformation

1: Remove all non-annotated leaves
2: Remove all non-annotated nodes without annotated descendants
3: Remove all non-annotated nodes, their (annotated) children become children

of their lowest annotated ancestor

The annotations can be used to prune the parse tree as described in Al-
gorithm 2. The original parse tree, with annotations marked in grey, is depicted
in Figure 2.7; the corresponding pruned representation tree is shown in Figure 2.8.

2.5.2 Class diagrams
In this chapter, the output of the transformation step are class diagrams. There-
fore, the annotations that can be used to define the transformation represent the
basic building blocks of class diagrams: class, name, field, and method. Since the

28 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.6

Figure 2.8: Representation tree after the transformation of the Customer parse tree

latter three are properties of a Class, they can be used as annotations of terminals,
and Class itself occurs as annotation of non-terminals. Referring to the Customer
example the class diagram contains a class Customer with two fields Surname
and Adress.

2.5.3 Enrichment
The transformation step results in one or more classes. In most cases there is a
relation between the different classes. In the second part of the annotation the
relation between the resulting trees can be expressed. The following relations can
be defined in the pattern:

Association(C1, C2, m1, m2, C3) This defines an association between two classes,
C1 and C2. Optionally, we can define multiplicities m1 and m2 for this as-
sociation. The last argument is again a class and represents an association
class of this association.

Merge(C1,C2) The operation merges two classes into one class containing all
fields and methods of both classes. If fields or methods with equal names
are encountered both will appear in the new class. To distinguish between
them their original class name will be appended to the method of field name.
The Merge-operation is useful if class information is scattered around the
spreadsheet and can not be easily captured within one production rule.

Reference(C1,C2) A reference is used in the creation of the class diagram, but
will not appear in the class diagram itself. A reference between two classes
is added when information about the names of fields and methods of C1 can
be found in C2. This is used when information from the spreadsheet has to
be used in multiple classes.

We will see examples of the use of these relation declarations in the next
section.

2.6 SPREADSHEET PATTERNS 29

Figure 2.9: Simple class spreadsheet pattern

Figure 2.10: Class diagram extracted from a Simple class spreadsheet pattern

2.6 Spreadsheet patterns

By inspecting the EUSES spreadsheet corpus [Fis05b], and looking at related
work in spreadsheet design [Jan00; Kni00; Pan94; Ron89] we have identified a
number of reoccurring patterns in spreadsheets into a pattern library. In this
section, we describe the syntax of a selection of the most interesting spreadsheet
design patterns in this library.

2.6.1 Simple class

The simplest pattern in the library is a list of instances as shown in Figure 2.9.
The column headers provide the names of the fields, as captured in the following
pattern.

Pattern : class → X
∗:

X → Label : Field	 Data
∗	

Note that the spreadsheet content provides no clue about the name of the
class. The class diagram that corresponds to this pattern is shown in Figure 2.10.

30 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.6

2.6.2 Simple class including name
If there is a row above a simple class pattern with only one label, we assume
this is the name of the resulting classs, as described by the second pattern in the
library.

Pattern : class → Label : name: Empty
∗:
	X

∗:

X → Label : Field	Data
∗	

2.6.3 Simple class including methods
If one of the columns contains formula’s, this column is likely to represent a
method of the resulting class. To include this, we add the following production
rule to the simple class pattern (with or without class name).

X → Label : method	 Formula
∗	

2.6.4 Aggregation
If there is a formula below a simple class, this represents a calculation over all
instances, which we catch in a Reporter Class that references all the instances.
For each Formula we encounter, we introduce a nameless method in the reporter
class.

Pattern → Simple	Reporter
Simple : class → Label: Empty

∗:
	X

∗:

X → Label : field	 Data
∗	

X → Label : method	 Formula
∗	

Reporter : class → Label: Formula
∗	

: method

The methods of the Reporter class are empty in this case, but they correspond
one-to-one with the names of the fields of the simple class. Therefore a Reference
clause is added, in the enrichment step the names will be copied to the Reporter
class. The relation between the simple class and the reporter class is defined by
the Association clause.

Reference(Reporter, Simple)

Association(Simple,Reporter, ∗, 1)

All of the above patterns can also occur vertically, rotated 90 degrees. Figure
2.6 shows an example of a spreadsheet in which the rotated version of the ”Simple

2.7 SPREADSHEET PATTERNS 31

class” pattern is applied. Our library also contains the vertical variants of all
above patterns.

2.6.5 Associated data
The final pattern in our library concerns two different classes, with data associated
to both of them. This pattern represents two classes with an association between
the two classes that contains the data.

Pattern → C1 : (C2 	 C3)

C1 : class → Empty	 Label∗	

C2 : class → Label: Empty∗:

C3 : class → (Label	 Data∗)∗:

The relation between the classes is defined by the following clause.

Association(C1, C2, ∗, ∗, C3)

Furthermore, there could also exist aggregations over this data, like in the fruit
example in Figure 2.1. In that case we add an association between a Reporter
class containing the aggregation methods and the association class, as shown in
Figure 2.2. We model this in the representation tree as an Association with
methods. To recognize this the following pattern is included in the library. This
pattern also occurs in one direction only, in that case either D1 or D2 is omitted.

Pattern → (C1 : (C2 	 C3) :D1)	D2

C1 : class → Empty	 Label∗	

C2 : class → Label: Empty∗:

C3 : class → (Label	 Data∗)∗:

D1 : class → Label : method	 Formula∗	

D2 : class → Label : method: Formula∗:

In this case, the classes D1 and D2 both represent the Reporter Class, but it
is not possible to catch them within one production rule because of the structure
of the spreadsheet. Therefore, we need a Merge-clause in this case. Furthermore
one more association needs to be defined, between the reporter class and the
association class.

Merge(D1, D2)

Association(C1, C2, ∗, ∗, C3)

Association(C3, D1, ∗, 1)

32 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.8

2.7 Implementation

The approach for extracting class diagrams from spreadsheets as described in the
previous sections has been implemented in the Gyro tool suite1, targeting Mi-
crosoft Excel spreadsheets. Gyro users can specify the directory they want to
analyze. Gyro loads all .xls and .xlsx files from that directory and ignores other
files. Furthermore the user can specify in which directory the patterns can be
found. Patterns are just plain text files containing a pattern grammar. Options
of the current implementation include the coloring of a spreadsheet representing
the basic cell classification, the search for patterns within spreadsheets, the visu-
alization of the parse tree and the pruned parse tree, and the full transformation
into class diagrams.

Gyro is subject to continuous development; at the moment we are in the
process of enriching the Gyro user interface, and providing a web interface in
which a spreadsheet can be simply uploaded, relevant spreadsheet patterns can
be selected, and spreadsheets can be analyzed “as a service.”

Gyro is implemented in C#.net using Visual Studio 2010, beta 1. We make
use of the Microsoft SQL Server Modeling platform (formerly ”Oslo”) and its
MGrammar language to specify the grammar for our pattern definitions.

2.8 Evaluation

We evaluated the strength of our approach by testing the Gyro approach on the
EUSES Spreadsheet Corpus [Fis05b]. The evaluation was twofold, first we tested
the quality of the patterns, by determining how often the chosen patterns occur
in the Spreadsheet Corpus. This way we can check whether the patterns we chose
are really frequently used. Secondly, for the patterns that were found, we checked
whether the generated class-diagram is a faithful representation of the underlying
domain. This second evaluation was done by comparing generated class diagrams
to class diagrams that were manually created.

2.8.1 The data set

The EUSES Spreadsheet Corpus is a set of spreadsheets created to help research-
ers to evaluate methodologies and tools for creating and maintaining spreadsheets.
It consists of 4498 unique spreadsheet files, divided into 11 categories varying from
financial spreadsheets to educational ones. Many papers on spreadsheet analysis
use the Corpus to test their methodologies and algorithms, among which are
[Abr06] and [Cun09b].

1Gyro is currently part of the Breviz app, see Appendix A

2.8 EVALUATION 33

Table 2.1: Number and percentage of spreadsheets of the EUSES Spreadsheet Corpus
that can be processed with the current Gyro pattern library

Type Number of sheets Patterns found Success percentage
Cs101 10 4 40.0%
Database 726 334 46.0%
Filby 65 31 47.7%
Financial 904 334 36.9%
Forms3 34 14 41.2%
Grades 764 307 40.2%
Homework 804 375 46.7%
Inventory 895 125 14.0%
Jackson 21 7 33.3%
Modeling 692 334 48.3%
Personal 7 6 85.7%

2.8.2 Quality of chosen patterns
The first part of the evaluation focusses on measuring the number of spreadsheets
that can be processed with our pattern library. For this we applied Gyro to the
Corpus and counted the number of worksheets which in which at least one pat-
tern could be applied. A worksheet is an individual sheet within a spreadsheet.
We ignored protected, empty and invisible worksheets, as well as worksheets con-
taining a VBA-macro. The results of this experiment can be found in Table 2.1.
The results indicate that the patterns we chose are indeed quite common. There
are 4 categories with a score in the 45-50% range, 3 in the 40-45% range, 3 in
the <40% range and there is one (small) category scoring 85%. We noticed that
spreadsheets originating from the inventory and financial categories score lower
than spreadsheets from the other categories. The inventory category mainly con-
sists of empty forms, spreadsheets in which the data still has to be filled in. Since
our approach focusses on spreadsheets filled with data, the algorithm logically
performs less on these inventory-sheets. The lower score on financial spreadsheets
is probably caused by the complexity of financial spreadsheets in general. The
lack of financial knowledge of the author of this dissertation could also play a role.
Since we are no financial experts, we do not have knowledge of common financial
structures that could occur within spreadsheets, making it more difficult to design
suitable patterns for this category.

2.8.3 Quality of mapping
The second evaluation measures the quality of extracted class diagrams. For this
we randomly selected 50 spreadsheets from the EUSES Spreadsheet Corpus in
which one of the Gyro patterns occurs. We divided these 50 sheets among three
researchers of the Software Engineering Research Group of Delft University of

34 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.8

percentageClasses
1.201.00.80.60.40.20.00

Fr
eq

ue
nc

y

40.0

30.0

20.0

10.0

.0

Mean = .8125
Std. Dev. = .30188
N = 5 0

Figure 2.11: Histogram of correctly matched classes

Technology, one of which was the author of this dissertation, the other two are
the co-authors of a previously published version of this chapter [Her10]. For these
spreadsheets, each researcher created a class diagram by hand, by looking at the
structure and content of the spreadsheet. We refer to these class diagrams as
reference class diagrams. They were created without looking at the generated
class diagrams. In this evaluation we compared the generated class diagrams to
the reference class diagrams and counted the number of matched classes, fields
and methods.

Figures 2.11, 2.12 and 2.13 depict the results of this experiment. In the ma-
jority of the spreadsheets (32), Gyro found all classes and in about half of the
cases all fields and methods were also extracted correctly. In the most cases in
which the right pattern was selected, all methods and fields were correct. In
Figure 2.13,we see that there is a significant number of spreadsheets in which no
methods were found. This is mainly due to the fact that values in the spreadsheet
can have a numerical relation that did not result from a formula. This typically
occurs when data is imported into a spreadsheet from another software system
where the value was calculated. A human quickly notices this relationship and
decides that a column represents a method. Since Gyro only takes into account
the cell types, it does not recognize this implicit relationship. We keep this as a
point for future work.

2.9 EVALUATION 35

percentageFields
1.201.00.80.60.40.20.00

Fr
eq

ue
nc

y
30.0

20.0

10.0

.0

Mean = .7504
Std. Dev. = .31377
N = 5 0

Figure 2.12: Histogram of correctly matched fields

Furthermore, we divided the results into four categories to get an overall view
on the quality of extracted class diagrams. These categories are:

Perfect All classes, fields and methods correspond

Structure OK All classes are present, but their names, fields or methods are
missing or incorrect

Classes missing Some classes are present, but others are missing

Useless The generated diagram does not correspond to the the reference diagram
at all

This results of this evaluation are listed in Table 2.2. In 20 cases Gyro pro-
duced exactly the same class diagram as the one created by the authors. In 13
cases the structure was correct. There were 6 cases in which the result generated
by Gyro was classified useless. We believe these results are promising since Gyro
performs just as well as a human on 40% of the spreadsheets. However there are
also some generated class diagrams that do not represent the underlying domain.
These spreadsheets contained difficult calculation structure the Gyro toolkit is
not able to process yet, like financial calculations or use a very specific layout
that does not occur in the pattern library.

36 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.9

percentageMethods
1.201.00.80.60.40.20.00

Fr
eq

ue
nc

y

30.0

20.0

10.0

.0

Mean = .6661
Std. Dev. = .42523
N = 5 0

Figure 2.13: Histogram of correctly matched methods

Table 2.2: Overall view on the quality of extracted class diagrams

Number of sheets Perfect Structure OK Classes missing Useless
50 20 13 11 6

2.9 DISCUSSION 37

2.9 Discussion

The current implementation of Gyro, while still a prototype, enables software
engineers to derive domain knowledge, in the form of a class diagram, from a
collection of spreadsheets. In this section, we discuss a variety of issues that
affect the applicability and suitability of the proposed approach.

2.9.1 Spreadsheet limitations

There are some spreadsheet concepts the current implementation can not handle
properly. Most importantly Gyro uses only one spreadsheet as input for the
detection algorithms. There often exist multiple spreadsheet files with a similar
structure within a company. Imagine a spreadsheet form to record the data
of an order. There will probably be one file or worksheet for every order, all
having the same structure. The performance of our methods could be improved
by applying the pattern matching techniques described in this chapter to multiple
instances. This approach has several benefits. A higher degree of certainty could
be achieved about the type of a cell. If a cell contains the same value in multiple
spreadsheet files, it is very likely to be a label. There is also the benefit of
gathering more information making it possible to do statistical analysis on the
results. Furthermore, the current cell classification of only four cell types is quite
coarse-grained. Improvements could for instance be made by refining the Data
type into Text data and Number data.

2.9.2 Class diagram limitations

The most important class diagram feature that is currently not supported by Gyro
is the inheritance relationship between classes. Inheritance is a difficult design
concept per se and is typically not modeled in spreadsheets explicitly. This is also
the main reason why Gyro can not extract it directly from spreadsheets using
its pattern library. However, there exist approaches that can derive inheritance
relationships by normalizing class diagrams. Such an approach is, for example,
the FUN-algorithm [Nov01], which we plan to integrate into Gyro.

2.9.3 Beyond class diagrams

In the current research we only focussed on creating class diagrams, but the
information contained in spreadsheets could also be represented in a different
format. Possibilities include generating a database scheme, generating General
Purpose Language code or generating more specific code, like WebDSL [Gro08]
code. The extracted domain information could also be used to create a domain-
specific language tailored towards a particular business domain, since important
domain concepts are present in the output of our algorithm.

38 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.9

We also envision the use of our algorithms to support the migration of a
spreadsheet-based style of working to one where a commercial ERP (Enterprise
Resource Planning) or CRM (Customer Relationship Management) solution is
used. This requires understanding to what extent the data and business processes
reflected in the spreadsheets can be mapped onto the models imposed by the ERP
or CRM tools, for which we expect that our approach can deliver very useful
information.

2.9.4 Dealing with spreadsheets errors
As we mentioned in the introduction, spreadsheets are hardly ever free of errors.
This could raise the question how our approach deals with errors in spreadsheets.
We believe errors mostly occur within formula’s; the wrong cells might be refer-
enced or a copy-paste-error is made. Since the cells still are Formula typed in this
case, this does not concern the patterns and our methods will still be able to find
the right pattern. It would be interesting to compare the results of error-finding
algorithms on the EUSES spreadsheet with our results to gain more confidence
in this assumption. Furthermore our approach allows the option to introduce a
tolerance for minor errors within the pattern, so if some cells do not fit within the
pattern, it can still be recognized. More research is needed however to determine
a tolerance level that is neither to strict, nor too tolerant.

2.9.5 Meaningful identifiers
Spreadsheet do not always contain all information needed to create a perfect class
diagram. Consider the spreadsheet from the introduction again, in Figure 2.1. In
the spreadsheet the value of the numbers is not expressed. We might assume it
is the amount of fruit sold in a particular month, but it could also be the price of
the fruit or the number of customers that the farmer sold to.

Because not all information in the spreadsheet is named, the naming of meth-
ods and fields is not always perfect. We do not believe this is a big problem,
because the class diagram still reveals the structure of the data if some names are
missing or incorrect. in this case Gyro sketches the basic diagram and users can
fill in the blanks.

2.9.6 Threats to validity
A threat to the external validity of our evaluation concerns the representative-
ness of the EUSES Corpus spreadsheet set. This set, however, is large (over
4000 spreadsheets), and is collected from practice. Furthermore, for the manual
comparison of the class diagrams we randomly picked 50 spreadsheets from this
set.

With respect to internal validity, one of the threats is the fact that the reference
class diagrams were only created by three people, who were also involved in the

2.10 RELATED WORK 39

research. The outcome might have been different if other people had created the
reference diagrams, because experience, education and personal taste influence
how a person creates class diagrams. This effect can be decreased by using a
larger test group in future experiments. We however believe the current test
group serves as a good reference group, as the persons involved all have years of
experience in software engineering and modeling. Furthermore, the collection of
50 spreadsheets and accompanying class diagrams is available from our web site,
allowing other researchers to challenge our reference set.

With respect to threats to reliability (repeatability), the Gyro tool, the pat-
tern library used, the selected spreadsheets from the spreadsheet corpus and the
reference set of class diagrams are available from our web site, enabling other
researchers to redo our experiments.

2.10 Related work
Spreadsheets analysis is a subject of ongoing research. Most papers in this field fo-
cus on testing spreadsheets and certifying their correctness. Abraham and Erwig
have written a series of articles on unit inference [Abr04; Abr06; Abr09; Abr07b].
Their units form a type system based on values in the spreadsheet that is used
to determine whether all cells in a column or row have the same type. Their
work was of inspiration to us, but their objectives differ from ours. They focus
on error finding, where we aim at extracting information. However, their hex and
vex groups - similarly shaped rows and columns - inspired us in defining pat-
terns in the library. Ahmad et al. [Ahm03] also created a system to annotate
spreadsheets, however their approach requires users to indicate the types of fields
themselves. Mittermeir and Clermont [Mit02] investigate the possibility of struc-
ture finding, but their aim again was localizing errors by finding discrepancies
within the structures found.

Another group of papers presents best practices in spreadsheet design [Jan00;
Kni00; Pan94; Ron89], which gave us more insight into the patterns that had to
be included in our library. Fisher et al. [Fis02] suggest a systematic approach
to building a spreadsheet, but their methods are used to create spreadsheet from
scratch, and not to analyze existing ones.

Besides the goal also the approach of existing work differs from ours. Where
existing papers recognize structure bottom up, by building up their knowledge
of the spreadsheet cell by cell, we apply a more top-down approach, by checking
whether a spreadsheet complies with a given structure.

For the recognition of patterns our initial approach was to use techniques
from two-dimensional pattern matching. However they match patterns of fixed
size within an array. Although this does not suit our purpose, these algorithms
did provide us with some valuable ideas. For instance, there is a class of filter-
based algorithms, like Baker [Bak78], Bird [Bir77] and Takaoka-Zhu [Zhu89]. This
class of algorithms is based on the reduction of two-dimensional matching to one

40 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.11

dimension. Another useful principle we took from existing algorithms is the notion
of approximate matching, where small differences between patterns and arrays are
allowed. In this variant of matching an integer k is introduced that indicates how
many mismatches are allowed with respect to a given distance, like for instance
the Levenshtein distance [Lev75].

Because the two-dimensional pattern matching approach was not applicable
in our case, we started to investigate two-dimensional parsing. There have been
some attempts to generalize parsing to two dimensions. First there is array pars-
ing [Ros87]. In this paradigm, rewriting may be applied to subarrays of the equal
size. Because of that property it is never possible to generate an array from a
single start symbol. Hence the use of these grammars does not solve the problem
of variable size matching. Secondly, there are matrix grammars [Str72], which
generate arrays in two phases, a horizontal and a vertical phase. Although they
are better applicable than array grammars, matrix grammars are not able to
recognize patterns that are a combination of rows and columns.

The idea to transform spreadsheets into databases has been described in
[Cun09b]. Their goal is to transform spreadsheets into relational databases by
using the FUN algorithm [Nov01] to find functional dependencies within rows.
Therefore their approach is limited to spreadsheet resembling non normalized
databases.

Due to the use of spreadsheets as simple databases, our work also connects
to the problem of Object-Relational Mapping. In particular, we attempt to map
from two-dimensional relations back to object structures.

Last but not least, reverse engineering class diagrams from regular programs
written in, e.g., Java has been studied extensively. An overview is provided by
[Kol02], who also include a comparison with existing roundtrip engineering tools.
The key problem in these approaches is to reverse engineer class associations from
class implementations, which differs from our purpose of extracting class diagrams
from spreadsheet logic.

2.11 Concluding remarks

The goal of this chapter is to underline the importance of spreadsheet analysis as
a means to better understand the business domain of companies and users. To
that end we have designed an approach to describe common spreadsheet design
patterns, and we implemented the Gyro tool to extract the domain information
automatically. The key contributions of this work are as follows:

• A notation for expressing spreadsheet patterns, as well as two-dimensional
parsing algorithm capable of recognizing these patterns (Section 2.4);

• A systematic approach to transform recognized patterns into class diagrams
(Section 2.5);

2.11 CONCLUDING REMARKS 41

• A library of frequently occurring patterns (Section 2.5);

• An implementation of the proposed methods and library in the Gyro system
(Section 2.7);

• An evaluation of the proposed approach on a corpus of over 4000 spread-
sheets (Section 2.8).

The results of our evaluation with the EUSES Spreadsheet Corpus showed
that Gyro can extract valuable domain information from 40% of the given spread-
sheets. The evaluation further showed that extracted class diagrams are of reas-
onable quality—out of 50 spreadsheets 20 class diagrams were extracted perfectly,
13 contained minor flaws, in 11 cases classes were missing, and in only 6 cases
the extracted class diagrams were rated as useless. This clearly underlines the
potential of the Gyro approach.

We see several avenues for future research. First the description of patterns
could be improved. Pattern grammars might be a convenient way of describing
spreadsheet patterns for users with experience in programming and formal lan-
guages, but it is probably not that easy for users from the business domain. To
make Gyro easier for this kind of users, we intend to create a visual editor for
patterns. Furthermore spreadsheets do not have to be replaced by software in
all cases. A possible other use for Gyro could be to aid users in creating struc-
tured spreadsheets, by offering pattern-based edit assistance, comparable to the
discovery-based assistance in [Cun09b]. Finally we have several ideas to speed up
the implementation of the algorithm. For instance, the filter-based part of the
algorithm now only checks the left-most upper-most cell of the pattern. It might
be better to look at the first row or the first column or a combination of both, to
determine earlier that there is no match. The current parsing approach is recurs-
ive descent, which is known to be very inefficient in some cases. We would like to
explore the possibilities of using an LR-like parsing strategy on the recognition of
pattern grammars.

42 EXTRACTING CLASS DIAGRAMS FROM SPREADSHEETS 2.11

Chapter3
Supporting Professional
Spreadsheet Users by Generating
Leveled Dataflow Diagrams

3.1 Introduction

Spreadsheets are widely used in industry: Winston [Win01] estimates that 90%
of all analysts in industry perform calculations in spreadsheets. Their use is
diverse, ranging from inventory administration to educational applications and
from scientific modeling to financial systems. The financial business is a domain
where spreadsheets are especially prevailing. Panko [Pan06] estimates that 95%
of U.S. firms, and 80% in Europe, use spreadsheets in some form for financial
reporting.

Business analysts using spreadsheets usually have very limited (if any) training
as a programmer. In spite of that, they effectively are end-user programmers, and
as such face many of the challenges of professional developers, such as identifying
faults, debugging, or understanding someone else’s code [Ko10].

This chapter aims at providing support for spreadsheet users to take on these
end-user programming challenges. To that end, we first study the problems and
information needs of professional spreadsheet users and then present an approach
that presents this information in a compact and easy to understand way, with
leveled dataflow diagrams.

The context, in which we conduct our research, is formed by the analysts of
Robeco, a Dutch asset management company with approximately 1600 employees
worldwide, and over 130 billion Euro worth of assets under management. In a
survey we conducted among 27 of their analysts, we found that they use Excel for

43

44 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.2

an average of 3 hours a day, underlining the large role spreadsheets play in their
daily work. Furthermore, spreadsheets have an average lifetime of more than five
years, and individual spreadsheets are used by 13 different analysts on average.

In order to support analysts in their work with spreadsheets, we start by identi-
fying information needs. In particular, we describe how we conducted interviews
with the same group of 27 analysts, using a grounded theory [Gla67] approach, to
obtain understanding of their use of spreadsheets. In the interviews, spreadsheet
transfer scenarios (to a new user, to an auditor, and to a professional developer
creating custom software) were identified as problematic. In those scenarios, end-
users search for a better insight into the dependencies between cells, formulas,
groups of cells and worksheets.

To meet these demands, we propose an approach for the automated extraction
of dataflow diagrams from spreadsheets. Such diagrams can be used to visualize
data, processes manipulating data, and dependencies between them. Further-
more, leveled diagrams can be used to accommodate hierarchies, for example for
blocks of cells or worksheets.

We implemented our approach in a tool called GyroSAT, which can generate
dataflow graphs from Excel spreadsheets. To evaluate our approach we conducted
a series of evaluations in the concrete setting of Robeco. First, we interviewed
the same group of 27 spreadsheet users, analyzing how the tool could help in
transferring their own spreadsheets to colleagues. Furthermore, we conducted
nine case studies, three for each type of transfer task identified. The findings of
these evaluations indicate that (1) spreadsheet professionals from Robeco consider
the tool as helpful; (2) the visualizations derived help to create a story line to
explain spreadsheets to colleagues in transfer tasks; (3) the visualizations scale
well to large and complex spreadsheets in use at Robeco.

This chapter is organized as follows. In Section 3.2, we describe the interviews
leading to the information needs of spreadsheet users. Then in Section 3.3, we
provide background information on dataflow diagrams, after which we describe our
algorithm to derive dataflow diagrams in Sections 3.4 and 3.5. In Section 3.6, we
cover our implementation, which we use in the evaluation described in Section 3.7.
We conclude with a discussion of our results, an overview of related work, and a
summary of our contributions and directions for future research.

3.2 Spreadsheet information needs
To gain understanding of the problems around spreadsheet usage, we conducted
a survey at Robeco. Robeco is a Dutch asset management company with approx-
imately 1600 employees worldwide, of which 1000 work in their headquarters in
Rotterdam, where we performed our survey.

The survey was conducted following the grounded theory approach. Grounded
theory is a qualitative research method that discovers theory from data [Gla67].
When using grounded theory, observations are documented and subsequently

3.2 SPREADSHEET INFORMATION NEEDS 45

coded into categories. During this coding process, which takes place after each
observation—as opposed to after all observations—a theory might emerge [Ado08].

Grounded theory is a method especially suited for discovering problems that
exist for the participants. Therefore, in a grounded theory study, the researcher
works with a general area of interest rather than with a specific problem [McC03].

The area of interest in our study is the use of spreadsheets in industry. To
investigate this area we conducted a survey amongst employees of Robeco using
semi-structured interviews. For each interview, we kept a memo of statements,
questions asked and answers provided by the employee. Following the grounded
theory approach we continuously analyzed the memos of each day and used the
results to direct the following interviews.

A total of 47 employees was invited to participate in the survey, with varying
spreadsheet knowledge and expertise, working in different departments, making
it a maximum variation sample [Mar96]. Of the 47 invitees, 27 participated in the
interviews. The interviews were performed over a time period of 4 weeks, with 1
or 2 interviews per day. We started the interviews by asking subjects about the
role of spreadsheets in their daily work and let subjects tell their own story.

During the course of the first interviews, many subjects stated that problems
with spreadsheets occur in spreadsheet transfer scenarios. In such a scenario,
a spreadsheet is transferred from one employee to another, for instance when
an employee leaves the company and a colleague has to start working with his
spreadsheet.

From that point on, we started asking subjects in interviews whether they
experienced such scenarios. We found that the vast majority (85%) agreed that
they often transferred spreadsheet to a colleague. We coded all described scenarios
into the following three categories:

S1 A spreadsheet has to be transferred to a colleague. This scenario typically
occurs when, for example, a new employee starts working for the company,
an employee leaves the company or when a new spreadsheet is created that
has to be used by an other employee.

S2 A spreadsheet has to be checked by an auditor. Auditing periodically happens
at large companies, to determine whether spreadsheets in key processes are
well designed, error free and well documented.

S3 A spreadsheet is being replaced by custom software. When a spreadsheet
created by an end-user, becomes so complex that it no longer complies to
standards in the company such as safety, access control or readability, it is
transformed into a custom software system.

To determine ways to support users in these scenarios, we dived deeper into
the problems occurring during a transfer scenario. As it turns out, problems
typically occur when the receiving employee has too little understanding of the
spreadsheet. The most of the subjects (70%) expressed that they had difficulties

46 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.2

with understanding a spreadsheet they received from a colleague. Zooming in
even further, we identified information needs spreadsheet receivers have, from the
stories we heard about the problems during a transfer. We then analyzed the
memos and coded them into the following four categories (with the percentage of
memos mentioning one of the information needs in parentheses).

I1 How are the different worksheets—spreadsheet tabs—related? (44%)

I2 Where do formulas refer to? (38%)

I3 What cells are meant for input? (22%)

I4 What cells contain output? (22%)

These results show that the most important information needs of professional
spreadsheet users concern the structure of the formula dependencies. Users indic-
ated that the only way they can find these dependencies currently is by using the
Excel Audit Toolbar. This Excel feature that shows cell dependencies within one
worksheet by overlaying the worksheet with a dependency graph, insufficiently
meets these needs. Firstly, this graph becomes incomprehensible quickly when
arrows cross each other, as shown in Figure 3.1. Furthermore, it has to be en-
abled cell by cell, making it impractical for large spreadsheets. Finally, it is not
able to show dependencies between worksheets.

Figure 3.1: A spreadsheet in Excel, with the Audit Toolbar enabled.

Underlining the importance of spreadsheets at Robeco were the answers to
the final question about the nature of the tasks performed with spreadsheets. We
classified these answers into three categories:

3.4 BACKGROUND 47

Presentation of data (30%) For instance, to show data to colleagues or cus-
tomers.

Calculations without a direct decision (18%) For instance, calculating the
performance numbers of a portfolio to put in a brochure.

Calculations to base decisions on (52%) For instance, calculating the stocks
that are generating the lowest profit, to remove them from a portfolio.

These numbers show many spreadsheets within Robeco play a key role in
decision making within the company.

3.3 Background
Before presenting how we support professional users’ information needs, we provide
a brief overview of the preliminaries this chapter builds upon.

3.3.1 Dataflow diagrams
Dataflow diagrams—or similar techniques for representing the flow within sys-
tems, such as flowcharts—have been present in literature since the seventies [Gan77].
Dataflow diagrams show how data moves from one process to another and illus-
trate the relationship of processes and data in an information system. We follow
the definition of De Marco [Mar79] who recognizes the following four types of
objects:

• Rectangles representing entities, which are sources or sinks of data

• Rounded rectangles representing processes, which take data as input, per-
form an operation on the data and yield an output value

• Open-ended rectangles representing data stores

• Arrows representing the dataflow between objects

Figure 3.2 shows an example of a data flow diagram for a simple order system
in which we can recognize a process ‘process order’ that takes data from entities
‘client data’ and ‘books DB’ and outputs its data to entity ‘delivery system’ and
to data store ‘order history’.

3.3.2 Leveled dataflow diagrams
A key element in data flow diagrams is the ability to represent a hierarchical
decomposition of a process or function, using what De Marco calls a leveled data
flow diagram. Higher levels are used to abstract the details from lower levels. The
lower levels containing the details are revealed by expanding an entity at a higher
level. By collapsing the entity, the details are hidden again.

48 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.4

Figure 3.2: A data flow diagram for a simple order system.

3.4 Dataflow diagram extraction algorithm
From our analysis of the interviews we concluded that professional spreadsheet
users often have difficulties with understanding spreadsheets received in transfer
scenarios. We propose to support users in those scenarios by visualizing the
structure and contents of a spreadsheet as a leveled dataflow diagram. Dataflow
diagrams are commonly used and well understood by spreadsheet end-users. They
show the dependencies between cells in the spreadsheet, grouped in levels for
worksheets and data blocks.

In the following, we present our approach to derive leveled dataflow diagrams
from spreadsheets. The approach consists of six steps which are outlined in Fig-
ure 3.3. The first two steps originate from our earlier work extracting class dia-
grams from spreadsheets [Her10]. The first step determines the cell type of all
cells in the spreadsheet, which can be: Data, Formula, Label or Empty (Sec-
tion 3.4.1). The second step identifies data blocks within a spreadsheet as de-
scribed in Section 3.4.2. In the third step, labels describing Data and Formula
cells are computed (Section 3.4.3). The fourth step generates an initial dataflow
diagram by creating entities for cells of type Data and Formula and creating
arrows corresponding to formula dependencies. Details on the dataflow creation
can be found in Section 3.4.4. In the fifth step, the labels of cells that were com-
puted in step 3 are attached to the corresponding entities in the diagram (Section
3.4.5). The final step adds the levels to the dataflow diagram. A level is intro-
duced for each worksheet within the spreadsheet and for each data block within
every worksheet (Section 3.4.6).

3.4.1 Cell classification
To distinguish between different cell types, we use a cell classification strategy
based on the one described by Abraham and Erwig [Erw02]. This algorithm
starts with identifying all cells containing a formula and marking them as type
Formula. Next, the content of the formulas is inspected. Cells that are referred

3.4 DATAFLOW DIAGRAM EXTRACTION ALGORITHM 49

to in a formula are marked Data, unless they were already typed as Formula in
the first step.

All cells that did not get a type in these two steps are recognized as Label
when not empty and Empty otherwise. Applying this algorithm to the example
in Figure 3.3 results in the colored spreadsheet. The orange cells of the columns
‘exam’ and ‘lab’ are marked Data cells. The green cells of the column ‘overall’
are marked Formula cells. The remaining gray cells are marked Label cells.

3.4.2 Identifying data blocks
A data block is defined as a rectangle containing a connected group of cells of type
Data, Label, or Formula. Two cells are connected if they touch each other
horizontally, vertically or diagonally. To find such a data block, the following
strategy is applied: Find the left-most upper-most non-empty cell that is not yet
contained within a data block. The initial data block is set to contain only this
cell. Next, this data block is expanded by inspecting all cells that are connected
to the data block in all directions. If one of these cells is non empty, the data
block is enlarged to include this cell. Expanding is done, until all cells next to
the data block are empty. In the example in Figure 3.3 the cells are grouped into
one data block at A1× E7.

3.4.3 Name resolution
In this step, names are resolved for cells of type Data and Formula. To determine
the name of such a cell, we consider the data block in which it lies. We assume
the name of the cell can be found on the borders of this data block as illustrated
by the rectangle in the third spreadsheet of Figure 3.3.

The name of a cell is constructed of two parts: a horizontal part, the first
Label in the row in which the cell lies, and a vertical part, the first Label in
the corresponding column.

The algorithm for localizing the vertical part for a cell C is as follows: it starts
with inspecting the first cell of the column in which C lies. If this cell is of type
Label, the value of the cell is set as the vertical part of the name. If the cell is of
type Formula or Data, the procedure is ended without having a vertical part for
C. If the cell is of type Empty, the algorithm continues with inspecting the next
cell in the column. The algorithm is repeated until either a Formula or Data
cell is encountered or the position of the cell, for which the name is computed, is
reached. The procedure for computing the horizontal part of the name is similar.
Once the two parts are found, the name of a cell is constructed by concatenating
the names of the two parts. If the name is empty, the algorithm uses the location
of the cell (such as B5) as name.

Referring to our example in Figure 3.3, the calculation of the vertical part of
the name for cell C4 starts at C1, which is empty. Next, C2 is inspected where
the name part ‘exam’ is found. For the horizontal part the algorithm obtains the

50 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.4

1) Cell classifica!on

2) Iden!fying data blocks

4) Dataflow construc!on3) Name resolu!on

5) Name replacement

6) Grouping

C4 D4

AVERAGE

E4

C4 exam Richard Griffin

D4 lab Richard Griffin

E4 overall Richard Griffin

exam Richard Griffin lab Richard Griffin

AVERAGE

overall Richard Griffin

Data block-End Result

 Sheet-Overall

exam Richard Griffin lab Richard Griffin

AVERAGE

overall Richard Griffin

Figure 3.3: Overview of the approach for extracting leveled dataflow diagrams from
spreadsheets.

3.5 DATAFLOW DIAGRAM EXTRACTION ALGORITHM 51

name ‘Richard Griffin’ resulting in the final name ‘exam Richard Griffin’ for cell
C4.

The name resolution is heuristic in nature, so it is not always able to find a
suitable name. However, as we will see in Section 7, users participating in our
case studies found the names useful.

3.4.4 Initial dataflow diagram construction

To create the initial dataflow diagram, we only consider cells of type Formula or
Data. For each cell of type Formula two objects are created: an entity denoting
the result of a formula and a process representing the formula’s calculation. The
name for this process node consists of all functions in the formula, like ‘SUM’ or
‘*’. One arrow is created from the process to the entity. As can be seen in Figure
3.3 the cell on E4 results in an entity ’E4’ and a process named ‘AVERAGE’,
showing what is calculated in E4. For a cell of type Data, for example C4, only
one entity is created.

Next the arrows are created: If a formula A refers to a cell B, an arrow is
introduced from the entity of B to the process of A. As shown in Figure 3.3 the
entities for Data cells C4 and D4 are connected to the process of E4.

3.4.5 Name replacement

In the fifth step of the transformation, the names for cells found in the name
resolution step are attached to the corresponding entities of the initial diagram.
This is done so dataflow diagrams show the calculations in terms of labels occur-
ring in the spreadsheet, in order to make the diagrams easier to understand for
end-users.

3.4.6 Grouping

The final step groups the entities and processes, according to the levels identified
in a spreadsheet, for data blocks and worksheets. First, a level for each data block
is created, and entities and processes of the cells in that data block are included
in it. We try to find a name for the data block by inspecting its left-most upper-
most cell: if this cell is of type Label this label is used as the name of this
data block. If no label can be found, the location of the left-most upper-most
cell is used. Subsequently a level for each worksheet is created that contains the
levels of its data blocks. For worksheets the level gets the name the user gave
to the worksheet. Referring to our example in Figure 3.3, there is one worksheet
‘Sheet-Overall’ containing one data block named ‘Data block-End Result’.

52 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.5

3.5 Dataflow views

Having described the generation of dataflow diagrams from spreadsheets in the
previous section, we turn our attention to supporting users in navigating the
diagrams obtained. We decided to express our diagrams in an existing graph
format, since several sophisticated graph browsing tools already exist, like Dot,
GraphML and DGML. After investigating the available options, we decided to
use the DGML (Directed Graph Markup Language) an XML schema for hier-
archical directed graphs that can be viewed with the graph browser that is part
of Microsoft Visual Studio 2010 Ultimate. It is intended to visualize software
architectures and dependency graphs for systems of around 50,000 lines of code.1

The DGML graph browser offers a number of features that are directly relevant
to the dataflow diagrams we derive from spreadsheets. In particular, zooming, col-
lapsing and expanding levels, the automatic grouping of multiple arrows between
entities and processes in one thick arrow and the ‘butterfly’ mode, a feature that
slices a graph showing only the nodes that depend on the selected node.

Users can also add and remove nodes, color nodes and add additional levels
with the DGML browser: options that proved to be very useful in the experiments.
In the next subsections, we will see how we use these features in the three views
we support.

As a running example for all these views we use the spreadsheet to calculate
exam scores from Figure 3.3. This spreadsheet consist of four worksheets, and
contains 161 cells of which 62 are formulas. It can be obtained online from our
website2 together with the generated dataflow diagrams and a screencast showing
our approach in more detail.

Figure 3.4: The global view for the exam spreadsheet. Numbers in the upper left corner
indicate the number of data blocks within the worksheet.

1http://www.lovettsoftware.com/blogengine.net/post/2010/05/27/
Managing-Large-Graphs.aspx

2http://swerl.tudelft.nl/bin/view/FelienneHermans/WebHome

3.5 DATAFLOW VIEWS 53

Figure 3.5: The worksheet ‘main exam’ expanded to worksheet view. Numbers in the
upper left corner indicate the number of cells within the data block.

3.5.1 Global view

The most top-level view of the dataflow diagram is the global view. This view
shows all worksheets within the spreadsheet and the relations between them. An
arrow from worksheet A to worksheet B indicates a formula in worksheet B refers
to a cell in worksheet A. The DGML-browser groups multiple arrows into one, so
the thicker the arrow is, the more formulas reference cells of an other worksheet.
Figure 3.4 shows the worksheet view of the grades example spreadsheet, where
formulas in worksheet ‘main exam’ refer to cells in worksheet ‘participants’.

Figure 3.6: A detailed calculation of an exam grade in the formula view.

54 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.7

3.5.2 Worksheet view

While examining the spreadsheets we gathered during the initial interviews we
noticed that spreadsheet users often structure the contents of a worksheet into
data blocks. These data blocks as well as the dependencies between them are
visualized by the worksheet view. The view is derived from the global view by
expanding a level representing a worksheet. In this way, details of a worksheet are
revealed while keeping the overall picture of the spreadsheet. Figure 3.5 shows
the worksheet view for worksheet ‘main exam’ containing the two data blocks:
‘Questions’ and ‘Results’. The data block ‘Results’ contains formulas that refer
to cells in the data block ‘Questions’.

3.5.3 Formula view

More details about the calculations within a worksheet can be observed in the
formula view. At this level the relation between one specific formula and the
cells it depends on is shown. To obtain this view the user opens a data block-
node in the worksheet view, showing all calculations in the data block. The user
can select the formula for which he wants to enable the formula view, by using
DGML’s butterfly mode. The original data flow diagram is then sliced to show
only the entities and processes connected to the selected node. Figure 3.6 shows
the formula view for the calculation of an overall exam score.

3.6 Implementation

The visualization of dataflow diagrams is developed as an extension to the existing
Gyro Spreadsheet Analysis Toolkit (GyroSat [Her10]) and is implemented in C#
4.0 using Visual Studio 2010. GyroSAT, which is currently implemented as stand-
alone program, parses an Excel file, identifies formulas, blocks, and cell names,
and generates dataflow diagrams according to the algorithm described in Section
3.4. The output of GyroSAT is an DGML file which can be navigated by means
of Microsoft Visual Studio 2010 Ultimate’s built-in DGML browser.

3.7 Evaluation

To evaluate the use of dataflow visualization for spreadsheet comprehension, we
performed two studies. First, we asked all respondents to the initial interviews
their opinion on the usefulness of dataflow visualization. Secondly, we performed
a multiple-case study [Yin02] of nine individual case studies in which we observed
users working with GyroSAT. The following two subsections describe both studies
in more detail. With these interviews and observations we seek to answer the
following research questions.

3.7 EVALUATION 55

R1 How does dataflow visualization help users to understand spread-
sheets better?

R2 How is our approach able to visualize large and complex spread-
sheets?

R3 What are the main limitations of the current approach?

With R1 we seek to understand if and why the approach works well; via
R2 how the approach works in extreme cases; and with R3 in what situations the
approach does not work well. Both our interviews and the cases aim at addressing
all three questions: the interviews aim at getting generalizable answers, whereas
the cases seek to increase realism, focusing on actual tasks the analysts had to
work on in real-life cases.

3.7.1 Interviews
Study design

To test the idea of dataflow visualization we asked all 27 respondents of the
initial interviews to express their opinion about dataflow diagrams in general. We
interviewed them about this in individual sessions. During the interviews we first
showed them an example of a simple dataflow diagram with only a few entities and
processes in one level. Next, we showed them a visualization of a more complex
spreadsheet, which we obtained during the information needs interviews. We
asked them to what extent they were able to understand the given visualization
and how they thought these kinds of visualizations could help their work.

Findings

During these interviews we found that almost all interviewees understand dataflow
diagrams well. Only one of the respondents indicated that he was not familiar
with the dataflow notation and that he had trouble understanding it. All other
respondents expressed they feel comfortable using dataflow diagrams. As one
of the respondents stated “as analysts we are used to thinking in processes and
therefore this kind of diagrams is very natural to us”.

With respect to the usefulness of the transformation of spreadsheet visualiz-
ation to their daily work, around 80% (21 out of 27 respondents) indicated their
work could benefit from these diagrams. “They really outperform the Excel Audit
Toolbar, because they show the entire view of the sheet”, one of the respondents
answered, clearly indicating the benefits of dataflow visualization. The most pos-
itive respondent stated that this tool “would make my work 10 times easier”.

Six respondents indicated problems with the visualization, for different reas-
ons. Two subjects found the generated dataflow diagrams complex and said that
they needed more time working with the diagrams to determine whether it could
help their work. Two other subjects missed information about filtering in the

56 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.7

diagrams. In some cases spreadsheets at Robeco are filled with large amounts of
data and Excel’s filter function is used to obtain the needed rows. This inform-
ation is not conveyed with the dataflow diagram, so for these two participants
important information was missing.

The fifth subject liked the idea but preferred a visualization within Excel, so it
would be easier to see the connection between the two. The final negative respond-
ent indicated his spreadsheets—used to keep track of laws and regulations—were
not critical to the company so it would not be worth the trouble of analyzing
them.

3.7.2 Case Studies
Study Design

To evaluate the use of dataflow visualization in more depth we performed nine
case studies; three for each transfer scenario. In each case study two subjects
participated: an expert, the user who has the most knowledge of the spreadsheet
and a receiver, the user who needs to learn about the spreadsheet. During the
case study they performed a real-life transfer scenario with their own spreadsheet.
There was no time limit to the observation, i.e., we let experts finish their en-
tire explanation. Typically, one study took about one hour. Table 3.1 shows
characteristics of the spreadsheets used in the studies; the number of worksheets;
the average, minimum and maximum number or rows and columns over all these
worksheets; the number of non-empty cells and the number of formulas.

All experts were somewhat familiar with the generated dataflow diagrams,
since all of them also participated in the first evaluation study. Therefore, we
did not provide them with instructions on how to use GyroSAT and the DGML-
browser. We only intervened in the observation if participants got stuck. Par-
ticipants were allowed to have a second machine with the spreadsheet on it, to
point out information about the specifics of the spreadsheet, such as layout or dia-
grams. They could choose to use both the dataflow diagram and the spreadsheet
for supporting their explanation.

Before the observation started we asked experts to briefly explain the contents
of the spreadsheet and assess how complicated the spreadsheet was according to
them. During the case study we gathered information both by observing subjects
and asking them to reflect about the actions they were performing during the
course of the study. We gathered all this information in hand-written notes which
we used to describe the observations and reactions of the subjects.

With respect to repeatability, we unfortunately cannot provide the spread-
sheets used in this experiment since they are confidential. We do give as much
information about all other factors of the study to make it as easy as possible for
other researchers to perform a similar study.

3.7 EVALUATION 57

S
c
e
n
a
ri
o

S
p
re

a
d
sh

e
e
t
D
e
sc
ri
p
ti
o
n

W
o
rk

sh
.

#
R
o
w
s

#
C
o
l.

#
C
e
ll
s

#
F
o
rm

.

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

S
1
a

S
h
a
re

s
ri

sk
m

a
n
a
g
em

en
t

9
3
9
3

3
1
9
8
9

1
1

1
2
4

2
9
6
7
1

2
2
1

S
1
b

T
o
p

a
n
d

b
o
tt

o
m

5
st

o
ck

p
er

fo
rm

-
a
n
ce

5
5
5

3
1

7
4

1
4

1
4

1
6

2
7
8
1

1
6
0
1

S
1
c

C
o
m

b
in

in
g

d
a
ta

fr
o
m

d
iff

er
en

t
so

u
rc

es
fo

r
w

ee
k
ly

re
p

o
rt

s
1
6

8
8

1
9

2
9
4

2
9

6
7
3

9
5
5
5

7
2
1
5

S
2
a

O
v
er

v
ie

w
o
f

p
o
rt

fo
li
o

d
a
ta

4
2

2
7
2

1
5

6
1
1

1
2

4
2
7

2
8
2
2
2

1
3
0
9
6

S
2
b

O
v
er

v
ie

w
o
f

g
a
in

a
n
d

lo
ss

o
f

a
ll

tr
a
d
es

fo
r

o
n
e

w
ee

k
1
0

3
2
6
9

9
3
2
4
4
2

1
7

7
2
8

5
0
3
0
5
0

3
8
1
8
8

S
2
c

C
o
n
st

ru
ct

in
g

a
st

o
ck

p
o
rt

fo
li
o

6
3
7
6

3
8

1
0
0
0

9
2

2
8

1
6
0
5
4

1
6
6
5
9

S
3
a

C
o
m

p
a
ri

so
n

o
f

st
o
ck

d
a
ta

fr
o
m

tw
o

so
u
rc

es
4

4
8

3
2
6

1
4

3
2
6

2
3
4
5

3
3
6

S
3
b

D
a
ta

o
n

lo
a
n
ed

st
o
ck

s
a
n
d

th
ei

r
d
i-

v
id

en
d

d
a
te

5
1
0
0

5
3
7
4

2
6

1
4

3
2

1
0
4
8

4
6
9

S
3
c

C
a
lc

u
la

ti
n
g

w
h
ic

h
tr

a
d
es

to
p

er
-

fo
rm

in
th

e
fu

tu
re

1
8

6
2

1
1
5
8

1
6

5
4
0

7
3
8
6

5
6
8
0

T
a
b
le

3
.1
:

S
u

m
m

a
ry

o
f

sp
re

a
d

sh
ee

ts
u

se
d

in
th

e
n

in
e

ca
se

st
u

d
ie

s.

58 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.7

Findings

In this section, we describe the most important observations we made during the
nine case studies.

S1: Transferring a spreadsheet to a colleague A common observation in all three S1
observations is that experts are surprised by the complexity of their own spread-
sheets. Before the actual transfer started they mention the spreadsheet is not
very complicated. However when they see the visualization they realize that it
is more complicated then they thought. In all cases there were some links in the
visualization that were not immediately obvious to the experts. We observed all
three experts asking “where does this data actually come from?” more than once.

The global view, with the graphical layout of the worksheets, helps receivers
to see what sheet the expert is talking about. As the receiver in scenario S1c
(S1c-R) puts it: “This really helps me to understand what [worksheet] is what.”
Experts use the global view to create a logical story line through the spreadsheet.
By starting with, for instance, the worksheet at the end of the flow they can
explain the structure of the computations. Expert S1a-E stated that “the global
view reminds me of the plan I had when building this spreadsheet. Normally, I
just walk through the worksheets from left to right, but that is not the logical
way.”

There were also differences between the three cases, the most significant being
that in scenario S1a the spreadsheet also contained a Visual Basic for Applications
(VBA) script and the effects of this script are not considered by our approach yet.
The expert in this case clearly thought this was a shortcoming stating “because
the VBA part is missing, we only see half of the picture, which is a pity.”

S2: Checking a spreadsheet by an auditor All three receivers, in this case auditors,
appreciated the help the visualization provided them, especially with acquiring
a feeling of how the spreadsheet was built. As S2a-R put it “this picture leads
me straight to the difficult parts”. Normally, the only way to finds these parts
is to select the cell and track the dependencies with the Excel Audit Toolbar.
Subject S2c-R agrees with S2a-R that the only choice he had, when performing
a spreadsheet audit, was “clicking through all the cells”, a time-consuming and
tedious process. Subject S2b-R furthermore stated that the global view shows
him the “idea behind the spreadsheet” helping him to “find errors on a whole
new level.” All three subjects felt this tool has the potential to make their work
easier.

On the downside, S2a-R and S2b-R indicated that auditors are often interested
in relations between the spreadsheet and its environment ; i.e. external files the
spreadsheet retrieves its information from or outputs it results to, such as other
spreadsheets or databases. This underlines information needs I3 and I4, although
in a manner we did not find during the interviews.

3.7 EVALUATION 59

S3: Replacing a spreadsheet by custom software All S3 receivers stated they under-
stood the experts much better with the use of the dataflow diagrams. The global
view was appreciated, since all three expressed that in the software replacing the
spreadsheet similar dependencies will exist; often what is modeled in a spread-
sheet as a worksheet, is represented in software by a class. As S3b-R stated: “This
diagram is a basis for the architecture of the software I will build”.

In these three cases, we again found that the dataflow diagram helped experts
to tell their spreadsheet’s story. The top-down way of starting with the global
view, advancing through the detailed worksheet view to the formula view reflects
the way experts normally explain the spreadsheet, yet is made more tangible by
means of the diagrams. We repeatedly saw how experts use the names of cells and
regions in the spreadsheet (which are present in the dataflow diagram) to explain
the sheet in their own terms.

S3a-R did point out an additional downside of our approach: In industrial
spreadsheets, one formula sometimes contains multiple calculations. In our cur-
rent approach, each formula calculation is represented by only one entity, making
it difficult to see what is calculated in the formula. Note that this is particularly
relevant to the S3 scenarios, in which the receiver is a software engineer who needs
to understand exactly how calculations are performed.

3.7.3 Conclusions
With the results of the 27 interviews and the 9 case studies we are able to answer
the research questions.

R1: How does dataflow visualization help users to understand spread-
sheets better? One of the main reasons why dataflow visualization supports a
spreadsheet transfer scenario is that the global view provides an overview of the
spreadsheet helping the expert to create a story around the spreadsheet. In the
evaluation, both experts and receivers stated that the global view reveals the idea
behind the spreadsheet. The detailed worksheet view supports the top-down way
in which experts normally explain their spreadsheets. Finally the formula view
allows end-users to find details of calculations when necessary. The interactive
visualization furthermore allows users, both experts and receivers, to edit the
dataflow diagram by adding or removing entities or giving them a specific color,
so they can customize the diagram to fit their story exactly.

R2: How is our approach able to visualize large and complex spread-
sheets? Several of the spreadsheets under study were large (see Table 1), con-
taining thousands of formulas and dependencies. To be able to handle industrial
spreadsheets of these sizes we introduced levels in the dataflow diagrams and
provided three different views on the leveled diagram. In all nine case studies
the global view was found easy to understand, even for cases with more than 10
worksheets. This is probably caused by the fact that spreadsheet users divide
a spreadsheet into worksheets and data blocks themselves. The names for these
sheets and blocks are obtained from the spreadsheet, helping users understand

60 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.8

levels in terms of the underlying application domain. The formula view shows
the calculation for one formula only, abstracting away from all other details of
the spreadsheet, no matter how large it is. This feature was also appreciated by
many receivers, especially in scenarios S2 and S3, since there the receivers want
to know exactly how formulas are built up.

R3: What are the main limitations of the current approach? There
are some spreadsheet concepts the current implementation cannot handle prop-
erly. For instance, Visual Basic code is not considered in generating the dataflow
visualization. In the observations we noticed that users do see this as a limitation
of the current approach, as these concepts are important in the spreadsheets.

Furthermore, our treatment of formulas (representing them by just one pro-
cess) works well for smaller ones with few operators, but is less helpful for more
complex ones. An option might be to represent a formula as multiple processes,
for instance representing (a+ b)/(c ∗ d) with three processes, one for +, ∗ and /.
We keep this as a point for future work.

For auditors, the information needs I3 and I4 where broadened by the case
studies, in which we found that there is also the need to visualize dependencies
between a spreadsheet and it’s external data sources. This can be other spread-
sheets, but also databases or programs. The visualization of external spreadsheets
with our approach is quite straight forward. It could be created by introducing
an additional file level in which we group the worksheet by the file they occur in,
and visualize relations between different spreadsheet files based on formula de-
pendencies as before. The implementation of relationships between a spreadsheet
and other types of data sources is a bit more involved, so we defer that to future
work.

In some cases, users would like to see the connection between the dataflow
diagram and the original spreadsheet, which is not possible with the current im-
plementation. This need typically occurred when users switched from the global
view to the worksheet view. Then they wanted to have a look inside the worksheet
to see what region in the spreadsheet corresponded to what data block, especially
when GyroSAT was not able to find a name for a data block. Once they under-
stood the connection, they continued their explanation with the support of the
dataflow diagram and left the spreadsheet.

3.8 Discussion

The current implementation of GyroSAT, while still a prototype, helps users ex-
plain their spreadsheet to colleagues in a structured way. In this section, we
discuss a variety of issues that affect the applicability and suitability of the pro-
posed approach.

3.9 DISCUSSION 61

3.8.1 Meaningful identifiers

It is not in all cases possible to find identifiers in the spreadsheet. In some cases
they are simply not present, while in other cases the layout of the spreadsheet is
too complicated for our name resolution algorithm. For example, when there are
empty rows between the names of the columns and the actual data, the names
will be in one data block and the values will be in another, making it impossible
for our current naming algorithm to find names for these cells. A point for future
work is the improvement of this algorithm. Note that when names are not present
they will obviously never been found. This might be overcome by allowing users
to attach missing names to cells, for instance by means of a wizard.

3.8.2 Spreadsheet comprehension

Although currently we focus on using our approach for aiding in spreadsheet
transfer scenarios, we believe this approach is also suited for what we call indi-
vidual spreadsheet comprehension. This is a scenario in which one person needs
to understand a spreadsheet, without someone explaining it. In future work, we
will evaluate our approach in this kind of scenarios. In this type of use of our
approach the identification of meaningful identifiers is even more important since
there is no expert present to add missing information.

3.8.3 Threats to validity

A threat to the external validity of our evaluation concerns the representativeness
of the selected set of employees at Robeco and their spreadsheets. However other
papers [Hen94; Pan06] report on industrial spreadsheet stories similar to the ones
we found at Robeco, so their practice seems to be representable.

Furthermore, there is a risk of aptitude treatment interaction since all of the
27 initial participants where invited for the second evaluation, and it could be the
case that only the most positive ones responded to this request. Judging by the
number of points of criticism in the second evaluation this seems not to be the
case here.

With respect to internal validity, one of the threats is the fact that we did not
pick a random sample. This effect can be decreased by using a larger test group
in future experiments. We however believe the current test group serves as a good
reference group, as the persons varied in their age, function and daily tasks with
spreadsheets.

In our empirical study we tried to maximize the realism of our evaluation,
which unfortunately comes at the price of reduced repeatability. As an alternative,
we considered using the EUSES spreadsheet corpus [Fis05b], which is often used
in spreadsheet research (including ours [Her10]). In this case, however, we could
not use this corpus, since we were not able to identify users and transfer tasks for
the spreadsheets in this corpus.

62 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.10

3.9 Related work

Flowcharts—direct family members of the dataflow dia-grams—have been present
in computer science since its early days [Gol47]. Later, Knuth developed a system
that could draw them automatically from source code [Knu63]. Experiments
done by Scanlan [Sca89] showed flowcharts can be a good asset aiding users in
comprehending source code.

The problems around spreadsheet use are a topic for many papers. Nardi and
Miller [Nar90] for instance found that “it is difficult to get a global sense of the
structure of a spreadsheet, which requires tracing the dependencies among the
cells.” This statement is very similar to the ones we gathered in the interviews.
Users in the survey of Nardi and Miller named this tedious process their biggest
complaint about spreadsheets. Burnett and Rothermel have written a series of
papers on testing spreadsheets [Bur99; Rot98]. Underlying their test methods
is the Cell Relationship Graph (CRG), a graph that shows the relation between
cells. They however use this graph to calculate what cells depend on what other
cells and the CRGs are not shown to end-users testing the spreadsheet.

Many papers describe mechanisms to visualize spreadsheet structure to sup-
port user understanding. The first one was Davis [Dav96] suggesting the ‘online
data dependency tool’ that extracts a spreadsheet flow diagram, as proposed by
Ronen et al. [Ron89] to document spreadsheets. The tool was never implemen-
ted because at the time of writing graphical layout of these diagrams was too
complicated to automate. They did perform an evaluation with a hand-generated
diagram and compared its usefulness to an arrow diagram, a diagram showing de-
pendencies directly in the spreadsheet, similar to Excel’s Audit Toolbar. Results
show that participants identified more cell dependencies with the diagrams than
without, although the arrow diagram performed slightly better then the online
diagram.

Clermont [Cle04] introduces the notion of data-dependency graph (DDG),
showing end-users the relation between all cells within a spreadsheet as part of
an auditing toolkit. A DDG however only contains cell names (such as B5) and
does not show the formula calculations.

Shiozawa et al. [Shi99] proposes to create a dataflow diagram in 3D on top
of a given spreadsheet, where more distinct connections are placed higher above
the spreadsheet. This is an interactive process in which users can select cells and
‘lift them up’. Although their approach seems very promising it has to date never
been evaluated in practice.

The main difference between these related approaches and ours is the intro-
duction of levels in the dataflow diagram, the automatic extraction of names for
worksheets, data blocks and cells and our extensive evaluation in industry.

3.10 CONCLUDING REMARKS 63

3.10 Concluding remarks
The goal of this research is to underline the importance of spreadsheet analysis
and visualization as a means to aid users in understanding spreadsheets. To that
end we have designed an approach to represent calculations within a spreadsheet
as data flow diagrams and implemented this approach in the Gyro Spreadsheet
Analysis Toolkit. The key contributions of this work are as follows:

• A detailed survey analyzing the information needs of spreadsheet users (Sec-
tion 3.2)

• An algorithm to extract a dataflow diagram from a spreadsheet (Section
3.4)

• Different views on the dataflow diagram (Section 3.5)

• An implementation of the proposed methods in the GyroSAT toolkit (Sec-
tion 3.6)

• An evaluation of the proposed approach within a large Dutch financial com-
pany (Section 3.7)

The current research gives rise to several directions for future work. As men-
tioned before we should concentrate on gathering more information from the
spreadsheets, not only from formula dependencies, but from Visual Basic code
as well. It would also be an improvement to link the dataflow diagram to the
spreadsheet. Ideal would be to have a dataflow diagram and a spreadsheet on the
screen simultaneously and highlight a certain part of the data flow diagram when
a corresponding part of the spreadsheet was selected, and vice versa.

64 SUPPORTING PROFESSIONAL SPREADSHEET USERS BY GENERATING
LEVELED DATAFLOW DIAGRAMS 3.10

Chapter4
Detecting and Visualizing
Inter-worksheet Smells in
Spreadsheets

4.1 Introduction

Spreadsheets are widely used in industry: Winston [Win01] estimates that 90%
of all analysts in industry perform calculations in spreadsheets. Their use is
diverse, ranging from inventory administration to educational applications and
from scientific modeling to financial systems. Especially in the financial domain
spreadsheets are prevailing. Panko [Pan06] states that 95% of U.S. firms, and
80% in Europe, use spreadsheets in some form for financial reporting.

Business analysts using spreadsheets usually have very limited training in pro-
gramming or structuring data. In spite of that, they effectively are end-user pro-
grammers, and as such face many of the challenges of professional developers, such
as identifying faults, debugging, or understanding someone else’s code [Ko10].

This chapter aims at providing support for spreadsheet users to take on these
end-user programming challenges, focused on support for identifying potentially
risky parts in a spreadsheet’s high level design, i.e. the way in which worksheets
are organized and depend on each other.

Our starting point is the code smell metaphor introduced by Fowler [Fow99].
In particular we study the coupling and cohesion of classes (called Collaboration
Disharmonies by Lanza and Marinescu [Lan05]) and transform these code smells
in such a way that they apply to the coupling of worksheets rather than classes.
This leads to a list of inter-worksheet smells.

In order to detect these smells automatically, we define metrics for each of

65

66 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.2

them. With each metric, we establish a threshold, to know at what point to
identify a worksheet as smelly. We follow the approach of [Alv10] who analyzed
metrics on source code and set thresholds by determining the worst 70, 80 and
90% of all methods and choosing corresponding metric values for the thresholds
representing medium, high and very high risk.

We then address the issue of communicating identified smells to spreadsheet
users. For this we use our original worksheet visualization, since earlier experi-
ments have shown that these diagrams are useful for spreadsheet users to get an
overview of the structure of their spreadsheet. We enrich those data flow diagrams
with colors and tool tips to convey the inter-worksheet smells to spreadsheet users.

We perform a quantitative and qualitative evaluation of our approach. Firstly,
we analyzed the EUSES corpus, and investigated the occurrence of inter-worksheet
smells. Secondly, we conducted a series of case studies at a large Dutch financial
institution, called Robeco. Here we conducted ten case studies. In each study we
analyzed a real-life spreadsheet, and discussed the located smells with the spread-
sheet owner, supported by the generated data flow diagram. The evaluations aim
to answer the following research questions:

R1 What inter-worksheet smells are the most common, and why?

R2 How do inter-worksheet smells expose threats to spreadsheet quality and cal-
culation integrity?

R3 To what extent are enriched data flow diagrams an appropriate way of visu-
alizing inter-worksheet smells?

The findings of these evaluations indicate that (1) inter-worksheet smells are
commonly found in real-life spreadsheets, (2) inter-worksheet smells can indicate
real weaknesses in a spreadsheet’s design and (3) data flow diagrams seem useful
to help spreadsheet users locate and understand inter-worksheet smells.

This chapter is organized as follows. Section 4.2 gives an overview of related
work in the area of code smells and spreadsheet metrics. In Section 4.3 we sketch
the background of our approach and illustrate it with a motivating example.
Section 4.4 introduces the inter-worksheet smells, followed by Section 4.5 that
explains how to automatically detect the smells. In Section 4.6 the communication
of the smells to spreadsheet users by means of data flow diagrams is described.
Section 4.7 describes the implementation of our prototype Breviz, while Section
4.8 explains the two evaluations we have performed in detail. Section 4.9 discusses
the applicability of the proposed approach, followed by the concluding remarks
in Section 4.10.

4.2 Related Work
Efforts related to our research include work on code smells, starting with the
canonical work by Fowler [Fow99]. His book gives an overview of code smells and

4.3 BACKGROUND & MOTIVATING EXAMPLE 67

corresponding refactorings. Recent efforts focused on the automatic identification
of code smells by means of metrics. Marinescu [Mar01] for instance, uses metrics
to identify suspect classes, those classes that might have design flaws. Lanza and
Marinescu [Lan05] explain this methodology in more detail. Alves et al. [Alv10]
focus on a strategy to obtain thresholds for metrics from a benchmark. Olbrich et
al. furthermore investigates the changes in smells over time, and discusses their
impact [Olb09].

Furthermore, there are papers that address common errors in spreadsheets.
Ayalew et al. [Aya00] for instance names the incorrect grouping of data, and
incorrect coupling between those groups as sources of errors. Panko [Pan98] names
omission errors as the most dangerous of spreadsheet errors. Omission errors are
those errors that arise from “misinterpretation of the situation that should be
modeled” (Powell et al. [Pow09]). In our own previous work [Her11] we have
developed an approach to visualize the flow of data within spreadsheets by means
of a data flow diagram. The evaluation showed that those diagrams are useful for
spreadsheet professionals that need to understand the structure of a spreadsheet.
In other recent work [Her12c] we have applied code smells to individual formulas,
rather than worksheets.

Finally, there are papers on spreadsheet metrics, which are also aimed at loc-
ating weak points in spreadsheets. In 2004, Bregar published a paper presenting
a list of spreadsheet metrics based on software metrics [Bre04]. He however does
not provide any justification of the metrics, nor did he present an evaluation.
Hodnigg and Mittermeir [Hod08] propose several spreadsheet metrics of which
some are similar to Bregar’s. Their metrics are divided into three categories: gen-
eral metrics, such as the number of formulas and the number of distinct formulas;
formula complexity metrics, such as the number of references per formula, and the
length of the longest calculation chain; and finally metrics, such as the presence
of scripts in, e.g., Visual Basic for Applications (VBA), user defined functions
and external sources. Besides the metrics, the authors also pose the interesting
suggestion to use different types of visualizations for cells with different values
for the metrics. Hole et al.[Hol09] propose an interesting approach to analyze
spreadsheets in terms of basic spreadsheet metrics, such as the number of func-
tions used, the presence of charts and the complexity of program code constructs
to predict the level of the spreadsheet creator.

We have combined the work on the definition and detection of code smells
with existing spreadsheet work, to obtain a list of inter-worksheet smells that can
be automatically detected.

4.3 Background & motivating example
In previous work [Her11] we created an approach for generating leveled data flow
diagrams from spreadsheets, to support professionals in explaining their spread-
sheets to colleagues. Figure 4.1 depicts an example of such a data flow diagram,

68 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.3

showing all worksheets within a spreadsheet and the formula relations between
them. Rounded squares represent worksheets, and an arrow between worksheet A
and worksheet B means that formulas in worksheet B refer to cells in worksheet
A. The thickness of the arrow indicates how many unique formulas connect A and
B. From this figure we can learn that the spreadsheet in question contains five
worksheets, and that, for example formulas in ‘exam’ refer to cells in worksheet
‘result79813’.

Figure 4.1: A leveled data flow diagram, representing data flow in a spreadsheet

We have implemented the generation of leveled data flow diagrams, and tested
our approach at Robeco, a Dutch investment bank [Her11]. While we observed
users working with the data flow diagrams, we noticed that they often used the
diagrams as a means of assessing the quality of the spreadsheet it represented. A
spreadsheet leading to a ‘spaghetti’ diagram was considered of lower quality than
a diagram that looked very structured.

This observation led to the idea of using our diagrams to assess spreadsheet
quality, which we will elaborate on in the remainder of this chapter. We will in-

4.4 INTER-WORKSHEET SMELLS 69

vestigate the hypothesis that the global view of our leveled data flow diagrams can
also serve as a means of identifying weak points, or even flaws in a spreadsheet’s
design.

The following example demonstrates this. Figure 4.1 shows the data flow
visualization of a real-life spreadsheet that is used by a university professor to
calculate the grade for a course. It consists of five worksheets. From the diagram
some aspects of the spreadsheet immediately catch the eye. For instance, one
of the worksheets lab-osiris is not connected to the other sheets. This sheet
contains the data from Osiris, the university’s grading system. This information
can be important when working with the spreadsheet, since the spreadsheet user
might mistakenly think that the exam scores are automatically updated when
the information in Osiris is updated. To determine this without Breviz would
require the user to select all cells for all worksheets one by one and checking their
dependents. Furthermore, the loop between exam and labwork stands out. The
name exam could suggest that the worksheet only contains data about the exam,
however it apparently also contains information regarding the lab work. This
example illustrates the type of information that can be gathered from a data flow
diagram generated from a spreadsheet.

We found, in observing users at Robeco working with Breviz that the questions
raised by looking at the diagram, help spreadsheet users assess the quality of their
spreadsheet.

4.4 Inter-worksheet smells

In this section we look at Fowler’s code smells [Fow99] and investigate which of the
code smells can be adapted in such a way that it applies to spreadsheets. We focus
on inter-class code smells, since they can be related to the inter-worksheet smells.
We also leave out the code smells that involve inheritance—Parallel Inheritance
Hierarchies and Refused Bequest—since that concept does not directly occur in
spreadsheets.

4.4.1 Inappropriate Intimacy

This smell indicates that a class has too many dependencies on implementation
details of another class. A related spreadsheet smell would be a worksheet that
is overly related to a second worksheet. This is possibly unhealthy for several
reasons. First, adapting one sheet likely requires inspecting the other worksheet,
requiring the spreadsheet user to switch back and forth between the two work-
sheets, increasing the chance that errors are made [Nar90]. Secondly, since there
is a strong semantic connection between the two worksheets, the fact that they
are split could influence understandability.

70 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.4

4.4.2 Feature Envy

Feature Envy is the phenomenon where a method M seems more interested in the
fields of another class than of the class that contains M. In general, Fowler suggests
to put a method in the class that contains most of the data the method needs.
This code smell seems very applicable to spreadsheets: if there is a formula that
is more interested in cells from another worksheet, it would be better to move the
formula to that worksheet. This will likely improve understandability, since the
formula is then closer to the cells it is referring to. Conway and Ragsdale [Con97]
stated in their spreadsheets guidelines that “things which are logically related
should be arranged in close physical proximity and in the same columnar or row
orientation”. If the result of the formula is needed in other worksheets, it could
still be linked to the necessary sheets after it is moved.

4.4.3 Middle Man

Fowler defines a middle man as a class that delegates most of its operations to
other classes, and does not contain enough logic to justify being a separate class.
When this occurs, it might be time to refactor out the middle man.

This smell could also occur in spreadsheets, where ‘middle man’ formulas
occur: formulas that only contain a reference to another cell, like the formula
‘=Sheet1!A2.’ If a worksheet contains many of those middle man formulas, it
might be better to remove this worksheet, and move its functionality to other
worksheets.

A worksheet suffering from the Middle Man smell could complicate the struc-
ture of a spreadsheet, and therefore reduces spreadsheet quality. Many papers on
spreadsheets stress the importance of structure in a spreadsheet’s design. Janvrin
and Morrison [Jan00] for instance, state that using a structured design approach
reduces risks in end-user spreadsheet development. Markus and Keil agree and
further note that structured design methodologies increase the accuracy and reli-
ability of information systems [Lyn94]. Cheney et al. [Che86] found that the more
structured an end-user works, the more likely the success of the application.

4.4.4 Shotgun Surgery

Source code smells of ‘shotgun surgery’ when one change results in the need to
make a lot of little changes in several classes. One of its common forms is a
method A that is referred to by several other methods in several different classes.
When A is changed, it is likely that also the callers of A will have to be changed,
resulting in a lot of changes at different places.

The spreadsheet translation of this code smell is a formula F that is referred to
by many different formulas in different worksheets. By the same logic, the chances
are high that many of the formulas that refer to F will have to be changed if F
is changed.

4.5 DETECTING INTER-WORKSHEET SMELLS 71

Shotgun Surgery could have an impact on the maintainability of a spreadsheet,
since it requires the user to make a number of changes when F is changed.

4.5 Detecting inter-worksheet smells
In this section, we present our approach to automatically detect worksheet smells
in spreadsheets. We base our approach on existing work done in the domain of
object-oriented software engineering, such as [Alv10; Lan05; Olb09]. We mainly
follow the approach by Marinescu described in [Mar01]: for each of the smells
we define one or more metrics that indicate the presence of that particular smell.
We subsequently analyze a large body of spreadsheets and set thresholds by de-
termining the worst 70, 80 and 90% of all worksheets and choosing corresponding
metric values for the thresholds representing medium, high and very high risk.

Definitions To be able to reason about spreadsheets and smells, we define the
following types, sets and functions.
Cell The type C represents a cell in a spreadsheet.
Worksheet W represents a worksheet in a spreadsheet, and is defined as a set
that contains all cells that are located in the worksheet.
Spreadsheet S represents a spreadsheet, and is defined as a set that contains all
worksheets contained in the spreadsheet.
Precedents Precedents P is a function of type C → {C}
representing all precedents of a given cell. Precedents are the cells that a formula
refers to.
Connection A connection K is a tuple (A,B) of two cells. Two cells are called
connected if A∈P(B).
Connection Set The set KS is the set containing all connections of a spreadsheet.

4.5.1 Inappropriate Intimacy
To detect Inappropriate Intimacy we investigate the amount of data coupling
between two different worksheets. We count the number of connections between
two worksheets, which we call the Intimacy of these worksheets that is of type W
× W → int and is defined as follows

Intimacy(w0,w1) ≡ |{(c0,c1∈KS : c0∈w0 ∧ c1∈w1 ∧ w0 6= w1}|

We count the number of pairs in KS where the cell c0 is contained by worksheet
w0 and the cell c1 is contained by worksheet w1 and the two worksheets are not
the same. Note that this definition implies that if there are two formulas on
worksheet y referring to the same cell in x, we count this as two connections
rather than one.

72 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.5

To get the intimacy for one worksheet, we take the maximum intimacy the
worksheet has with any of its connected worksheets

II(w0) ≡ max{Intimacy(w0, w1) : w0,w1∈S}

4.5.2 Feature Envy
The Feature Envy smell is actually a smell that applies to a formula rather than
to a worksheet. We adhere to the approach of Olbrich et al. [Olb09] who state
that when a method has a certain smell, by extension the class that contains it is
also smelly.

To detect the Feature Envy smell on worksheets, we inspect all its formulas
and check the cells that they are ‘interested in’; the cells that they refer to. As a
metric for enviousness, we count all references a formula has to cells contained by
the other worksheets of a spreadsheet. Hence the definition of Enviousness(FE),
a function of type C → int is

FE(c0) ≡ |{(c0,c1)∈KS : ∃w: c0∈w ∧ c1 6∈w}|

We count the number of pairs from the connection set where cell c0 is contained
by w but not the cell c1.

4.5.3 Middle Man
The Middle Man smell is detected when a worksheet is mainly used to pass values
to another worksheet. To detect this smell we use the definition of a special type
of formulas, the middle man formula. A middle man formula does not contain
any operations besides the = operation that gets a value from another cell. The
function MMF: C → bool indicates whether a formula is a middle man formula.

When there is a calculation chain that contains two consecutive passing for-
mulas, there is risk of the Middle Man smell. We therefore count the number of
middle man formulas in a worksheet that are referred to by another middle man.
This makes Middleman (MM) a function of type W → int, defined as

MM(w) ≡ |{(c0,c1)∈KS: c1∈w ∧ MMF(c0) ∧ MMF(c1)}|

4.5.4 Shotgun Surgery

4.5 DETECTING INTER-WORKSHEET SMELLS 73

F
ig
u
re

4
.2
:

T
h

e
d

is
tr

ib
u

ti
o

n
o

f
th

e
va

ri
o

u
s

m
et

ri
cs

o
n

a
qu

a
rt

il
e

gr
a

p
h

w
it

h
lo

ga
ri

th
m

ic
sc

a
le

o
n

th
e

y-
a

xi
s

74 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.5

We count the number of connected formulas that are both middle man formu-
las. To detect shotgun surgery in worksheets, we take our inspiration from the
method described by Lanza and Marinescu [Lan05]. This method entails counting
changing methods; the number of distinct methods that call a method A of the
class and changing classes; the number of classes in which the methods that call
the measured method are defined. These methods and classes are called changing,
because they are the methods and classes likely to change if method A changes.
We adapt this method to make it applicable to spreadsheets, and introduce the
following definitions, both of type W → int

Changing Formulas The number of formulas that refer to a formula in work-
sheet w, defined as

ChangingFormulas(w) ≡ |{(c0,c1)∈KS : c0 6∈ w ∧c1∈w}|

Changing Worksheets The number of worksheets in which the changing
formulas lie, defines as

ChangingWorksheets(w0) ≡ |{w1∈S: (∃(c0,c1)∈KS : c0 w1 ∧ c1∈w0)}|

4.5.5 Determining the thresholds

Now we have determined the metrics for each of the smells, we establish the
thresholds for each of the metrics. We establish the thresholds by analyzing the
distribution of the metric values over a large, representative body of spreadsheets.
We follow the approach of Alves et al. [Alv10]. They inspect the percentage of
metric values below a certain given percentage, and set the thresholds accordingly.

The body of spreadsheets we use is the EUSES Spreadsheet Corpus [Fis05b].
This corpus contains real-life spreadsheets from all sorts of domains, ranging from
educational to financial, and from inventory to biology. It was created in 2005 and
has since then been used by several researchers to evaluate spreadsheet algorithms,
among which [Abr06] and [Cun09b].

The corpus comprises of 4,223 spreadsheets, which together contain 15,015
worksheets. Of those spreadsheets, there are 1,711 spreadsheets that contain
formulas, divided over 4,250 worksheets. Figure 4.2 shows the distribution of all
metrics over the worksheets in a quartile graph.

As can been seen in this figure, the metrics all follow a power law like distri-
bution, having most of their variability on the tail. Feature Envy and Shotgun
Surgery-Worksheets only have values higher than one above 65% of the work-
sheets, and the other three metrics pass the value of 10 at around 70%.

Because the metrics follow a distribution similar to the metrics in [Alv10], we
use the same method for setting the thresholds for our metrics. We therefore
choose 70%, 80% and 90% as the thresholds for medium, high and very high

4.7 VISUALIZING INTER-WORKSHEET SMELLS 75

risk that a worksheet suffers from an inter-worksheet smells as introduced above.
Table 4.1 shows the thresholds of the five metrics for the four smells.

Table 4.1: Thresholds for the metrics determining the smells

Smell 70% 80% 90%

Inappropriate Intimacy 8 16 42
Feature Envy 3 5 7
Middle Man 7 11 19
Shotgun - Changing Formulas 9 16 30
Shotgun - Changing Worksheets 2 3 4

4.6 Visualizing inter-worksheet smells
Once we have established the preliminary code smells, there is the question how
to communicate the smells to spreadsheet users. Since we have found in earlier
work that data flow diagrams are very suitable to explain the structure of a
spreadsheet, we will use them to convey the inter-worksheet smells as well. For
this research we adapted the diagrams by enriching them with information about
the inter-worksheet smells. When a smell is located, the worksheet box in the
dataflow diagram is colored yellow, orange or red, for smells at the 70%, 80% or
90%. A tool tip explains the spreadsheet user what smell is located, and what
cells contribute to this smell.

Colors and tool tips are simple and well-known user interface aspects, hence
this seems an effective way of indicating code smells. Figure 4.3 depicts the
user interface of our tool Breviz, with the spreadsheet smell indicators, for a
spreadsheet from the EUSES corpus. As this figure shows, smells are located in
two worksheets, ‘Capital Exp’ and ‘Cost-Quarterly’. The tool tips indicate what
smells are located, Feature Envy in ‘Capital Exp’ and Inappropriate Intimacy
in ‘Cost-Quarterly’. The tool tips furthermore name the cells that contribute to
these smells.

4.7 Implementation
The enriched data flow visualizations were incorporated into our existing spread-
sheet analysis system Breviz [Her11]. Breviz is implemented in C# 4.0 using
Visual Studio 2010. It utilizes the Gembox component to read Excel files1 and
visualizes the data flow diagrams using YFiles for .NET/WPF2. Breviz, which

1http://www.gemboxsoftware.com/spreadsheet/overview
2http://www.yworks.com/en/products_yfilesdotnet_about.html

76 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.7

Figure 4.3: A screenshot of a spreadsheet data flow visualization enriched with smell
information

4.8 EVALUATION 77

is currently implemented as stand-alone program, reads an Excel file, writes the
metrics described in Section 4.4 to a SQL Server 2008 database and subsequently
generates an annotated data flow diagram.

4.8 Evaluation
In this section we will explain how our inter-worksheet smells and their visualiz-
ation were evaluated. With the evaluation aim to answer the research questions.
To do so, we performed two separate evaluations, both a quantitative and a qual-
itative evaluation. In the quantitative evaluation we analyzed the occurrence of
inter-worksheet smells in the EUSES Spreadsheet corpus, given the thresholds we
have selected. With this evaluation, we focused on research question R1.

For the qualitative evaluation, aimed at more understanding of R1, plus an-
swers to R2 and R3, we asked 10 professional spreadsheet developers for access to
their real-life spreadsheets. We let our tool Breviz identify possible code smells
and showed the user the enriched data flow visualization. We subsequently asked
the spreadsheet users to reflect on the identified inter-worksheet smells.

The following subsections describe the two evaluations in more detail.

4.8.1 Inter-worksheet smells in the EUSES Corpus
Goal

During the first evaluation we want to learn more about the occurrence of the
four inter-worksheet smells, and hence focus on the question what smells are most
common(R1).

Setup

In this evaluation we used the EUSES Spreadsheet Corpus. As stated above, this
corpus consists of 4,223 real-life spreadsheets, from all sorts of domains, ranging
from educational to financial, and from inventory to biology.

For each of the four inter-worksheet smells, we checked how many spreadsheets
contain worksheets with metric values above the 70%, 80% and 90% thresholds.
This gives an overview of the distribution of the smells over the spreadsheets.

Results

Table 4.2 shows the results of the first evaluation. As can be seen in this table,
Feature Envy is the most common smell, with 12.4% of the spreadsheets contain-
ing worksheets with metric values above the 70% threshold.

Feature Envy is followed by Inappropriate Intimacy, with 9.6% above the 70%
threshold. Feature Envy and Inappropriate Intimacy are related, since Feature
Envy can be the cause of Inappropriate Intimacy.

78 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.8

The observation that those two smells are common is consistent with previous
work, in which we have seen that it is difficult for spreadsheet creators—that are
usually not trained as programmers—to structure their spreadsheets in a logical
way [Her11].

We believe these smells pose a real threat to spreadsheet understandability,
since in previous user studies it has been shown that it is difficult for spread-
sheet users to work with the connection between multiple worksheets. Nardi and
Miller [Nar90] for instance found that “it is difficult to get a global sense of the
structure of a spreadsheet. That requires tracing the dependencies among the
cells.” We will investigate these smells in more detail in the second evaluation.

Third most common is the Middle Man smell, with which 5.9% of the spread-
sheets are diagnosed. Finally, with 4.1% of the spreadsheets suffering from Shot-
gun Surgery at the 70% level, this is the least common smell in the EUSES corpus.

Table 4.2: Percentage of spreadsheets in the EUSES corpus that contains at least one
worksheet that suffer from at least one smell above the 70, 80 and 90% thresholds.

Smell >70% >80% >90%

Feature Envy 12.4 % 8.7% 5.8%
Inappropriate Intimacy 9.6% 6.8% 4.2%
Middle Man 5.9 % 5.0% 4.0%
Shotgun Surgery 4.1 % 3.3% 1.5%

Any of the above smells 23.3 % 17.6% 12.8%

4.8 EVALUATION 79

T
a
b
le

4
.3
:

C
h

a
ra

ct
er

is
ti

cs
a

n
d

n
u

m
be

r
o

f
sm

el
ls

a
bo

ve
th

e
7

0
%

th
re

sh
o

ld
s

o
f

sp
re

a
d

sh
ee

ts
u

se
d

in
th

e
te

n
ca

se
st

u
d

ie
s.

ID
S
p
re

a
d
sh

e
e
t
D
e
sc
ri
p
ti
o
n

#
W

rk
s.

#
C
e
ll
s

#
F
o
rm

.
#
U
n
iq
.

S
iz
e
(K

b
)

II
F
E

M
M

S
S

1
C

a
lc

u
la

te
d
iv

id
en

d
5

1
3
,6

9
7

6
,0

1
2

5
3

1
8
3

2
-

-
-

2
O

v
er

v
ie

w
o
f

in
v
es

tm
en

t
st

ra
te

g
ie

s
5

2
1
,6

0
0

3
,0

3
1

9
8

6
0
5

3
2

1
3

3
M

o
d
el

co
m

p
a
n
ie

s
in

th
e

en
er

g
y

se
c-

to
r

1
4

8
2
,0

0
0

1
4
,7

4
2

5
3
1

8
2
6

2
7

2
6

4
V

a
lu

a
ti

o
n

o
f

sw
a
p
s

8
3
1
,4

8
5

5
,0

3
4

6
7

1
,6

9
0

1
3

-
-

5
O

v
er

v
ie

w
p
ro

fi
t

a
n
d

lo
ss

o
f

a
ll

tr
a
d
er

s
1
0

1
7
,2

6
3

9
,1

5
2

1
4
2

4
,2

6
1

-
-

-
-

6
O

v
er

v
ie

w
o
f
ri

sk
fo

r
d
iff

er
en

t
se

ct
o
rs

9
9
,1

9
0

1
4
8

1
2

3
3
2

-
-

-
-

7
C

o
m

p
a
ri

n
g

d
iff

er
en

t
ca

lc
u
la

ti
o
n

m
o
d
el

s
1
4

2
4
,5

8
0

3
,3

8
8

3
9

3
4
8

5
3

5
-

8
P

la
n
n
in

g
o
f

tr
a
d
es

1
2
,3

2
9

1
,6

8
3

6
4

7
6

-
-

-
-

9
R

ep
o
rt

in
te

re
st

ra
te

a
n
d

li
q
u
id

it
y

ri
sk

d
a
ta

2
5

5
9
,1

1
6

1
7
,9

3
0

1
1
7

1
,6

9
3

8
6

-
4

1
0

G
en

er
a
l

le
d
g
er

d
a
ta

fo
r

a
n
a
ly

si
s

1
1

1
1
,9

0
6

3
,0

4
9

5
6

1
,7

3
2

3
3

-
-

80 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.8

4.8.2 Inter-worksheet smells in ten real-life case studies

Goal

The objective of the second evaluation is to answer the ”why” of research question
R1, as well as to provide the answers to R2 and R3.

Setup

For the second evaluation we gathered 10 professional spreadsheets from the fin-
ancial domain. We performed our evaluation research at Robeco, a Dutch asset
management company with approximately 1600 employees worldwide, and over
130 billion Euro worth of assets under management. In a survey we conducted
among 27 of their analysts, we found that they use Excel for an average of 3 hours
a day, underlining the importance of spreadsheets in their daily work. Further-
more, we found that spreadsheets have an average lifetime of more than five years,
and individual spreadsheets are used by 13 different analysts on average [Her11].

We invited participants of this previous survey to participate in this evalu-
ation. We asked them to select one of their large and complex spreadsheet, which
they worked with often. Ten subjects responded positively and participated in
this evaluation. The ten subjects were familiar with our data flow diagram visu-
alization, since all of them participated in our previous study [Her11].

Before the case studies started we provided subjects with information about
the setup. We explained participants that we were going to identify inter-worksheet
smells that could possibly indicate weak points in their spreadsheets. We further-
more told them we wanted to discuss the smells with them in a short interview.
Finally, we provided subjects with a list of the four inter-worksheet smells and a
short explanation of the smells, so they could study this before the experiment.

For each of the ten subjects and their spreadsheet, the procedure was as fol-
lows:

First, we asked the subjects to explain the purpose and context of the spread-
sheet. We then generated the annotated data flow diagram. Subjects studied
the data flow diagram and the corresponding spreadsheet, for a maximum of 10
minutes, after which the interview part of the study started. In this part of the
study, we asked the subject for each of the located inter-worksheet smells:

• Do you understand why this part of your spreadsheet is marked as poten-
tially risky?

• Do you agree that there is indeed a problem or an error here?

• Can you explain why you structured the spreadsheet like this?

• Does the data flow visualization help you find the smells?

4.8 EVALUATION 81

With these questions we analyzed whether the smells and their impact are
recognized by spreadsheet users, and investigate their causes. We furthermore
learned about the reception of the data flow diagrams.

Table 4.3 shows an overview of the characteristics of the spreadsheets used in
the case study. As can be seen in this table, the spreadsheets are of considerable
size, with as many as 25 worksheets. Seven of the ten spreadsheets suffered from
at least one of the inter-worksheet smells, and Inappropriate Intimacy is the most
common smell among the spreadsheets.

Results

General observations In all the ten case studies, we noticed that the subjects were
surprised when confronted with the data flow diagrams. They often expressed
statements such as “are those worksheets really that connected?” or even “are
you sure that arrow is correct?”. These experiences corroborate what we found
in a previous study [Her11]. Since the arrows in the data flow diagram are thicker
when more formulas are connecting two worksheets, subjects could easily see that
two worksheets were strongly connected. We noticed that subjects found the data
flow visualization to be helpful in understanding the smells. One of the subjects
stated “that arrow is so fat. That can’t be good”.

The popups then helped to explain what smell exactly was found. We found
the addition of the smelly cells in the popup to be of great value as well. This
way users could locate the smells within the worksheet, and determine how the
spreadsheet could be improved.

Inappropriate Intimacy When interviewing the subjects about the Inappropriate
Intimacy smell, we were again struck by how difficult it is for spreadsheet users
to understand dependencies between the worksheets. In all seven cases where In-
appropriate Intimacy was found, it took users time to understand what cells were
connecting the worksheets and why, stating e.g. “what did I do here again” and “I
don’t remember why I needed to connect those sheets”. Even when supported by
the data flow diagrams, they were searching for the reason that a strong depend-
ency was detected, and why they constructed the spreadsheet in that way. This
was caused mainly because the spreadsheets did not have the right documentation
to support users in these type of questions. While some spreadsheet contained
documentation that explained how to work with the spreadsheet, none of the
spreadsheets contained information on the design decisions of the spreadsheet.

Asking the subjects whether they understood why the Inappropriate Intimacy
smell was found, all responded positively. However not all of them agreed that the
smell was indeed harmful. We recognized two patterns causing for Inappropriate
Intimacy. One is the use of an ‘auxiliary’ worksheet, in which data is stored,
in combination with another worksheet in which this data is referred to. This
construction is similar to a join on two tables. This is often implemented using a
VLOOKUP, MATCH or IF function.

82 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.8

A second case, deemed more dangerous by subjects, involves two worksheets
referring to each other without a clear distinction between the two worksheets. In
this case, we witnessed subjects making statements along the lines of “it would
in fact be better to merge these two worksheets”. In future work, we plan to
investigate these two types of intimacy in more detail.

The data flow diagrams were helpful when identifying the smells. They helped
the subjects to see what worksheets where connected. One of the subjects stated:
“a red block draws my attention, and the thick arrow indicates where there is too
much connection”.

However, especially in the second case, where two worksheets were overly
intertwined, users looked in the spreadsheet, to investigate the formulas in more
detail.

Feature Envy A formula suffers from Feature Envy at the 70% level when at least
3 of its references are located in another worksheet than the formula itself is in.

When a formula refers to a number of cells that lie in a different worksheets,
understanding the formula becomes harder. This is due to the fact that modern
spreadsheet programs such as Excel highlight the cells that a formula refers to
when a formula is selected, but only those cells that are located on the same
worksheet as the selected formula. The highlighting feature is used extensively
by spreadsheet users, but it does not provide any help when analyzing references
across different worksheets. The above contributes to the fact that in all cases in
which we discovered Feature Envy, subjects agreed that a refactoring would help,
since they recognized the difficulty of analyzing a formula with many references
lying in a different worksheet. One subject stated about a formula in his spread-
sheet, which referred to no less than 8 cells in a different worksheet: “this formula
annoys me, I have to go back to the other sheet so many times to look up the
references, it makes me dizzy”.

Performing the calculation on the worksheet where the referents are, and than
referring to the result from the worksheet where the result is needed, seemed more
healthy to all subjects.

In the case of Feature Envy, the data flow diagrams also supported the iden-
tification of the smell. However, in this case subjects needed to dig deeper into
the spreadsheet formulas to understand why they were marked as envious. While
the data flow diagrams list the cells that are smelly, subjects often felt the need
to inspect the worksheet, and select the listed cells, to inspect and judge their
smelliness.

Middle Man While performing the interviews with spreadsheet owners whose spread-
sheets suffered from the Middle Man smell, we were surprised to see that there
was one case in which middle man formulas were passing on information within
the worksheet. We had not anticipated this use of middle man formulas, and we
also did not find this kind of Middle Man smell in the spreadsheets of the EUSES

4.8 EVALUATION 83

corpus.

When we asked the subject why these values were passed within the worksheet,
he answered that “it is easy to always have the value in sight when working on
the spreadsheet, because then I can see the values I am calculating with”. While
explaining this he realized that maybe the worksheet had grown too big to still
be easy to work with. The subject then came up with a ‘refactoring’, such as
splitting the functionality of the worksheet in two, or ‘locking’ the values needed
in a row or column. As such, the Middle Man smell within a worksheet can be a
smell indicating the worksheet has grown too big.

A second, related category of Middle Man occurrences happens when a value
is passed along worksheets to be in sight everywhere. This value passing can be
implemented in two different ways. Either it is passed from the source sheet to
each worksheet individually, for instance from worksheet A to worksheet B, and
from worksheet A to worksheet C. This does not cause the Middle Man smell.

However, the value passing can also be done in a chain. This happens when
values are passed from worksheet A to worksheet B, and the same values are then
passed from worksheet B to worksheet C. This second situation does cause the
Middle Man smell, and is risky for several reasons. Firstly, it is not imminent
what the source of the data is, since from worksheet C, it looks like the data is
coming from worksheet B, and inspection of worksheet B is needed, to see that
the data stems from worksheet A. Secondly, it is possible that the ‘chain’ gets
broken somewhere. In this case, Middle Man smell can be a reason to change
the structure of the spreadsheet such that each worksheet gets its needed input
directly from the source worksheet.

In most cases where we saw a formula value being passed, it was to have the
value in sight. It is interesting that the Middle Man smell actually reveals a
weakness in the implementation of current spreadsheet systems, since apparently
there is a large need among spreadsheet users to have some of their values from
other parts of the spreadsheet in sight when working on it. Since there is no
feature to do this, the problem is solved with formulas, which might make the
spreadsheet bigger and more difficult to understand.

In the case of Middle Man smells, the three subjects found the data flow dia-
grams a good way to indicate inter-worksheet smells. All three quickly understood
what data was being passed, and why a worksheet was marked as Middle Man.
As one of them stated “The arrows in the diagram exactly show where data is
being passed, so I can judge the structure of the spreadsheet”.

Shotgun Surgery In the cases where Shotgun Surgery was observed, all three
subjects agreed with the fact that there was a shortcoming in the design of their
spreadsheet.

In the most extreme case (spreadsheet 9) there was a worksheet on which 220
formulas depended, spread over 10 worksheets. When faced with this, the subject
answered that he understood it would be extremely difficult for someone to modify

84 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.8

this worksheet, since it involved checking those ten worksheets, and possibly also
modifying them. In other words, he foresaw the Shotgun Surgery that would be
necessary in order to adapt this worksheet. Another reason that Shotgun Surgery
exposes a threat to the spreadsheet quality occurred in spreadsheet 3, where 7
worksheets depended on one single worksheet with 97 formulas. It turned out
that the spreadsheet had been revised recently, and that some of the references
were no longer actually in use. In this case too the subjects felt the need to
change the spreadsheet when seeing the annotated data flow diagram, to make it
up-to-date and more easy to understand for others. One of the subjects stated
“I should really take some time to improve these formulas, since this is already
confusing for me, so it must be terrible for others”. In the third case there were
3 worksheets depending on the smelly worksheet, far less than in the other two
cases. However even in this case the spreadsheet owner agreed that the current
structure could be improved to increase understandability.

In the cases with Shotgun Surgery we observed the same reception to the data
flow diagrams as with the Feature Envy smell: initially it is useful to identify
the smells. However in order to know exactly what causes the smell, spreadsheet
owners wanted to inspect the worksheet themselves.

4.8.3 Conclusions
With the results of the EUSES analysis and the case studies, we revisit the re-
search questions.

R1 What inter-worksheet smells are the most common, and why? In
the first evaluation, Feature Envy is the most frequent smell, and Inappropriate
Intimacy comes second. In the second evaluation with 10 industrial spreadsheets,
this was almost as high – second from the top.

As we have stated before, we believe these two smells are both due to the fact
that it is difficult for end-user programmers to create the right abstraction for
their worksheets. This calls for an explicit visualization of the design, as provided
by our dataflow diagrams.

R2 How do inter-worksheet smells expose threats to spreadsheet
quality and calculation integrity?

In the second evaluation, we have learned that the inter-worksheet smells can
indeed reveal weaknesses in spreadsheets. Most notable was the fact that upon
occurrence of the Shotgun Surgery smell, subjects came up with adaptations of
the spreadsheet structure themselves, because they recognized the dangers that
the smell was posing.

R3 To what extent are enriched data flow diagrams an appropriate
way of visualizing inter-worksheet smells? In general, the ten participants
found the dataflow diagrams a good way to indicate inter-worksheet smells. Since
the data flow diagram shows the relation of all worksheets, it was easy for the
subjects to understand what worksheet was marked as smelly and why. However,
in some cases, especially when investigating Feature Envy and Shotgun Surgery,

4.9 DISCUSSION 85

users wanted to see details, and felt the need to open the spreadsheet and inspect
the marked formulas.

In future work we plan to address these limitations, such as to link the data
flow diagram visualization with the spreadsheet. This allows the user to navigate
from the diagram to the interesting cells in the worksheets and vice versa.

4.9 Discussion
Our current approach to finding inter-worksheet smells helps spreadsheet users to
understand the weaknesses in their spreadsheets design. In this section, we discuss
a variety of issues that affect the applicability and suitability of the proposed
approach.

4.9.1 VBA code, pivot tables and charts
In this stage of the research, we have only taken formulas into account when
calculating the spreadsheet metrics to detect the smells. Spreadsheets can contain
other constructions as well, such as pivot tables, charts and VBA code. Those
too might be smelly, lowering the quality of the spreadsheet as a whole. In
future work we will turn our attention to detection of smells in other constructs
of spreadsheets.

4.9.2 Mental model of a spreadsheet
Both in this chapter and in previous work we have found that spreadsheet users
often do not have the correct mental model of the structure of a spreadsheet.
When they were shown the visualization of the data flow diagram, they were
often wondering about certain arrows. We plan to deepen this research in a future
study, for instance, by having users draw the mental model of a spreadsheet, and
comparing that to the as-implemented model. In that way we can learn why their
is often a difference in a user’s perception of the worksheet relationships.

4.9.3 Understanding spreadsheet design decisions
While some spreadsheets in practice contain a manual or documentation on how
to use the spreadsheet, we so far have not found spreadsheets containing the
design decisions that were taken while building the spreadsheet. In the qualitative
evaluation we have seen that it is hard for spreadsheet users to recover this design
information from memory. While our data flow diagrams support in learning
the current state of the spreadsheet, it does not help in understanding why the
spreadsheet was constructed the way it is. In future work we will investigate this
fact, by storing the history of a spreadsheet, and supporting spreadsheet users in
documenting changes they make.

86 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.10

4.9.4 Threats to validity
A threat to the external validity of our evaluation concerns the representativeness
of the EUSES Corpus spreadsheet set. This set, however, is large (containing over
4000 spreadsheets), and is collected from practice. A second threat to the external
validity of our evaluation concerns the representativeness of the selected set of the
spreadsheets in the employees at Robeco and their spreadsheets. However other
papers [Hen94; Pan06] report on industrial spreadsheet stories similar to the ones
we found at Robeco, so their practice seems to be representable.

Furthermore, there is a risk of aptitude treatment interaction since all of the
10 participants where involved in a previous evaluation of data flow diagrams, and
it could be the case that only the most positive ones responded to our request to
participate in this study.

With respect to internal validity, one of the threats is the fact that we did not
pick a random sample. This effect can be decreased by using a larger test group
in future experiments. We however believe the current test group serves as a good
reference group, as the persons varied in their age, function and daily tasks with
spreadsheets.

4.10 Concluding remarks
The goal of this chapter is to underline the importance of inter-worksheet smells
as a means to assess and improve spreadsheet quality. To that end we have
revisited literature on code smells and spreadsheet design. This has resulted in
a list of inter-worksheet smells, which we have subsequently evaluated in both a
quantitative study on the EUSES corpus and a qualitative evaluation with ten
professional spreadsheet users and real-life spreadsheets.

The key contributions of this chapter are as follows:

• The definition of four inter-worksheet smells, based on known code smells
(Section 4.4).

• An approach for the automatic detection (Section 4.5) and visualization
(Section 4.6) of the inter-worksheet smells.

• An implementation of that approach into our spreadsheet analysis toolkit
Breviz (Section 4.7).

• A twofold evaluation of the proposed inter-worksheet smells, first on the
EUSES corpus, and secondly with 10 professional spreadsheet users in an
industrial context (Section 4.8).

The current research gives rise to several directions for future work. Firstly
there is the expansion of the smells analysis to other spreadsheet concepts, such as
pivot tables, graphs and VBA code. Secondly it would be interesting to examine

4.10 CONCLUDING REMARKS 87

the relation between actual errors in spreadsheets and inter-worksheet smells.
Could smell detection have prevented those errors?

Finally, code smells are inseparably connected to refactoring. Hence it would
be exiting to try to create refactoring strategies and refactoring tools for spread-
sheet systems, and test their applicability with professional spreadsheet users.

88 DETECTING AND VISUALIZING INTER-WORKSHEET SMELLS IN
SPREADSHEETS 4.10

Chapter5
Detecting Code Smells in
Spreadsheet Formulas

5.1 Introduction
The use of spreadsheets is very common in industry, Winston [Win01] estimates
that 90% of all analysts in industry perform calculations in spreadsheets. Spread-
sheet developers are in fact end-user programmers that are usually not formally
trained software engineers. There are many of those end-user programmers, more
than there are traditional programmers, and the artifacts they create can be just
as important to an organization as regular software. Technically, spreadsheets also
have similarities to software. One could view spreadsheet formulas as little pieces
of source code, since both consist of constants, variables, conditional statements
and references to other parts of the software. It therefore seems logical to research
what principles from software engineering are also applicable to spreadsheets.

In previous work [Her12b] we have defined code smells between worksheets,
such as high coupling between worksheets and middle men worksheets. The
evaluation of those smells showed that they can indeed reveal weak spots in a
spreadsheet’s design. In this chapter we follow that line of thought, but focus our
attention on smells within spreadsheet formulas. To that end we present an set of
formula smells, based on Fowler’s code smells. We subsequently define metrics for
each of the formula smells, to enable the automatic detection of the smells. We
then describe a method to detect these formula smells. Our detection approach
uses thresholds to divide the severeness of each formula smell into low, moderate,
and high. The thresholds are based on the analysis of 4,233 spreadsheets from the
EUSES corpus [Fis05b]. Thereon we address the issue of communicating identified
smells to spreadsheet users. We choose to do this within the spreadsheet itself,
with a spreadsheet risk map, a colored overlay on the spreadsheet, indicating risk

89

90 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.2

in the spreadsheet formulas. Finally we evaluate the catalog of smells in two
ways, with a quantitative and qualitative evaluation. We perform a quantitative
evaluation on the EUSES spreadsheet corpus. The qualitative analysis was per-
formed with ten real life spreadsheets and their developers from industry. With
both studies we aim to answer the three research questions: R1 What formula
smells are most common, and why? R2 To what extent do formula smells expose
threats to spreadsheet quality? R3 To what extent are risk maps an appropriate
way to visualize formula smells?

The results of these evaluations show that formula smells can indeed reveal
weaknesses, and even find real mistakes in a spreadsheet. The risk maps, although
not yet perfect, are a good aid in helping to locate and understand formula smells.

5.2 Formula smells

We define a number of formula smells, based on the existing work in the field of
source code smells, initiated by Fowler [Fow99]. Smells in source code indicate
suspicious parts that the developer might want to refactor to improve readability
and minimize the chance of future errors. Formula smells are inspired by source
code smells: they indicate formulas that are suspicious; not easy to read or error-
prone. In the following we present our set of formula smells plus ways to refactor
them.

5.2.1 Multiple Operations

One of the most well-known code smells is the Long Method. Inspired by this
code smell, we define the formula smell Multiple Operations. Analogous to a
long method, a formula with many different operations will likely be harder to
understand than a shorter one. Especially since in most spreadsheet programs,
there is limited space to view a formula, causing long formulas to be cut off.

A corresponding refactoring is the division of the Multiple Operations over
multiple cells in a spreadsheet. For instance, instead of putting SUM(A1:A6)*(B1+
8)/100 in one cell, this could be split into two cells, one for the SUM and another
for the division that are subsequently multiplied.

5.2.2 Multiple References

Another code smell we use as a basis is the Many parameters code smell. A
method that uses many input values might be split into multiple methods to
improve readability. The formula equivalent of this smell occurs when a formula
references many different other cells, like SUM(A1:A5; B7;C18;C19;F19). In this
case the essence of the formula is clear; some cells are summed. However locating
the different cells that are contained in the sum can be challenging.

5.2 FORMULA SMELLS 91

In this case there are several options to refactor. Firstly, like in the case of
a formula with many operations, we could split the formula into several smaller
formulas, each performing one step of the calculation. A second option is the
relocation of the cells in the spreadsheet. One solution is to place the values in
B7;C18;C19;F19 in A6 until A10, and to rewrite the formula as SUM(A1:A10).

5.2.3 Conditional Complexity
Fowler states that the nesting of many conditional operations should be considered
a threat to code readability, since conditionals are hard to read. Since spreadsheet
systems also allow for the use of conditionals, spreadsheet formulas are at risk of
this treat too. We hence consider a formula with many conditional operations as
smelly, like the formula IF(A3=1,IF(A4=1,IF(A5<34700,50)),0), because of the
many conditional branches, the formula is hard to read.

To reduce conditional complexity of a formula, again it could be split into mul-
tiple steps, by putting each branch of the if in a separate cell, turning our example
formula into IF(A3=1,B1,B2), where cell B1 contains IF(A4=1, IF(A5<34700,
50)) and B2 contains 0. B1 could again be refactored in this fashion. By separ-
ating the ifs, it is easier to understand what happens in each case. A different
option is to combine multiple if formulas into one SUMIF or COUNTIF formula,
by putting the branches of the if in separate cells.

5.2.4 Long Calculation Chain
Spreadsheet formulas can refer to each other, hence creating chains of calculation.
To understand the meaning of such a formula, a spreadsheet user has to trace along
multiple steps to find the origin of the data. Nardi and Miller [Nar90] described
that spreadsheet users find tracing a long calculation chain a tedious task.

To lower the number of steps of a calculation chain, steps of the chain could
be merged into one cell. Note that there is a trade off between this metric and
Multiple Operations and Multiple References. When they are lowered, this metric
will be increased, and vice versa. Such trade offs occur in source code smells too.

5.2.5 Duplicated Formulas
Finally there is the duplication code smell, which indicates that similar snippets
of code are used througout a class. This is a concept common in spreadsheets too,
where some formulas are partly the same as others. Consider, for example, a work-
sheet that contains a cell with formula SUM(A1:A6)+10% and a second formula
SUM(A1:A6)+20%. This formula exhibits duplication; the part SUM(A1:A6) is
contained in more than one formula. Duplication is suspicious for two reasons.
Firstly it poses a threat to maintainability, since when the duplicated part of the
formula is adapted, this adaptation has to be performed at multiple places. This
could be forgotten by the spreadsheet user, or a mistake could be made in some

92 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.3

of the cases. Secondly, there is an impact on readability, when long parts of the
formula are duplicated, it is hard to see how they differ from each other.

Duplicated formulas can be refactored by putting the shared subtrees in a
separate formula and replacing the subtree with a reference to that formula.

5.3 Formula metrics
To identify smell occurrences automatically, we make use of metrics, an approach
common in the automatic detection of code smells [Moh10]. We follow our ap-
proach outlined in [Her12b] defining a metric to detect each of the formula smells
in spreadsheets. This method entails the definition of a metric for each of the
smells to indicate the presence of that particular smell.

Multiple Operations

We measure the length of a formula in terms of the total number of functions that
the formula contains.

Multiple References

This metric is counted in terms of the number of ranges a formula is referring to.

Conditional Complexity

Conditional complexity is measured in terms of the number of conditionals con-
tained by a formula.

Long Calculation Chain

This metric is defined as the length of the longest path of cells that need to be
dereferenced when computing the value of the formula.

Duplicated Formula

For the localization of this smell more information about spreadsheet formulas is
needed. Consider the spreadsheet in Figure 5.1. All the formulas in column E
calculate the minimum of the four cells left to it, followed by the addition of a
certain percentage. We argue that in this case, duplication should be detected.
However, looking at the formulas, they do not look similar. We therefore will use
the relative R1C1 notation when detecting duplication.

In the relative R1C1 notation, references to other cells are expressed relative
to the cell containing the formula. MIN(A2:D2) in cell E2 is written as MIN(RC[-
4]:RC[-1]) in relative R1C1 notation. With this notation, all formulas in Figure
5.1 contain the subtree MIN(RC[-4]:RC[-1]), with different percentages. With
this, we will measure the duplicate code smell as the number of formulas, located

5.5 DETERMINING SMELL THRESHOLDS 93

Figure 5.1: Formulas containing similar subtrees

in the same worksheet and expressed in relative R1C1 notation, with which a
formula shares at least one proper subtree. We exclude the entire tree as subtree,
since having the same R1C1 formula in an entire row or column is the usual way
of defining a formula in spreadsheets.

5.4 Determining smell thresholds

In order to use the metrics as smell indicators, we determine thresholds for each
of the metrics. We do this by analyzing a large body of spreadsheets and based
on the values for the metrics we find in that large body of spreadsheets, we set
the thresholds for the metrics that indicate the smell.

The body of spreadsheets we use is the EUSES Spreadsheet Corpus [Fis05b].
This corpus consists of more than 4,223 real life spreadsheets, from all sorts of
domains, ranging from educational to financial, and from inventory to biology.
It was created in 2005 and has since then been used by several researchers to
evaluate spreadsheet algorithms, for instance [Abr06].

The total of 4,223 spreadsheets together contain 15,015 worksheets and 426,986
formulas. A spreadsheet however often contains many rows with formulas that are
equal in the relative R1C1 notation, which we call unique formulas. We collect the
metrics for all unique formulas, of which there are 55,736 in the EUSES corpus.

Figure 5.2 shows on overview of the metric values for all unique formulas in
the EUSES corpus. As can been seen in this figure, the metrics all follow a power
law like distribution, having most of their variability on the tail. We therefore
propose to select the values at 70, 80 and 90% of the metric values, which will
correspond to risk levels low, moderate and high. These are percentages that are
also common in the analysis of source code smells [Alv10]. Table 5.1 shows the
thresholds that follow from the given selection for the five formula smells.

94 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.6

Figure 5.2: A quantile plot (% of formulas) for the five metrics for formulas in the
EUSES corpus, with a logarithmic scale for the y axis

Smell 70% 80% 90%

Multiple Operations 4 5 9
Multiple References 3 4 6
Conditional Complexity 2 3 4
Message Chain 4 5 7
Duplication 6 9 13

Table 5.1: Thresholds for the metrics that indicate the formula smells

5.5 Risk maps

Having established a method to detect the formula smells, in this section, we
investigate a way to communicate the located smells to spreadsheet users. We
have chosen to show the formula smells inside the spreadsheet itself. We have seen
in previous work that, when reasoning about formulas, spreadsheet users like to
see the context of the formula [Her11]. We therefore use a colored overlay over
the spreadsheet that indicates the formula smells, inspired by other spreadsheet
tools like UCheck [Abr07a; Cha09; Erw09], combined with pop-ups showing what
smell is detected, when the cell is selected by the user. These pop-ups are similar
to those used in UFix [Abr05a]. We call this the spreadsheet risk map.

We attach a comment to each colored cell, so when a spreadsheet user clicks a
cell, an explanation about the located smell will pop up. The three different risk
levels are marked with different colors; yellow for low; orange for moderate and
red for high.

5.8 IMPLEMENTATION 95

Figure 5.3: A spreadsheet with its risk map

5.6 Implementation
The generation of the risk maps is incorporated into the existing spreadsheet
analysis system Breviz [Her11]. Breviz is implemented in C# 4.0 using Visual
Studio 2010. It utilizes the Gembox component to read Excel files. 1 Breviz
reads an Excel file and calculates the metrics described above and subsequently
generates the spreadsheet risk map. Furthermore the metric values are stored in
a SQL Server 2008 database to perform the threshold detection.

5.7 Evaluation
In order to evaluate the formula smells, metrics, thresholds, and risk map visual-
ization, we perform two separate evaluations. In the first evaluation we turn our
attention back to the EUSES Spreadsheet corpus. We analyze all spreadsheets
in the corpus and investigate the occurrence of the five spreadsheet smells. With
this analysis, we seek to find a preliminary answer to research question R1: what
formula smells are common, and why.

For the second evaluation, aimed at a deeper understanding ofR1, plus answers
to R2 and R3, we ask ten professional spreadsheet developers for access to their
real life spreadsheets. We let our tool Breviz identify possible formula smells and
show the participants the generated risk map. We thereon ask the spreadsheet
users to reflect on the identified spreadsheet smells, in a semi-structured interview.

The following sections describe the two evaluations in more detail.

5.8 Smell occurrences in the EUSES Corpus

5.8.1 Goal
The objective of the first study is to understand how common the five formula
smells are, given the thresholds we have selected. While the thresholds were

1http://www.gemboxsoftware.com/spreadsheet/overview

96 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.8

chosen such as percentages of formulas containing a smell, here we are interested
in the distribution of smelly formulas across spreadsheets.

5.8.2 Setup

We use the Breviz tool to analyze the spreadsheets in the EUSES corpus for the
presence of formula smells and their severity. Per spreadsheet the tool outputs
the metric values for each of the five formula smells. We use this data to analyze
the distribution of the formula smells over the three metric categories; above the
70%, 80% and 90% thresholds.This gives a first idea of the distribution of the
formula smells over the spreadsheets.

Smell > 70% > 80% > 90%

Multiple References 23.8% 18.4% 6.3%
Multiple Operations 21.6% 17.1% 6.3%
Duplication 10.8% 7.1% 3.7%
Long Calculation Chain 9.0% 7.9% 3.3%
Conditional Complexity 4.4% 3.0% 1.1%

Any of the above smells 42.7% 31.4% 19.7%

Table 5.2: Percentage of spreadsheets in the EUSES corpus that suffer from at least
one of the five spreadsheet smells in EUSES corpus, for the three thresholds

5.8.3 Results

Table 5.2 shows the results of the first evaluation. As shown in this Table, Mul-
tiple Operations and Multiple References are most common in the EUSES Cor-
pus. This is consistent with previous spreadsheet experiments, where it has been
shown that spreadsheet are often adapted by their users [Her11]. In that process,
spreadsheet formulas tend to get longer and more complex. As opposed to soft-
ware development, where code is sometimes rewritten to improve readability or
maintainability, the answers of the ten subjects of the second evaluation (see be-
low) have taught us that this is not common practice among spreadsheet creators.
Hence, when a formula has become long and complex, it is likely to remain that
way.

Third and fourth come the Duplicated Formula and Long Calculation Chain.
These two smells share the property that they are not immediately visible to the
spreadsheet user. In most modern spreadsheet systems, when a cell is clicked,
the formula it contains is shown. However in the case of Duplicated Formula
and Long Calculation Chain, the formula does not reveal where the calculation
chain of the formula ends, and with what formulas a cell shares subtrees. So it is

5.9 FORMULA SMELLS IN AN INDUSTRIAL CASE STUDY 97

interesting to see that around 10 percent of spreadsheets suffer from a smell that
is not visible to a spreadsheet user that is not explicitly looking for it.

Conditional Complexity is the least common smell. This is surprising, since we
have seen before that conditional operations are quite common in spreadsheets.
We therefore dived into this phenomenon deeper. We found that of the total of
426,986 formulas in the corpus, 5,976 contain at least one conditional operation,
this is 1.4% of all formulas. These formulas are divided over 380 spreadsheets,
which amounts to 22.2% of the spreadsheets with formulas. We can hence state
that the use of conditional operations is relatively common.

However, only 92 of the spreadsheets (5.3%) contain formulas with more than
2 conditional operations in one formula, adding up to only 695 formulas (0.2%).
Evidently, the nesting of conditional formulas is not very common. We will hence
devote attention to this fact in the second evaluation.

Regarding the thresholds, given our current choices a substantial percentage of
the corpus suffers from spreadsheet smells, especially in the low category. In the
second case study we will continue to investigate the thresholds, by observing how
spreadsheet users from industry feel about formulas that are marked as smelly by
these thresholds.

5.9 Formula smells in an industrial case study

5.9.1 Goal

The aim of our second evaluation is investigating which of the formula smells
actually poses a threat to spreadsheets (R2), and whether risk maps help spread-
sheet users find and understand formula smells (R3). To determine this, we have
surveyed 10 spreadsheet users and interviewed them about a spreadsheet that
they often work with and that they found was large and complicated.

5.9.2 Setup

For the second evaluation we interviewed 10 professional spreadsheet users from
the financial domain. We conducted our evaluation at Robeco, a Dutch asset
management company with approximately 1600 employees worldwide, and over
130 billion Euro worth of assets under management.

We invited 27 participants of a previous study performed at Robeco [Her11]
to participate in this evaluation, where they were asked to provide us with a
spreadsheet that they worked with regularly. We explained to participants that
we were going to analyze the quality of their spreadsheet, and discuss it with
them. We provided subjects with a list of the five formula smells and a short
explanation of each smell, so they could study this before the experiment. During
each of the 10 case studies, the procedure was as follows. First we asked the
subject to explain the spreadsheet to us. We then analyzed the spreadsheet and

98 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.9

generated the spreadsheet risk map, which we showed to users in Excel 2010.
We subsequently let subjects inspect the risk map, and asked them in a semi-
structured interview setup, for each of the located formula smells 1) whether they
understood the smell that was identified and 2) whether they thought this smell
posed a threat to spreadsheet understandability, and if yes, why, and how severe
the threat was, according to them. We finally asked them how the risk map and
the pop-up helped them in understanding the formula smells.

5.9.3 Results
Table 5.3 shows an overview of the spreadsheets used in the case study in terms
of the numbers of worksheets, cells, formulas, unique formulas and file size in
Kb. The five final columns indicate the number of unique formulas in the spread-
sheets suffering from the given smell, Multiple Operations (MO), Duplicate For-
mula (DF), Multiple References (MR), Conditional Complexity (CoC) and Long
Calculation Chain (CaC). As can be seen from this table, formula smells occur
frequently in the ten spreadsheets. The following describes the result of the case
studies in detail.

5.9 FORMULA SMELLS IN AN INDUSTRIAL CASE STUDY 99

ID
S
p
re

a
d
sh

e
e
t
D
e
sc
ri
p
ti
o
n

#
W

rk
s.

#
C
e
ll
s

#
F
o
rm

.
#
U
n
iq
.

S
iz
e

M
O

M
R

D
F

C
a
C

C
o
C

1
C

a
lc

u
la

te
d
iv

id
en

d
5

1
3
,6

9
7

6
,0

1
2

5
3

1
8
3

1
4

6
3

7
-

2
In

v
es

tm
en

t
st

ra
te

g
ie

s
5

2
1
,6

0
0

3
,0

3
1

9
8

6
0
5

9
8

4
3

-
3

M
o
d
el

en
er

g
y

co
m

p
a
n
ie

s
1
4

8
2
,0

0
0

1
4
,7

4
2

5
3
1

8
2
6

5
8

3
1

1
1

-
-

4
V

a
lu

a
ti

o
n

o
f

sw
a
p
s

8
3
1
,4

8
5

5
,0

3
4

6
7

1
,6

9
0

1
7

-
4

-
2
1

5
P

&
L

ov
er

v
ie

w
o
f

a
ll

tr
a
d
er

s
1
0

1
7
,2

6
3

9
,1

5
2

1
4
2

4
,2

6
1

2
6

2
3

1
7

7
-

6
R

is
k

ov
er

v
ie

w
fo

r
d
iff

er
en

t
se

c-
to

rs
9

9
,1

9
0

1
4
8

1
2

3
3
2

4
3

2
-

-

7
C

o
m

p
a
ri

n
g

ca
lc

u
la

ti
o
n

m
o
d
el

s
1
4

2
4
,5

8
0

3
,3

8
8

3
9

3
4
8

1
7

1
4

2
3

-
-

8
P

la
n
n
in

g
o
f

tr
a
d
es

1
2
,3

2
9

1
,6

8
3

6
4

7
6

1
5

3
3

-
4

-
9

R
ep

o
rt

in
te

re
st

a
n
d

li
q
u
id

it
y

ri
sk

2
5

5
9
,1

1
6

1
7
,9

3
0

1
1
7

1
,6

9
3

3
2

1
8

-
9

-
1
0

G
en

er
a
l

le
d
g
er

d
a
ta

fo
r

a
n
a
ly

si
s

1
1

1
1
,9

0
6

3
,0

4
9

5
6

1
,7

3
2

1
0

2
3

7
-

4

T
a
b
le

5
.3
:

C
h

a
ra

ct
er

is
ti

cs
a

n
d

n
u

m
be

r
o

f
sm

el
ls

a
bo

ve
th

e
7

0
%

th
re

sh
o

ld
s

o
f

sp
re

a
d

sh
ee

ts
u

se
d

in
th

e
ca

se
st

u
d

y.

100 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.9

General observations

When confronted with the most smelly formula cells, participants often needed
time to explain the formula. In all cases the participants expressed statements
like “what was this formula again?” or “let me just have a quick look”. A
commonality among the ten cases in the study is the fact that all participants
immediately recognized the impact a smelly, hence complex formula could have
on spreadsheet formulas understandability. When we discussed the most complex
formulas in the spreadsheet with the participants, they indicated that it was going
to be very hard to understand or adapt this formula for someone else than the
spreadsheet’s creator.

Most participants (8) had never considered the situation where another spread-
sheet user had to understand their formulas that much. One of our previous
studies confirms the importance of such transfer scenarios [Her11]. What we
found in our present study, however, is that participants did not realize prior
to this study that keeping formulas short and simple would help future users of
the spreadsheet understand it better and faster. A side effect of our study was
increased awareness with our participants that they should take maintainability
into account when building and adapting spreadsheets.

We found that the three thresholds and the corresponding coloring help sub-
jects estimate severeness of the detected smell. One of the subjects compared
this to the triangle function in Excel. This function marks potential errors, like
calculations over empty cells with a small green triangle at the bottom of a cell.
He stated:“That function is annoying, since many cells get colored. Because you
have different shades, I can start inspecting the red ones, and ignore the yellow
ones for now”.

Regarding the values of the thresholds, we discussed each colored cell with the
spreadsheet owner, systematically going through the worksheets. In all but one
case the subjects agreed with the classification of the formulas. Only spreadsheet
user S3 stated that he felt that the system was too strict. His spreadsheet con-
tained 3 cells with five different references and four operations. These cells were
hence marked as having both the Multiple Operations and the Multiple Refer-
ences smell, while the user still found this acceptable. In the other formulas in
his spreadsheet where these smells were located, he did found they were smelly,
since the metric values for those formulas where higher than respectively 5 and
4. So from the perspective of this user the thresholds should be higher, however
as stated above, he was the only one; the other nine subjects stated all marked
formulas were indeed smelly.

Multiple Operations

Findings Multiple Operations were found in all ten spreadsheets, making them
the number one common smell. In all cases we found that the subjects said that
keeping the formulas short makes them easier to read and understand. Two of

5.9 FORMULA SMELLS IN AN INDUSTRIAL CASE STUDY 101

the subjects believed that formulas with many operations are often a cause of
errors, saying “the chance of errors in such a long formula is so much bigger;
when I find errors, it is almost always in long formulas”. When asked for the
reason that Multiple Operations where created, all subjects stated that this was
an evolutionary process. Multiple Operations are hardly ever created at once.
They are the result of the repeated adaptation of a formula, adding operations
as the spreadsheet changes. As one of the subjects stated “Usually it starts
with just a sum, but than you want to round it, add something and before you
know it, the formula is two lines long”. The two subjects above — the ones who
had realized the error risk of Multiple Operations— did try to minimize formula
length. However, sometimes, for instance, when a deadline was approaching,
Multiple Operations were introduced anyway. There was no common practice
among the spreadsheet users to restructure the spreadsheet after such a deadline.
One of these two subjects mentioned “when it works, it works. No one really
cares how it is done”.

We found that the risk map helped in the case of Multiple Operations. In
the case where this smell was located, the smelly cells were clearly marked with a
color (yellow, orange or red). Hence, the reason why the smell was detected was
immediately clear; many subjects stated something like “I understand why this
formula is selected by your system, it is quite long.”

Conclusions Spreadsheet users feel that Multiple Operations are more error
prone than shorter formulas. Since Multiple Operations are harder to read, it is
more difficult for users to spot an error, so formulas with multiple operations will
less likely be corrected when they are wrong. Multiple Operations are often the
result of changes to the spreadsheets, and the refactoring of complex formulas is
not something that spreadsheet users do.

Multiple References

Findings Experiences with Multiple References were similar to those with Mul-
tiple Operations; when confronted with the smelly cells, it took the nine subjects
a considerable amount of time, in the longest case even ten minutes, to explain
the formula. This made them realize that it would be very hard for others to
understand and adapt the formula, especially since locating the references can
be a challenge. Excel supports users in locating the references by coloring the
referenced cells. However, if there are many references and colors users find this
feature to be more annoying than helpful as confirmed by nine of our participants.
One of the subjects stated, when looking at a formula that referred to no less than
17 ranges “this formula is a real puzzle”.

In this case, as opposed to the Multiple Operations smell, some participants
did not immediately understand how to adapt this formula to make it less smelly.
When asked, one of the participants even stated “but I need all that input to make
the calculation”. Splitting the formula into different steps seemed more difficult
than with the Multiple Operations. In that case the formulas consist of different

102 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.9

operations, and the splitting would consist of separating the operations. In this
case however, we encountered formulas like SUM(A1:A5;B6;D7;E12), of which it
was not immediately clear to the spreadsheet users how to improve it. It can be
split into multiple steps, but what steps are logical is not so easy to determine for
the user. We asked the nine participants to describe how they were going to split
the formula, and only one was able to formulate a strategy. The other hesitated,
one of them stated “I don’t know where I should start, because I don’t remember
how I made this formula”. As an alternative, cells could be moved, such that this
formula will refer to one range. This made the participants hesitate even more.
They clearly felt that moving formulas around was a tricky operation, since the
effect of this move on other formulas is not clear. One of the subjects that tried to
lower the references said “if I move this, what will happen to the other formulas?
I would like to preview that”.

For this smell again, the risk maps are a good way of conveying this smell.
Formulas with many references were colored red, orange or yellow; and hence
attracted the attention of the spreadsheet users. Clicking the formula revealed
easily that the formula had too many references.

Conclusions Subjects found that formulas with many references are not easy
to understand, since finding all references can be difficult. Even though the risk
was understood, subjects found it hard to come up with the right refactoring to
overcome this smell. This is partly caused by the fact that a long list of references
can indicate that the placement of formulas is not optimal, and hence this smell
can also reveal a weakness in the organization of the spreadsheet.

Refactorings to the location of formulas were found especially hard for the
subjects, and support for this, like a preview, is definitely a promising avenue for
future research.

Finally we found it interesting that Excel’s feature to color the cells referenced
by a formula is only helpful in cases with few references (typically above 6 it got
confusing for the participants). There is apparently a need for better support in
locating references.

Duplicated Formula

Findings In the evaluation we found that the cases in which duplicated formulas
are detected can be divided into two distinct categories.

• Sharing Subtrees: Different formulas are sharing a subtree, and there is an
opportunity for refactoring.

• Rare Formulas: There is one formula that differs slightly from its neighbors,
and therefore shares a subtree with these neighbors.

Figures 5.4 and 5.5 illustrate the two categories. In Figure 5.4 the highlighted
formula (in cell B13) shares the subtree SUM(B7: B11) with the formula in cell
B12. The same subtree occurs twice, so it might be better to replace SUM(B7:

5.9 FORMULA SMELLS IN AN INDUSTRIAL CASE STUDY 103

B11) in B13 with a reference to B12. In Figure 5.5 however something different
is happening. The selected formula (E4) shares a subtree with the other formulas
in the same row, each summing up the values of the three cells above it.

However, there is a small difference with the other formulas, which is the
‘+0.1’, denoting the formula as rare, it is not like other formulas in the worksheet.
Excel itself recognizes the risk of this type of formulas. This is one of the possible
errors that Excel marks with a green triangle in case a formula in a row or column
differs from its direct neighbors. Others are the referencing of an empty cell, and
numbers formatted as text.

Figure 5.4: A formula with duplication

In our ten spreadsheets, we encountered two cases of a Rare Formula. In both
of them, a formula was marked as having a lot of duplication, turned out to differ
from the other formulas in its column, while the participants stated that this was
actually wrong. Thus, the smell indicated an actual error in the spreadsheet.

Note that Excel was able to mark only one of these cases as possibly dangerous:
Excel spots discrepancies between directly adjacent cells, whereas one of these
errors involved cells disconnected from each other.

Opinions differed on the six cases in which sharing subtrees were encountered.
Four of the subjects understood that having the references at one place made the
structure of the spreadsheets better. However the remaining two saw no harm in
the duplication of formulas. This is notable, since with source code many people
agree that duplication should be avoided.

With respect to the risk maps, we noticed that the current implementation of
the pop up as does not yet provide enough information: It only marks the formula
that shares subtrees with many formulas, but does not indicate with what cells the
subtrees are shared. This resulted in participants looking through formulas in the
spreadsheet to find the formulas that shared a subtree. A possible solution could
be to include the list of sharing formulas in the pop up, or create an Excel plug
in that highlights the sharing formulas when a formula suffering form duplication
is selected. We will address this in future work.

104 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.9

Figure 5.5: A rare formula

Conclusions Rare formulas can reveal true weaknesses and even errors in
spreadsheets, and spreadsheet users agree with that.

However, the refactoring of duplicate pieces of formulas — in source code
refactoring very common— is not considered to be am improvement to all spread-
sheet users.

Long Calculation Chain

Findings This smell triggered most discussion with the five subjects whose
spreadsheets were diagnosed with this smell.

The main reason was the fact that the risk maps do not provide enough in-
formation to understand this smell immediately. When a certain cell suffers from
the Long Calculation Chain smell at the 70% level, this means that the path from
this formula to the beginning of the longest calculation chain is at least 5 steps.
The cells that are included in this calculation chain were not shown in the pop
up. This led to spreadsheet users repeatedly stepping through formulas to check
whether a formula indeed had a long calculation chain; and whether that was
necessary.

Two of the subjects found that the calculation chain (in one case 10, in the
other 17 steps) was indeed long, and that some restructuring would improve
readability. The other three subjects found that, although the number of steps
was high, this was necessary in order to calculate the needed values. We did notice
that it is easier to trace and understand the different calculation steps when they
are located in the same row or column. When we asked the five subjects about
this, they concurred. This means there is a need for an additional metric based
on the location of the cells involved in the calculation chain. We will look into
this in future research.

Furthermore there is the trade off between Multiple Operations and Multiple
References on one the hand, and Long Calculation Chain on the other. When
discussing this phenomenon with the five subjects, we learned that they felt in
need of guidance where the right balance is. Hence, better support for managing
this trade off is needed. This might be done with our risk maps or with other
interfaces to help users to find the proper balance between the formula smells.

5.10 ANSWERS TO RESEARCH QUESTIONS 105

Conclusions Long Calculation chains are relatively common, but are difficult
to refactor for spreadsheet users. Hence more support to help users to understand
and refactor this smell is necessary.

Conditional Complexity

Findings This metric was the least common in the case study, similar to the
finding in the evaluation of the EUSES corpus. In the two spreadsheets in which
it was located, the risk maps easily helped in locating the Conditional Complexity
smell. When the users selected the cells suffering from the smell, they learned
from the pop up that nested conditionals were found in the formula.

The two subjects understood and even apologized for the detected smell, stat-
ing “I know this formula is too hard, I was trying to get something to work, and
then it just remained like that”. Both subjects were well aware of the fact that
nesting more than two conditional formulas was not such a good idea.

Conclusions The Conditional Complexity smell is in fact already known to
spreadsheet users. Apparently there is some notion among the spreadsheet users
that conditional operations are complex and should be handled with some care,
probably explaining the low occurrence of this smell.

5.10 Answers to research questions
With the results of the EUSES analysis and the case studies, we revisit the re-
search questions.

R1 What spreadsheet smells are most common, and why? In both evaluations
we have seen that Multiple Operations and Multiple References are the most
common smells, and from the second evaluation we have learned that this is often
caused by the modification of a spreadsheet, sometimes under time pressure. Since
there is little awareness of the risks of Multiple Operations, spreadsheet users
seem not to be concerned too much about maintainability of formulas. They keep
extending formulas with more operations and more references, causing formulas
to become long and complicated.

R2 To what extent do formula smells expose threats to spreadsheet quality?
We found two actual faults in a spreadsheet by looking at the Duplication Smell.
With respect to the other smells, the concern caught is lack of understandability.
Spreadsheet users found that our current smell detection strategies reveal the
formulas that are the least maintainable. These formulas will be time consuming
to change, and changes made will be more error prone.

R3 To what extent are risk maps an appropriate way to visualize spreadsheet
smells? The strengths of risk maps include their simplicity and the fact that the
visualization is shown within the context of the spreadsheet. Seven subjects ex-
plicitly stated they liked the risk maps, posing statements like “these colors draw
my attentions to the formulas that deserve a second check”. Users furthermore

106 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.11

appreciated the different levels of the smells, allowing them to inspect the worst
formulas first. For the Long Calculation smell, however, additional interface ele-
ments are needed, in order to help spreadsheet users understand the cause of the
smell.

Beyond risk maps, three of the subjects asked for a general score of the quality
of their spreadsheet. Although we could provide them with the number of smells
and their severity by looking into our database, an aggregation of the metrics
is not provided by the current prototype. This could, for instance, be added by
generating an extra worksheet in the spreadsheet in which overviews of all metrics
are shown.

5.11 Discussion

5.11.1 Named ranges

In the current set of smells we have not taken into account named ranges, a
spreadsheet feature allowing users to assign a name to a number of cells. We en-
countered named ranges in one of the case studies, where a formula that summed
a named range, SUM(NamedRange), was marked as having the Many Reference
smells. Initially the subject did not understand why it was marked as referring to
many different ranges, since there was only one reference. The named range itself
however consisted of several separate ranges. This raises the question whether we
think this is smelly, and why. Note that the smells is in fact related to the named
range itself —it is probably not a good idea to create a named range consisting
of multiple ranges— rather than to the formula referencing the named range.

5.11.2 Applicability of the risk maps

Our risk map visualization exhibits limitations if the smell in question addresses
concerns not exclusively contained in the smelly formula itself. This explains why
some subjects were dissatisfied with the pop-ups of Long Calculation Chain and
Duplicated Formulas, which essentially require information from cells outside the
smelly formula itself. In future research we will explore how to present smells at
different levels of abstraction in one integrated view.

5.11.3 Spreadsheet evolution

While performing the case study, subjects shared that spreadsheets tend to un-
dergo many changes during their life time (an observation also made in [Her11]),
and that these changes can lead to a degradation of formula quality. This is
an issue that warrants further investigation, calling for a longitudinal study of
spreadsheet quality, and opening up the possibility of spreadsheet quality monit-
oring tools.

5.12 RELATED WORK 107

5.11.4 Threats to validity

A threat to the external validity of our quantitative evaluation concerns the rep-
resentativeness of the EUSES Corpus spreadsheet set. This set, however, consists
of 4223 spreadsheets covering 11 different domains. Furthermore, it has been used
in many other studies and is collected from practice.

A threat to the external validity of our qualitative evaluation concerns the rep-
resentativeness of the selected set of employees of Robeco and their spreadsheets.
However other papers [Hen94; Pan06] report on industrial spreadsheet stories
similar to the ones we found at Robeco, so their practice seems representative.
Further studies are however needed to generalize our findings.

With respect to internal validity, one of the threats is the fact that we did not
pick a random sample of people. This effect can be decreased by using a larger test
group in future experiments. We however believe the current test group serves as
a good reference group, as the persons varied in age, function and daily tasks with
spreadsheets. By working with practitioners we tried to maximize the realism of
our evaluation, which unfortunately comes at the price of reduced repeatability.

5.12 Related work

Research efforts related to ours include papers that provide spreadsheet design
guidelines. Raffensberger [Raf09], for instance advises to merge references that
occur only once. He furthermore states that unnecessary complex formulas with
many operations and parenthesis should be avoided. Rajalingham et al. [Raj00]
also propose guidelines to improve spreadsheet quality, which they base on prin-
ciples of software engineering.

Secondly, there are papers that address common errors in spreadsheets, like
[Aya00; Pan98], together with their causes. Powell et al. for instance [Pow09]
names conditional formulas (which is one of our smells) among the top three of
commonly occurring spreadsheet error categories.

Furthermore there is related work on finding anomalies on spreadsheets, for
instance the work on the UCheck tool [Abr07a; Cha09; Erw09]. UCheck determ-
ines the type of cells, and locates possible anomalies based on this type system.
UCheck uses a similar visualization, with colors in the spreadsheet, to indicate
found anomalies.

We ourselves have worked on spreadsheet smells in previous work [Her12b]. In
that paper we focused on detecting smells between worksheets, like high coupling.
That paper followed our earlier work, in which we worked on the visualization of
spreadsheets by means of class diagrams [Her10] and dataflow diagrams [Her11].

This chapter differs from our previous work by focusing on detecting smells
in spreadsheet formulas. Recently, other work on spreadsheet smells has been
published that aims at smells in values, such as typographical errors and values
that do not follow the normal distribution [Cun12]. Other recent work by Ba-

108 DETECTING CODE SMELLS IN SPREADSHEET FORMULAS 5.13

dame and Dig [Bad12] also confims the presence of smells in the EUSES corpus
and furthermore suggests an approach to support spreadsheet users in removing
formula smells by refactoring.

5.13 Concluding remarks
The goal of this research is to investigate the applicability of code smells to spread-
sheet formulas as a means to asses and improve spreadsheet quality.

To that end we have created a list of formula smells, based on our experiences
with spreadsheets, related work in spreadsheet guidelines and literature on code
smells.

We then defined a set of metrics for detecting five formula smells and presented
the visualization of these smells with the spreadsheet risk map. We have evalu-
ated the metrics and the risk map with a qualitative and quantitative evaluation.
The quantitative evaluation was performed on the spreadsheets from the EUSES
corpus. The qualitative evaluation was with spreadsheets from ten professional
spreadsheet users from industry.

The key contributions of this chapter are as follows:

• An analysis of the risky types of spreadsheet formulas (Section 5.2) and
corresponding metrics (Section 5.3)

• A method to detect (Section 5.4) and visualize (Section 5.5) those smells

• An evaluation of these formula smells on the EUSES corpus (Section 5.8
and with ten professional spreadsheet users and their spreadsheets (Section
5.9).

We have found that spreadsheet formula smells occur frequently, and can pose
a real threat to spreadsheet understandability, and can even detect actual errors.
Spreadsheet users in our qualitative evaluation found that the risk maps were a
good way of indicating formula smells, and that the three thresholds helped them
get a feeling of the importance of the located smells.

The current research gives rise to several directions for future work. Firstly,
the definitions of the current set of metrics could be refined; as mentioned in the
evaluation section, we could split the duplication metric, and add a metric for
the location of cells in a long calculation chain. Secondly, some smells ask for a
more elaborate visualization, for instance to indicate the balance between Mul-
tiple Operations and Long Calculation Chain. Finally, more support for formula
refactoring is needed. We plan to investigate means to suggest such refactorings
to the spreadsheet user, give them a preview of the result, or even perform them
automatically.

Chapter6
Data Clone Detection and
Visualization in Spreadsheets

6.1 Introduction
Spreadsheets are heavily used within companies in many domains, ranging from
financial to medical and from educational to logistics. It is estimated that 90%
of desktops have Excel installed[Bra09] and that the number of spreadsheet pro-
grammers is bigger than that of software programmers[Sca05]. Because of their
widespread use, they have been the topic of research since the nineties[Bel93].
However, most papers focus on analyzing and testing the formulas in a spread-
sheet.

The impact of data on spreadsheet calculations has been somewhat overshad-
owed by this interest in formulas. However, problems with data can pose threats
to a spreadsheet’s integrity too. A paper by Ballou et al.[Bal87] phrases the prob-
lem as follows “...errors in the operational data can influence the determination of
the most appropriate forecasting model” and “The manager is unlikely, however,
to study the implications of errors in the data that are being projected. Clearly
such errors have an impact, but it is not necessarily obvious which are poten-
tially serious and which less”. Although this paper is 25 years old, the problem
statement is still very valid. In 2003, TransAlta lost US$24 Million because of
a copy-paste error in a spreadsheet1. More recently, the Federal Reserve made
a copy-paste error in their consumer credit statement which, although they did
not make an official statement about the impact, could have led to a difference
of US$4 billion2. These stories, although anecdotal, underline the fact that copy-
paste errors in spreadsheets can greatly impact spreadsheet quality.

1http://bit.ly/cQRoy8
2http://bit.ly/6XwN9t

109

110 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.2

In this chapter we focus on the occurrence of copy-pasting in spreadsheets by
analyzing how the detection of data clones can help spreadsheet users in finding
errors and improving the quality of their calculations. To that end we study
related work in the field of clone detection in source code and come up with an
approach to detect data clones in spreadsheets. In addition to exact clones, we
also detect near-miss clones, those where minor to extensive modifications have
been made to the copied fragments[Roy09a].

Our approach is based on existing text-based clone detection
techniques[Joh93], we use cell values as fingerprints and remove values that do
not occur as formula and plain text. Subsequently, we group values that occur
in multiple places into clone clusters, to detect groups of cells that are possibly
copied.

Detected clones are visualized in two ways. Firstly, we generate a dataflow
diagram that indicates how data is cloned between two worksheets, by drawing
an arrow between boxes that represent those worksheets. This way, users can see
how data is copied through worksheets and files. Secondly, we add pop-up boxes
within the spreadsheet to show where data is copied, and in the case of near-miss
clones, what cells differ.

This approach is subsequently validated both quantitatively and qualitatively.
Firstly, we analyze the EUSES corpus[Fis05a] to calculate the precision and per-
formance of our algorithm and to understand how often clones occur. Secondly,
we perform two case studies: one with a large budget spreadsheet from our own
university and a second one for a large Dutch non-profit organization, for which
we analyzed 31 business critical spreadsheets.

From these three evaluations, we conclude that 1) data clones in spreadsheets
are common, 2) data clones in spreadsheets often indicate problems and weak-
nesses in spreadsheets and 3) our algorithm is capable of detecting data clones
quickly with 80% precision and supports spreadsheet users in finding errors and
possibilities for improving a spreadsheet.

6.2 Related work
As stated in the Introduction, Ballou et al.[Bal87] described the problem of data
quality in spreadsheets. More recently, O’Beirne[O’B08] states that “...much
present use of spreadsheets is as data manipulation and reporting tools used to
bypass the controls around IT development. ” And that this “ad hoc integration,
transformation, or simple cobbling together is done by the user to get what they
need when they need it. This gives rise to many extracted copies of corporate
data as imports or query links in spreadsheet files. These personal data stores
are often referred to as ‘data shadows’ or ‘silos’ or ‘spreadmarts’ giving rise to
‘multiple versions of the truth’.” [O’B08] He furthermore cites evidence that “er-
rors in the transfer of data from the field officer forms through to the DEFRA
spreadsheet equating to an error rate of 14 percent over the year.”

6.3 RELATED WORK 111

Clone detection in source code has been researched extensively and resulted
in numerous clone detection techniques and tools. Bruntink et al.[Bru05] give the
following overview:

Text-based techniques perform little or no transformation to the raw source
code before attempting to detect identical or similar (sequences of) lines of code.
Typically, white space and comments are ignored[Joh93; Duc99].

Token-based techniques apply a lexical analysis (tokenization) to the source
code and, subsequently, use the tokens as a basis for clone detection[Kam02;
Bak95].

AST-based techniques use parsers to obtain a syntactical representation
of the source code, typically an abstract syntax tree (AST). The clone detection
algorithms then search for similar subtrees in this AST[Bax98].

PDG-based approaches go one step further in obtaining a source code
representation of high abstraction. Program dependence graphs (PDGs) contain
information of a semantical nature, such as control and data flow of the program.
Kommondoor and Horwitz[Kom01] look for similar subgraphs in PDGs in order to
detect similar code. Krinke[Kri01] first augments a PDG with additional details
on expressions and dependencies, and similarly applies an algorithm to look for
similar subgraphs[Kom01],[Kri01].

Other related efforts are Roy[Roy09a; Roy10], who created NiCad, a parser-
based and language specific tool that detects both exact and near-miss clones with
high precision and recall. Roy and Cordy [Roy10] compared several open source
systems and study, among other properties, the occurrence of near-miss clones
versus exact clones. They detected significantly higher numbers of near-miss
clones than exact clones in the systems under evaluation. For more information
on existing code clone detection techniques and tools, we refer the reader to the
comprehensive survey by Roy et al.[Roy09b].

Our approach is text-based and is most similar to that of Johnson[Joh93],
where we use cell values as fingerprints.

Recently, there have been other efforts to apply clone detection to artifacts
other than source code, Alalfi et al.[Ala12] have successfully applied clone detec-
tion to SimuLink models. For this purpose they adapted NiCad and were able to
efficiently find exact, renamed and near-miss clones in SimuLink models. To the
best of our knowledge, no approach to detect data clones in spreadsheets exists.

Finally, there is our own work on spreadsheet analysis. Previously, we have
worked on an algorithm to visualize spreadsheets as dataflow diagrams[Her11],
and subsequently on detecting inter-worksheet smells in those diagrams[Her12b].
Recently we have also worked on detecting smells in spreadsheet formulas[Her12c].
This paper is a continuation of our research on smells in spreadsheets, however we
shift our focus to detecting and visualizing clones in spreadsheet data. A tweet-
sized paper on clones in spreadsheets was recently accepted in Tiny Transactions
on Computer Science[Her12a].

112 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.4

6.3 Motivation

In our work with spreadsheet users, we often see that they copy and paste data
from one spreadsheet to the other, from to worksheet to the other, and even within
worksheets. When data is copy-pasted, or cloned, the spreadsheet might become
more prone to errors, similar to the effect clones have on a software system.

Research in the field of source code analysis has analyzed the negative effect
of clones on quality and maintenance. Mayrand et al.[May96] showed that du-
plicated code fragments can increase maintenance effort. Furthermore a study
by Jurgens et al. that analyzes industrial code shows that inconsistent changes
to code duplicates are frequent and lead to severe unexpected behavior[Jür09].
However, not all clones are harmful, Kapser en Godfrey [Kap08] show that clones
can also have a positive impact on maintainability.

Strictly, copy-pasting data in spreadsheets is not necessary: most spreadsheet
systems have a feature where data can be linked from one worksheet to another
and even from one file to another. In Excel, this can be done by either typing the
location of the file in a formula, followed by the name of the worksheet and the
cell(s), or by opening both worksheets or spreadsheets and creating the link by
clicking, just as one would do with any formula.

So why would spreadsheet users resort to copy-pasting data from one spread-
sheet file to the other, if most spreadsheet systems have a ‘better’ way to do this?
In our experience, this practice can have several reasons. Firstly, sometimes users
are not aware of a way to link spreadsheets, they do not know how to use the
link-formulas. Secondly, users are often unaware of the risks of copy-pasting data
and it seems the easiest way.

We do not aim at changing the spreadsheet users’s behavior, since that would,
most likely, involve changing the process around a spreadsheet and that would
be hard to implement in a company. We rather follow an approach that allows
users to proceed as they normally would, but mitigate the risks by detecting and
visualizing the copy-paste relationships. This enables users to take the appropriate
measures in a similarly pragmatic way.

Therefore the aim of this chapter is to both understand the impact of copy-
pasting, and to develop a strategy to automatically detect data clones in spread-
sheets. We refine this goal into three research questions.

R1 How often do data clones occur in spreadsheets?

R2 What is the impact of data clones on spreadsheet quality?

R3 Does our approach to detect and visualize data clones in spreadsheets support
users in finding and understanding data clones?

6.5 DATA CLONES 113

Figure 6.1: Cells B10 and D25 form a clone. Since all their neighboring cells are also
clones, we detect two clone clusters in this example.

6.4 Data clones
The type of clones we are interested in are formula results that are copied as data
for other parts of the spreadsheet. This type of copying is easy in Excel: with
‘paste special’ a user can copy values only.

We hypothesize that this type of cloning is risky: when formulas or their
input is updated and their values change, this results in an extra maintenance
task: updating the copies of the formulas too. If this is forgotten, errors could
occur. We therefore look for tuples of a formula cell and a constant cell (a cell
with a fixed value in it) that contain the same value. We call such a tuple of
cells a clone and corresponds to what is called a clone pair in the clone detection
literature.

It can, of course, happen by coincidence that a formula and a cell contain
the same value. However, if a group of neighboring cells are all copies, or are all
copied, we are probably dealing with data that has been copied by the user. We
call such a group a clone cluster. In more detail: a clone cluster consists of cells
that are all either formula cells or constant cells, and all of them are contained in
a clone.

We call two clone clusters matching if they contain the same values. Figure
6.1 shows an example of a clone, in the small green rectangle, and two matching
clone clusters in the gray rectangles.

Finally, we distinguish between clones clusters of which all values match and
near-miss clone clusters, which contain cloned cells, but also cells that differ from
each other. Near-miss clone clusters can occur when by a user updates a copied
cell, but not does not update the original cell.

114 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.5

6.5 Data clone detection

In this section we describe the algorithm with which we detect clone clusters.
This algorithm consists of 5 steps, as shown in the overview in Figure 6.2.

6.5.1 Algorithm

In the first step, cell classification, we divide the cells into data cells, formula
cells and empty cells. For data cells, we only consider cells containing a number.
Although strings can be the result of a formula, such as string concatenation or a
lookup function, we do not take them into consideration, since strings are usually
used for labels and descriptions in spreadsheets. In Figure 6.2 formula cells are
colored pink and data cells containing a number are colored green. Note that this
classification differs slightly from the cell classification algorithms we have used
in previous papers[Her10; Her11]. In our current version, all cells containing a
number are considered data cells, and not only cells that are used as input for
formulas. Since we are looking for clones, the data cells do not necessarily have
to be used in calculations.

In the second step, lookup creation, a lookup table of all cells is created, with
the cell value as key and a list of locations as the value. Shown in Figure 6.2 the
value 0.4101 occurs only in Eff4!B28 and 0.1156 occurs in Problem Data!B10 and
Eff4!D25. This step is similar to the creation of fingerprints in Johnson’s clone
detection approach[Joh93].

The third step, pruning, removes all values from the lookup table that do not
occur both in a formula and a constant cell, since these cells can never be part
of a clone, conform our definition. In the example shown in Figure 6.2, 0.4101 is
removed, since it only occurs in a formula and not in a constant cell.

In the subsequent fourth step called cluster finding, the algorithm looks for
clusters of neighboring cells that are all contained in a clone, and that are all
either formula cells or constant cells. The clusters are found by starting with
a cell that is still contained in a value of the lookup table. In Figure 6.2, we
start with cell Problem Data!B10 that contains 0.1156. Subsequently, this cell’s
neighbors are inspected. If these neighbors are contained in the lookup table too,
the cluster is expanded and their neighbors are inspected. The fourth step of the
algorithm results in a list of formula clusters and a list of constant clusters.

In the fifth and final step, cluster matching, each formula cluster is matched
with each constant cluster. For two clusters to match, they have to contain the
same values, i.e. all values in one cluster also have to occur in the second cluster.
If one cluster is bigger than the other, all values of the smaller cluster have to
be found in the second cluster. Furthermore, there may not be a formula link
between the formula cells and the cloned value cells, since we do not consider a
link (i.e. =Sheet2!B1) to be a clone. In Figure 6.2, the two gray clusters match,
since all values of the left cluster match with values on the right.

6.5 DATA CLONE DETECTION 115

Figure 6.2: Overview of the approach consisting of the five different steps: cell classi-
fication, lookup creation, pruning, cluster finding and cluster matching.

116 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.6

6.5.2 Parameters
The algorithm takes four parameters as input:
StepSize is used in the fourth step of the algorithm and indicates the search
radius in terms of numbers of cells. Setting it to 1 means we are only looking for
direct neighbors, with step size 2, a ‘gap’ of 1 cells is allowed in a cluster.
MatchPercentage is used in the final step, when clusters are matched. This
percentage indicates what percentage of the cells has to match. Setting it to
100% means the values have to match exactly, lower percentages allow for the
detection of near-miss clones.
MinimalClusterSize sets the minimal number of cells that a cluster has to
consist of. Very small clusters might not be very interesting, hence we allow for
a minimal threshold.
MinimalDifferentValues represents the minimal number of different values that
have to occur in a clone cluster. Similar to small clusters, those clusters consisting
of a few different values will be of less interest.
Furthermore, a user of the algorithm can indicate whether clones are found within
worksheets, between worksheets, between spreadsheets or a combination of those.

6.6 Clone visualization
We visualize the detected clones in two ways. Firstly, we generate a dataflow
diagram that shows the relationship between worksheets that contains clones.
Secondly, we add a pop-up to both parts of a clone indicating the source and the
copied side of a clone.

The two visualizations serve a different purpose. The dataflow diagram is
useful for understanding the relationship between worksheets and show how data
is copied between worksheets in a spreadsheet or between multiple spreadsheets.

The pop-ups within the spreadsheet, on the other hand, are useful when main-
taining a spreadsheet. Whether it is updating the copied side of a clone or refact-
oring the copy into a link, the pop-ups support the spreadsheet user in selecting
the right cells.

6.6.1 Dataflow diagrams
In previous work[Her11; Her12b] we have developed a tool to generate a dataflow
diagram from a spreadsheet to represent dependencies between worksheets. In
this visualization, worksheets are visualized as rectangles, while arrows are used
to indicate a formula dependency between two worksheets.

We consider the copying of data from one worksheet to another as a depend-
ency between worksheets and hence we decided to show this dependency in our
original dataflow diagrams too. We show data clone dependencies with a dashed
arrow to show the difference with formula dependencies which are shown with
solid arrows.

6.7 CLONE VISUALIZATION 117

Figure 6.3: Screenshot of the clone detection dataflow diagram corresponding to our
running example hw4a.xls

Figure 6.3 shows the dataflow diagram corresponding to the spreadsheet
hw4a.xls shown in Figure 6.1. In this spreadsheet data is copied from formu-
las in the worksheet Eff4 to the worksheet Problem Data, this is shown in the
diagram with a dashed arrow.

6.6.2 Pop-ups

As described above, we add pop-ups to the spreadsheets to both the source and
the copied side of the clone. These pop-ups, that are shown when the user clicks
a cell, warn the user that data has been copied, so he can update the copy in case
of a change to the formulas. Furthermore provides an easy way for the user to
improve the design of the spreadsheet, by changing the copy-paste relationship
into a link. By creating a link, the dependencies are made explicit and future
changes will automatically be propagated.

Figure 6.4 shows an example of a pop-up indicating a detected clone cluster.
On the formula side, we show where the data is copied and on the data side, we
indicate the source.

118 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.7

Figure 6.4: Screenshot of the clone detection pop-up showing the copy-paste dependency
for our running example hw4a.xls

6.9 IMPLEMENTATION 119

6.7 Implementation
Our current approach for the detection of data clones in spreadsheets is imple-
mented into our existing spreadsheet analysis tool Breviz[Her11; Her12b]. Breviz
is implemented in C# 4.0 using Visual Studio 2010. It utilizes the Gembox com-
ponent to read Excel files.3 Breviz reads an Excel file and executes the above
described clone detection algorithm, either within a spreadsheet or among mul-
tiple files, and subsequently generates the dataflow diagram and a copy of the
spreadsheet with pop-ups.

Breviz, including the data clone analysis, is available as-a-service, by uploading
a spreadsheet to Infotron’s website.4

6.8 Evaluation overview
To evaluate our approach, we performed both a quantitative and a qualitative
analysis. First, we analyzed a subset of the EUSES corpus[Fis05a] to determine
how well our algorithm performs and to learn how often data clones exist in this
corpus. The corpus consists of more than 4000 spreadsheets from 11 different
domains collected from practice.

Secondly, we studied two different real-life cases. The first case study was con-
ducted at the South-Dutch foodbank, where employees keep track of all logistics
using spreadsheets. For the second case study we evaluated a spreadsheet used
by our university to calculate the budget for a large (> 25 Million Euro) research
proposal. With the qualitative analyses we aim to determine whether detected
data clones actually pose a threat to spreadsheet quality.

6.9 Quantitative evaluation

6.9.1 Goal
The aim of the first evaluation is to answer research question 1 “How often do
data clones occur in spreadsheets?” and to preliminarily evaluate the performance
of our algorithm both in terms of execution time as in terms of the precision of
the algorithm.

6.9.2 Background
In this evaluation, we used spreadsheets from the EUSES corpus[Fis05a]. This
corpus contains real-life spreadsheets from 11 different domains, ranging from
educational to financial, and from inventory to biology. It was created in 2005 and
has since then been used by several researchers to evaluate spreadsheet algorithms,

3http://www.gemboxsoftware.com/spreadsheet/overview
4http://app.infotron.nl

120 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.9

among which [Abr06] and [Cun09a]. Of the 4223 spreadsheets in the corpus, 1711
spreadsheets contain formulas.

6.9.3 Setup
To reach our goal, we ran our data clone detection algorithm on those 1711 spread-
sheets, for different values of the MinimalClusterSize and MinimalDifferentValues
parameter.

Since we do not have a validated benchmark, we focus on matching exact
clones. Evaluating the correctness of near-miss clones without the owners of the
spreadsheets would leave too much room for speculation. Hence we set Match-
Percentage to 100% for the quantitative study. In the qualitative studies, we
will take near-miss clones into consideration. Furthermore, we do not search for
clones between the files of the EUSES corpus. Since the spreadsheets are unre-
lated, matches between spreadsheets would always be false positives.

For each detected clone, we manually determine whether this is a real clone or
a false positive. We do this by inspecting clones and determining whether 1) the
detected clone clusters indeed share the same data values, 2) one of the detected
clone clusters consists of formulas and the other of constant cells and 3) headers
of the found clones match to decide whether the clones indeed concern the same
conceptual data. This way we calculate the precision of our approach. We calcu-
late this precision as the percentage of spreadsheets in which we verified a clone,
divided by the total number of spreadsheets in which a clone is detected by the
algorithm, rather than measuring it as the number of verified clones divided by
the number of detected clones. We do this because we found that some spread-
sheets contain as many as 25 clones, all of which are very similar and this could
skew the results.

Since we do not know what spreadsheets in the corpus contain clones, we
cannot not analyze the recall of our algorithm at this point. It would be both
time-consuming and speculative to inspect all 4000+ spreadsheets in the corpus
by hand to check whether they contain data clones. We plan to analyze recall
in a future study on a smaller set of spreadsheets of which we can contact the
creators.

The results of our analysis are all available online in the FigShare corpus5, to
enable other researchers to replicate our results.

6.9.4 Findings

5http://figshare.com/authors/FelienneHermans/98650

6.9 QUANTITATIVE EVALUATION 121

M
in

im
a
l

D
iff

er
en

t
V

a
lu

es
M

in
im

al
S

iz
e

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

5
5
4
.8

%
5
9
.1

%
6
3
.7

%
-

-
-

-
-

-
-

-
6

54
.2

%
5
9
.2

%
6
2
.9

%
7
0
.1

%
-

-
-

-
-

-
-

7
53

.8
%

5
9
.1

%
6
2
.5

%
6
9
.5

%
7
0
.9

%
-

-
-

-
-

-
8

56
.1

%
6
0
.2

%
6
3
.6

%
7
0
.1

%
7
1
.6

%
7
2
.9

%
-

-
-

-
-

9
56

.6
%

6
0
.6

%
6
4
.3

%
7
1
.2

%
7
2
.9

%
7
4
.6

%
8
1
.7

%
-

-
-

-
10

55
.1

%
5
8
.6

%
6
2
.3

%
6
9
.7

%
7
1
.4

%
7
3
.3

%
8
0
%

7
9
.2

%
-

-
-

11
56

.3
%

5
7
.7

%
6
0
.9

%
6
8
.3

%
7
0
.2

%
7
1
.4

%
7
8
.4

%
7
7
.6

%
7
8
.3

%
-

-
12

56
.6

%
5
8
.1

%
6
0
.6

%
6
7
.8

%
6
9
.6

%
7
0
.9

%
7
8
%

7
7
.1

%
7
7
.8

%
8
1
%

-
13

56
.9

%
5
7
.4

%
6
1
%

6
6
.7

%
6
9
.2

%
7
0
.6

%
7
6
.6

%
7
5
.6

%
7
6
.7

%
8
0
%

8
0
%

T
a
b
le

6
.1
:

R
es

u
lt

s
o

f
th

e
E

U
S

E
S

ev
a

lu
a

ti
o

n
sh

o
w

in
g

th
e

p
re

ce
n

ta
ge

o
f

sp
re

a
d

sh
ee

ts
co

n
ta

in
in

g
a

d
a

ta
cl

o
n

e

122 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.9

Minimal Different Values
Minimal Size 3 4 5 6 7 8 9 10 11 12 13

5 86 81 72 - - - - - - - -
6 77 74 66 61 - - - - - - -
7 70 68 60 57 56 - - - - - -
8 64 62 56 54 53 51 - - - - -
9 60 57 54 52 51 50 49 - - - -
10 54 51 48 46 45 44 44 42 - - -
11 49 45 42 41 40 40 40 38 36 - -
12 47 43 40 40 39 39 39 37 35 34 -
13 41 39 36 36 36 36 36 34 33 32 32

Table 6.2: The number of spreadsheets in EUSES containing a data clone, for varying
values of MinimalDifferentValues and MinimalSize

Precision

Using MinimalClusterSize 5 and MinimalDifferentValues 3, which we consider
the lowest meaningful values, our algorithm detects 157 spreadsheet files in the
EUSES corpus that contain clones. Manual inspection showed that of these de-
tected files, 86 contain verified clones. This 86 is highlighted in Table 6.2. 86 files
out of 157 detected files with clones leads to a precision of 54.8%, as highlighted
in Table 6.1.

In this table, one can find the precision for different values of MinimalCluster-
Size and MinimalDifferentValues. Combinations where MinimalDifferentValues
is bigger than MinimalClusterSize are not allowed, since there cannot be more
different values in a clone cluster than cells.

As illustrated by Table 6.1, the precision rises for higher values of the two
parameters, especially the parameter MinimalDifferentValues is of influence, as
we suspected. Highest precision (81.7%) is obtained with both parameters set to
9, this value is also highlighted in Table 6.1. In that case we still detect 49 clone
files, which amounts to 57% of all 87 spreadsheets that contain verified clones in
the EUSES test set (highlighted in Table 6.2).

False positives

The biggest category of false positives is a group of data that happen to occur at
multiple places in a spreadsheet. For instance in a spreadsheet used for grades,
we detect several groups of the numbers 1 to 10. If some are calculations and
others are input data, this is detected as a clone. Especially for low values of
MinimalClusterSize and MinimalDifferentValues, both below 6, this occurs fre-
quently, since chances that small groups of values are found in multiple places are
higher. A second category of false positives is a clone that is actually a header:
spreadsheet users use formulas to describe their data, such as a department code

6.9 QUANTITATIVE EVALUATION 123

or a year. If in one case they use a formula and in another case they use a con-
stant value, this is detected as a clone. Another type of false positives are clones
consisting of array formulas that have the same value as other formulas in the
worksheet. Gembox, the third party library we use to read spreadsheets, is not
able to recognize array formulas, so they are read as being values.

Performance

Running the clone detection algorithm over the 1711 spreadsheet files in the
EUSES corpus which contain formulas total took 3 hours, 49 minutes and 14
seconds (13,754 seconds in total). This means analyzing one file takes an average
of 8.1 seconds.

Clone occurrence

In total, there are 1711 spreadsheets in the EUSES corpus that contain formulas,
which means around 5% of all spreadsheets with formulas contain verified clones.
Although not directly comparable, papers on clone analysis on source code estim-
ate that 10 to 30% of lines of code are duplicated. For instance, Baker[Bak95]
reported that around 13% - 20% of large code bases can be clones. Lague et
al.[Lag97] found that, when considering function clones only, between 6.4% - 7.5%
of code is cloned. Baxter et al.[Bax98] have reported 12.7% cloning and Mayrand
et al.[May96] have estimated that industrial source code contains between 5% and
20% duplication.

Observations

While we cannot yet conclude something about the impact of data clones on
spreadsheet quality, we noted several interesting similarities in this evaluation.

Firstly, we saw that a common pattern for cloning is the use in overviews and
reports. In this scenario, spreadsheet users use one worksheet to calculate values,
and copy them to a second worksheet to create a summary, a graph or a report
sheet. Since many of these spreadsheets did contain links between worksheets, we
do not think this use is due to the fact that the user did not know how to create
links.

Secondly, we saw that copies are used to sort. In this scenario, a whole column
is copied, sometimes directly next to the column with values, but the copy is
sorted. This use might be due the way sorting in combination with links is
implemented in Excel. When one sorts a column that has links, the formulas get
sorted too. Users might prefer to make a copy to keep their formulas intact.

Finally, an unexpected observation was that in some cases the format of the
cells that were clones did not match. For instance, the original formulas were
typed currency, while the copied cells were typed as a percentage. Even without
knowing the context of this spreadsheet, we can conclude that one of the cell
formats must be wrong. This practice is error-prone, especially in the case of

124 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.10

dates. When a date is typed as a number, Excel will show a the number of days
this day is removed from January 1, 1900, since Excel uses the 1900 date system.
This way a user can easily overlook the fact that this value represents a date. In
future work we plan to work on the detection of these mismatching clones.

6.10 The Case studies

After we performed the quantitative evaluation and we were convinced of both
the applicability of our approach and the frequency with which clones occur in
practice, we conducted two case studies to investigate the implications of data
clones in spreadsheets.

6.10.1 Goal

The goal of the two case studies is to answer research questions 2 and 3: to learn
more about the impact of data clones and to evaluate our data clone detection
and visualization approach.

6.10.2 Setup

To reach this goal, we have analyzed real-life spreadsheets in both case studies: we
ran the data clone detection algorithm and subsequently we presented the results
to the spreadsheet owners. Next, we went over all detected clones with them and
asked them the following questions:

• Is this a real clone, in other words: did you copy this data?

• Did this clone lead to errors or problems?

• Could this clone be replaced by a formula link?

Furthermore, we asked them the following questions about clones and about
our approach:

• Do you know why no direct links were used initially?

• How did the pop-ups help you in understanding the found data clones?

• How did the dataflow diagrams help you in understanding the found data
clones?

6.10 THE CASE STUDIES 125

6.10.3 Background

The following describes the background of the two case studies.
Foodbank A foodbank is a non-profit organization that distributes food to

those who have difficulty purchasing it. We ran our case study at the distribution
center of the foodbank that supplies 27 local foodbanks. In 2011 the distrubution
centre processed an average of 130.000 kilograms of food per month. To keep
track of this process, they use a set of spreadsheets. The figures of incoming food
from sponsor and food sent out fo local foodbanks should balance, since no food
is supposed to remain in the distribution center.

In January 2012, the distribution center of the foodbank approached us and
asked whether we could help them improve their spreadsheet administration, since
they observed that the total result did not balance and food remained in the
center, or went missing.

Initially, we did not know what caused their problems, but when we learned
about the copy-pasting practice that was used, we suspected that clone detection
might help to locate the errors. We asked the foodbank whether they would be
interested in participating in a study of a new feature we were developing, with
which they agreed.

Subsequently, we received 31 spreadsheet files from the foodbank, to check
whether clones might be the source of problems. One of those spreadsheets was
the distribution list, while the other 30 were lists of a specific region.

Delft University In April of 2012 Delft University of Technology participated
in a grant proposal, for which a budget spreadsheet had to be created. This
particular spreadsheet calculates, among other things, the salary cost of different
types of employees. These salaries are raised every year, because of inflation, and
the creator of this spreadsheet calculated the salaries once and copied them to
different places in the spreadsheet.

The author involved in this proposal noticed this duplication and asked this
employee whether he would want to participate in a study on cloning in spread-
sheets and this employee agreed.

6.10.4 Findings

In this subsection we describe the results of both case studies.
Foodbank In the first study, we searched for data clones in the test set of

the foodbank by running the prototype tool over the 31 spreadsheets. We used
parameters 9 for MinimalClusterSize and MinimalDifferentValues, since they were
the optimal choice in the quantitative analysis. Furthermore we set Matching-
Percentage to 80% and StepSize to 2 to enable the detection of near-miss clones.
Running the algorithm took 3 hours, 9 minutes and 39 seconds, which amounts
to 6 minutes per file. Performance was worse than in the EUSES case, since in
this analysis, all clones of all files had to be compared with each other, since we
were searching for clones between files too.

126 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.10

With these settings, we detected 145 clones, of which 61 were near-miss clones,
in other words, they had a matching percentage of less than 100%. Furthermore,
in this case we only searched for clones between spreadsheets, since we knew that
there would only be clones between files. We discussed the found clones one by
one with three employees of the foodbank and checked whether the found clones
were actual clones. Only one of the found clones was identified as a false positive:
in that case, by coincidence two files contained similar values.

Subsequently, we studied the near-miss clones in more detail: were they really
errors that had been made in copy-pasting? We found that all cases were ‘wrong’
in the sense that the values should match. The employee that we discussed the
results with stated “these should always match, I don’t understand why they do
not.” However, in many cases, the updates made to the copies were the right
values, but in 25 of the detected 61 near-miss clones were actual errors that the
employees were not aware of before our analysis. While checking the near-miss
clones, we also found that one of the exact clones was actually an error: here the
data had been copied into the wrong column. The foodbank employees stated
that all found clones could, in theory, be replaced by direct links. No direct links
were used initially, since the employee who created the spreadsheets, was not
very proficient in spreadsheets at that time. She started with a few spreadsheets
and copying the values would not be much of a problem. When the collection of
spreadsheets got bigger, it became increasingly more difficult to make the change.

Later on, another employee was put in charge of handling the spreadsheets.
She stated: “Since I did not build all the sheets, I am always a bit afraid to adapt
formulas. Since I can see the links in the pop-ups that you created, I feel more
safe, since I know it will do the right things.”

This sentiment is shared even by the original creator of the spreadsheets,
saying “The problem with managing multiple sheets is that you never know if
changing one cell will mess up other sheets or files.” Especially for the current
maintainer of the spreadsheets, seeing files that were not linked was insightful. “I
assumed this region was already copied into the total sheet, but in the diagram I
see it is not. I should fix that right away.”

After the employees fixed the clones that we found, the overall results balanced
as they should, which we considered a very good result and strong evidence that
data clones can indeed be the cause of errors.

Delft University In the case study for the Delft University, we studied the
budget spreadsheet, consisting of 15 worksheets. We again used MinimalCluster-
Size 9 and MinimalDifferentValues 9 and set the MatchingPercentage to 80% and
StepSize to 2. In this case study, we searched for clones between worksheets, since
there was just one spreadsheet. Running the algorithm took 3 seconds.

We found 8 exact clones, which all turned out to be real clones, i.e. they
were copied by the spreadsheet creator. When we asked him why he used the
clones instead of links, he stated that the spreadsheet was a draft version and
that it seemed easier to simply copy the values. Although these clones did not
lead to problems in this case, the spreadsheet owner did state that if he had

6.12 THE RESEARCH QUESTIONS REVISITED 127

to share the spreadsheet with others, he thought he should replace the clones
with links. He stated that our analysis would be very useful in improving the
spreadsheet and removing the clones: “This scan is very useful. You can just
copy-paste and the system indicates where you should make links”. In this case
study, the visualization was interesting, since there were two worksheets that were
both connected by a solid arrow, indicating formula dependencies, and a dashed
arrow which shows a clone dependency. We consider this as extra risky, because
the spreadsheet’s user might think all values are linked upon seeing one of the
formula dependencies.

6.11 The research questions revisited
In this section, we revisit the research questions.

R1: How often do data clones occur in spreadsheets? We learned from the
both EUSES case and the case studies that clones occur often in spreadsheets.
Around 5% of all spreadsheets in the EUSES corpus contain clones.

R2: What is the impact of data clones on spreadsheet quality? From the
two case studies, we learned that clones can have two different types of risks. We
learned that clones matching 100% mainly impact the users perspective of spread-
sheets (“I did not know these values were copied from that source”), while near-
miss clones really causes trouble (“this value should have been updated months
ago”).

R3: Does our approach to detect and visualize data clones in spreadsheets
support users in finding and understanding data clones? In both studies we saw
that employees were not always aware of what values were copied from what sheets
to what others. Even creators of the spreadsheets did not know all relations by
heart. The dataflow visualizations aided users in quickly getting an overview of
the, otherwise very hidden, copy dependencies (“the system indicates where you
should make links”).

6.12 Discussion
Our current approach to finding clones helps spreadsheet users to understand how
data is copied throughout worksheets and spreadsheets and furthermore supports
them in improving erroneous relations. In this section, we discuss a variety of
issues that affect the applicability and suitability of the proposed approach.

6.12.1 Relative settings for parameters
In the current evaluations, we have used fixed settings for the parameters: we
set MinimalDifferentValues and MinimalClusterSize both to 9, irrespective of the
spreadsheet. However, it could improve performance of the algorithm if these
parameters were calibrated using properties of the spreadsheets. For instance, in

128 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.12

a spreadsheet with only 8 rows, no clones will ever be found. Although the evalu-
ations showed that using fixed settings leads to useful results, taking spreadsheet
properties into account might improve the algorithm even further.

6.12.2 Headers

In previous work, we have worked on the extraction of metadata from
spreadsheets[Her10]. Other authors have worked on this as well[Abr04; Erw02].
We could use extracted header information, such as column or row names to gain
more confidence in detected clones. If clones are found below column headers with
the same name, chances are bigger that clones are are ‘real’ clones and concern
the same conceptual data.

6.12.3 Copied data

In addition to copying the results of formulas, a spreadsheet user can also copy
data to different places of the spreadsheet. This is a different type of cloning in
spreadsheets that we have not yet considered in the current tool. We hypothesize
that copy-pasting of data might also be error-prone, however this calls for more
research. Furthermore, there is be the challenge of detecting the origin of the
clone, similar to origin analysis in source code[God02; Zou03]. We see this as an
interesting avenue for future research.

6.12.4 Clone genealogy

The current approach analyzes cloning as it occurs in a spreadsheet at a given
point in time. However, it would also be very interesting to understand how clones
are created and adapted. When spreadsheets are be placed under version control,
such as provided by Microsoft’s Sharepoint, for example, it will be possible to
also track the history of a set of clones, similar to clone genealogy work in source
code analysis[Kim05; Bak11].

6.12.5 Spreadsheet maintenance support

We learned from the case study at the foodbank that, when spreadsheets become
larger and more complex, their users become more anxious to make structural
changes. Although this does not relate to cloning directly, updating a clone into
a formula link is one of those changes that users fear might mess up the entire
sheet. This means that spreadsheets need better support for previewing a change,
such as some refactoring tools offer, or the option to calculate what cells will be
affected by a certain change.

6.13 CONCLUDING REMARKS 129

6.12.6 Threats to validity
A treat to the internal validity of our quantitative evaluation is the fact that we
validated the precision of the algorithm manually. We have however described
our approach and made our results publicly available, so our results can be replic-
ated. A threat to the external validity of our quantitative evaluation concerns the
representativeness of the EUSES corpus. However, the EUSES corpus is a large
set that is collected from practice and has been used for numerous spreadsheet
papers. The external validity of the qualitative evaluation might suffer from this
threat, however these spreadsheets too are collected from practice and available
online to enable other researchers to replicate our results.

6.13 Concluding remarks
The goal of this chapter is to investigate the risks that data clones pose to spread-
sheets. To that end we have defined data clones and described a way to detect
and visualize them. We have subsequently evaluated data clones in two ways,
with a quantitative evaluation on the EUSES corpus and two real-life case studies
in which we found that data clones are common and can lead to real errors.

The key contributions of this chapter are as follows:

• The definition of data clones in spreadsheets (Section 6.4).

• An approach for the automatic detection (Section 6.5) and visualization
(Section 6.6).

• An implementation of that approach into our existing spreadsheet analysis
toolkit Breviz (Section 6.7).

• A quantitative evaluation of the proposed clone detection algorithm on the
EUSES corpus (Section 6.10).

• A real-life evaluation with 31 spreadsheet from a Dutch non-profit organiz-
ation and 1 from academia (Section 6.9).

The results of our evaluations show that around 5% of spreadsheets contain
data clones and that these clones lead to actual errors such as in the case of the
foodbank. The current research gives rise to several directions for future work.
Firstly , the algorithm could be improved to get a better precision. Also, in a
new study, we will analyze the recall of the algorithm and on detecting clone
that do not match in their number format, since these might be even more error-
prone than the data clones we detect currently. Furthermore, the case study
learned us that impact analysis of changes in spreadsheets could help to increase
a spreadsheet user’s confidence, either before the change or directly after. This is
a very interesting avenue for further research. Finally, taking the metadata into
account might strengthen the clone detection algorithm.

130 DATA CLONE DETECTION AND VISUALIZATION IN SPREADSHEETS 6.13

Chapter7
Conclusion

7.1 Contributions
The aim of this research is to analyze and visualize the design of a spreadsheet.
To that end we have looked at different aspects of a spreadsheet: the metadata,
the formulas, the organization and finally the data, in order to obtain a complete
view.

The contributions of this dissertation are:

• A pattern language to express common spreadsheet patterns (Chapter 2)

• A method to automatically recognize these patterns and transform them
into class diagrams (Chapter 2)

• A detailed survey analyzing the information needs of spreadsheet users
(Chapter 3)

• A method to extract dataflow diagrams form spreadsheets (Chapter 3)

• The definition of four inter-worksheet smells, based on known code smells
(Chapter 4)

• An approach for the automatic detection of the inter-worksheet smells
(Chapter 4)

• An analysis of the risky types of spreadsheet formulas (Chapter 5)

• An approach for the automatic detection of the formula smells (Chapter 5)

• The definition of data clones in spreadsheets (Chapter 6)

131

132 CONCLUSION 7.2

• An approach for the automatic detection and visualization of clones
(Chapter 6)

• Detailed evaluations of all the above, where possible performed in an indus-
trial setting

• A tool called Breviz in which all extraction methods are integrated

7.2 The different aspects of spreadsheets
In this section we present an overview of the different aspects we described in the
Introduction—data, metadata, formulas and organization—and to what extent
our approach is able to analyze them.

7.2.1 Metadata
The first attempt we made at obtaining information from spreadsheets concerned
the extraction of metadata. We did this by creating a two-dimensional pattern
language and describing well-known spreadsheet patterns in this language, such
that they could be recognized and transformed into class diagrams.

As shown in Chapter 2, our proposed method is able to extract perfect class
diagrams from 40% of the tested spreadsheets. 26% contained minor flaws such as
missing fields, while 22% of the diagrams were incomplete. Only 12% of extracted
diagrams were not meaningful.

From these results, although limited in number, we conclude that it is possible
to automatically extract metadata from spreadsheets. Interaction with a spread-
sheet user, such as allowing the user to select metadata or to validate extracted
diagrams could improve precision of this approach.

However, one of the aims of this work was to use the extracted class diagrams
as a basis for reimplementing the underlying spreadsheet. Although we found
that this is technically possible, when testing this idea with users, we found that
migrating spreadsheets was not often feasible, for several reasons:

• Spreadsheet users love the flexibility of their spreadsheet and are not easily
convinced by benefits of a tailormade application, such as speed or safety.

• IT departments in large companies do not have the manpower, nor the
interest to rebuild spreadsheets, which they deem often as as uninteresting
end-user artifacts, despite their documented impact in a company.

• To actually conduct a migration, additional information, beyond a class
diagram representation, is needed.

This led us to pursue the idea of understanding and refining spreadsheets,
rather than aiming to rebuild them.

7.2 THE DIFFERENT ASPECTS OF SPREADSHEETS 133

7.2.2 Organization

We thus directed our attention to the organization of a spreadsheet, since we
concluded—after performing a grounded study with 27 spreadsheet users—that
the way that spreadsheet users divide their data into tables and worksheets was
an important factor in understanding a spreadsheet.

As shown in Chapter 3, subjects in our qualitative study expressed that the
global view, showing the worksheets and their relationships, helped them in seeing
the idea behind the spreadsheet. “The global view reminds me of the plan I had
when building this spreadsheet. Normally, I just walk through the worksheets
from left to right, but that is not the logical way.”

When we observed spreadsheet users interacting with these visualizations, we
found that they used them, not only for understanding spreadsheets, but also for
assessing their quality. This was a very interesting phenomenon that we did not
anticipate when we created the dataflow diagrams. We noticed that especially
the global view was used to this purpose. This is why we formalized this formerly
informal assessment of spreadsheet quality by introducing inter-worksheet smells.
Since we asserted that worksheets and their connections strongly resemble classes
and their relations, we decided to use inter-class code smells as our starting point.
Chapter 4 shows that annotating the dataflow diagrams helps users to judge
spreadsheet quality even more. One of the subjects stated, upon being confronted
with the annotated dataflow diagram: “I should really take some time to improve
these formulas, since this is already confusing for me, so it must be terrible for
others”.

Although there are still limitations in our approach, such as analyzing pivot
tables and VBA code, the experiments have shown that dataflow visualizations
are a suitable way to help users in understanding the high-level design of their
spreadsheets, while automatic smell detection helps them to see weaknesses in
this design.

7.2.3 Formulas

While researching the topic of smells, we noticed that users also felt the need
to judge individual formulas. This is why we expanded our idea of spreadsheet
smells into the realm of spreadsheet formulas. Again we took our inspiration from
existing code smells, yet this time at the intra-class level. With this approach, we
were able to locate complex formulas in a spreadsheet. Users in the subsequent
case study confirmed that the selected formulas were indeed the least maintainable
and could be improved: “I understand why this formula is selected by your system,
it is quite long.” Another subject, when looking at a formula that referred to no
less than 17 ranges said “this formula is a real puzzle”. The study showed that
our smells reveal formulas that are too complex. These formulas will be time
consuming to change, and changes made will be more error prone. We did not
only find formulas that users deemed tricky, our method found two actual faults

134 CONCLUSION 7.3

in a spreadsheet by looking at the Duplication Smell.

From the results of this study we can conclude that applying code smells to
spreadsheet formulas is a good way to detect flaws in a spreadsheet’s design, at
the detailed level of formulas.

7.2.4 Data

The final aspect of spreadsheets we analyzed was the data in the spreadsheet. We
noticed that spreadsheet users resorted to copy-pasting their data (rather than
using the more robust creation of formula links). They do so for a variety of
reasons:

• Some users simply do not know how to create formula links, especially links
between files can be tricky to get right.

• Users want a spreadsheet to be self-contained, for instance because it can
then be emailed more easily, since the receiver does not need access to the
source data. Since spreadsheets are emailed around very often, this is a
scenario that is quite likely.

• In some cases, a spreadsheet owner wants to continue to develop a spread-
sheet, while also allowing others to use the data. For instance, a user might
want to share the preliminary results so colleagues can do analysis on them,
while still having the freedom to update these results.

These reasons result in the fact that many spreadsheets contain copy-pasted
data. This can diminish understandability, since the real source of data is con-
cealed and can furthermore be error-prone, since in the case of an update, this
update has to be performed on all copies. This is why we decided to add auto-
matically detection of data clones to our analysis toolkit.

When validating our clone detection approach, we found that both exact clones
(those matching 100%) and near-miss clones occur in spreadsheets. Both pose dif-
ferent threats. Exact clones mainly impact the user’s perspective of spreadsheets
(“I did not know these values were copied from that source”), while near-miss
clones really cause trouble (“this value should have been updated months ago”).
We learned that cloning can be a source of errors, as even creators of the spread-
sheets did not know all relations by heart. In one of the case studies, our approach
was able to detect and repair severe errors in spreadsheets used for the inventory
of the south-Dutch foodbank. This has shown that clone detection in spreadsheets
can solve real-life spreadsheet problems.

7.3 REFLECTING ON METHODOLOGY 135

7.3 Reflecting on methodology

7.3.1 Methods used in this dissertation

In this research we have tried to emphasize doing research in a real context. We
have done so firstly, by making use of the well-known EUSES Corpus, for the in
evaluations in Chapters 2, 4 and 5.

Secondly, we have employed Grounded theory. Grounded theory is a qual-
itative research method that aims at obtaining a theory from data, especially
observations. As such, it is highly suitable to discover problems that exist for
participants. In a grounded theory study, the researcher works with a general
area of interest rather than with a specific problem. Through the use of groun-
ded theory, we aimed at finding problems that are really relevant to industrial
spreadsheet users.

Finally, we have performed industrial case studies to validate our different
approaches, as described in Chapters 3, 4, 5 and 6. We choose this approach to
deeply understand how our solutions could be useful for real spreadsheets and
real spreadsheet users.

Where possible, we have used a mixed method approach to evaluate our ap-
proaches. In particular, we have used the explanatory sequential study. When
using this type of mixed method, one first performs a quantitative evaluation to
get an initial insight into a problem, followed by a qualitative study in which these
insights are deepened with users.

7.3.2 Impact

While performing the research, we have experienced that starting with a groun-
ded theory approach is an excellent way to make a connection with real problems,
especially in an applied field like software engineering. By connecting with people
and taking an interest in their professional interests and problems, we were able
to develop methods that meet their needs. We believe that the use of grounded
theory has positively contributed to the adoption of our approaches in the com-
pany that we performed our studies at. Both at Robeco and at the Dutch Food
Bank, our software is still used.

With respect to the mixed method, we also conclude that this method is very
applicable to software engineering studies. In many cases it is possible to both
analyze the data and interview users or perform a case study. By combining the
methods, threats to validity from performing only one study are mitigated. For
instance: just analyzing the data might not reveal the true problems and has the
risk that the observer has to make assumptions when interpreting the results,
while only performing a case study might lead to generalization that are not
grounded. In our opinion, the combination is empirically strong and furthermore
makes for nice and readable papers, since heavy statistics can be interleaved with
quotes from the case studies.

136 CONCLUSION 7.4

7.3.3 Risks
Of course, doing research so closely together with industry also has its risks. It
is possible companies view the researcher as a professional software engineer and
demand deliverables such as working software, as opposed to research prototypes.
If the company feels that the researcher is not producing anything useful, this
could negatively impact the research project.

Another threat is the possibility that the topic under research is only relevant
to the one company where the case study is performed. We have mitigated this
risk by communicating early and often about our work, to stay convinced that the
studies we were doing at Robeco also mattered to other people in other companies.

Furthermore, when performing multiple case studies with the same organiz-
ation, there is a risk of aptitude treatment interaction. We certainly had some
‘fans’ at Robeco, who were frequent users of the tool and felt very positive about
the research, making them less objective test subjects. In all tests, however, we
got enough criticism to assert that even very positive employees were still able
to point at weaknesses in the approach. Still, this phenomenon is something we
must certainly keep taking into account in future research.

7.4 Revisiting the research questions
Given the ideas and results described in the previous chapters, we now direct our
attention to the main research question of this dissertation.

RQ1 To what extent are methods and techniques from software engineering ap-
plicable to the spreadsheet domain?

In this dissertation, we have taken methods from software engineering applied
them to spreadsheets. In particular, we have investigated class diagrams (Chapter
2), data flow diagrams (Chapter 3), code smells (Chapter 4 and 5) and clone
detection (Chapter 6).

One of the core reasons that we were able to apply methods from software
engineering to spreadsheets successfully was the fact that we were able to apply
these concepts to spreadsheets without additional efforts on either the spread-
sheets, such as preparing them for analysis, or their users, such as training them.
This resulted in very low overhead for the spreadsheet users: they did not have
to change their way of working with spreadsheets, they could just work as they
were used to, while getting additional information when needed.

Furthermore, the methods and techniques we have applied, kept their original
value. The extracted dataflow diagrams, for example, proved to have the same
value to spreadsheet users as extracted dependency diagrams have to software
engineers: they quickly show how a system is structured and provide assistance
when learning the underlying code. With spreadsheet smells and the clone detec-
tion we were able to find weak points and even errors in the spreadsheets, similar
to code smells and code clones.

7.5 REVISITING THE RESEARCH QUESTIONS 137

This gives credibility to the hypothesis that other methods from software en-
gineering too can be applied to spreadsheets. Methods that spring to mind are
testing, version control or invariants. However, for these methods, spreadsheet
users will have to put in extra effort, such as adding tests, commit messages and
assertions, which makes it harder to get spreadsheet users to adopt these methods.
It remains an open question how to transfer these software engineering principles
to spreadsheets in a non-intrusive manner.

RQ2 How can we visualize the underlying design of a spreadsheet in order to
support spreadsheet understanding?

To answer this research question, we have explored how class diagrams and
data flow diagrams can be used to support spreadsheet understanding, as de-
scribed in Chapter 2 and 3.

The visualizations were useful for spreadsheet users, again since they did not
have to change their normal way of working, while being able to get design in-
formation in a diagram. Since the diagrams can be automatically extracted, they
are available almost immediately when support for understanding is necessary.

Our evaluations have shown that the resulting diagrams can be used for un-
derstanding a spreadsheet’s design, to support re-implementing it and to ease the
transfer of a spreadsheet from one employee to another. In the current imple-
mentation, however, some design elements are not covered: such as pivot tables,
VBA code and array formulas.

RQ3 To what extent does the visualization and analysis of the design of a spread-
sheet support users in assessing quality of their spreadsheet?

For the final research question, we have aimed at measuring quality, based
on code smells and clone detection to spreadsheets. We have looked both at
smells between worksheets, based on inter-class smells (Chapter 4), smells within
worksheets, based on intra-class smells (Chapter 5). In both cases we have used
metrics to detect the smells, which were calibrated by setting thresholds based
on the EUSES Corpus [Fis05b]. Furthermore, we have applied clone detection to
capture common copy-paste errors and vulnerabilities (Chapter 6).

With the above approached, we have been able to detect serious maintainab-
ility problems and even actual errors in industrial spreadsheets.

However, the approach has its limitations. We mainly focus on maintainability
and not on other important aspects, like correctness or performance. These factors
are correlated less with the design of a spreadsheet and hence our method is less
suitable for detecting these kinds of problems.

Following from all the above, the overall conclusion of this dissertation are:
(i) methods from software engineering form an excellent source of in-
spiration for analysis and (ii) visualization algorithms for spreadsheets
and spreadsheet users are supported by the analysis and visualization
of their spreadsheet’s design.

138 CONCLUSION 7.5

7.5 Future work
The current research gives rise to several avenues for future work.

Beyond formulas and data

The current approach focuses on the visualization and analysis of spreadsheet
formulas and data. However, there are several other constructs in spreadsheets
we do not yet analyze, like VBA code, pivot tables and graphs. An interesting
direction here would be to research how formulas and data are combined with
more complex spreadsheet constructs.

Some spreadsheet models, for instance, use both VBA code and formulas,
making it hard for spreadsheet users to understand how this VBA code fits into
the design of the spreadsheet. Future work that would research the possibility
to visualize the way in which VBA code and formulas are combined would be
of great interest for more complex spreadsheets containing VBA. The challenge
would of course be technical—parsing the VBA code and detecting dependencies
between worksheets in the code—but even more user centered: how to visualize
the mutual dependencies between formulas and other constructs in an automatic
and easy comprehensible way.

In all these concepts design smells could also be defined and detected, creating
another viable direction for future research.

Spreadsheet evolution

In the case studies we have seen that spreadsheets are not simply created and then
used immediately. Similar to software, they evolve and stay alive for several years,
5 years on average as shown in Chapter 3. This gives rise to the question how
spreadsheets evolve over time. By analyzing a large number of different versions
of one spreadsheet, we could shed more light on how spreadsheets are created
and maintained in general. For instance, by creating a data flow diagram of each
version and subsequently combining them into an animation, we could visualize
the history of this spreadsheet. Especially studying how smells and clones appear
and disappear over time could give us valuable insight on how spreadsheet errors
are created.

Furthermore analyzing previous versions of one spreadsheet could support the
spreadsheet’s users in understanding the current version of a spreadsheet better.
For instance, knowing who created a formula and what other cells where edited
at the same time, might help the user to understand the context of this formula.

Change impact analysis

In the final two experiments, we have seen that spreadsheet users, while updating
their spreadsheet, have trouble predicting how their spreadsheet will behave after
the change. This is why helping users understand how their spreadsheet will behave

7.5 FUTURE WORK 139

after a change is an interesting direction for future work. Here the focus will be
to help users to prevent errors in the future and not to analyze the current state
of the spreadsheet.

As one of the subjects in the smells study stated: “if I move this, what will
happen to the other formulas? I would like to preview that”. In the clone study
a different subject said: “The problem with managing multiple sheets is that you
never know if changing one cell will mess up other sheets or files.”

One way to overcome this is the introduction of spreadsheet tests, so the user
will have confidence that despite the change, the spreadsheet still works as it is
supposed to. This however would require additional effort from the spreadsheet
user.

A second option that we believe to be less demanding for the spreadsheet users,
is the calculation of the impact of the change. We could show the users exactly
what cells have been impacted by the update, or even predict what cells will be
impacted before a change has even been performed, so they can check only those
cells for correctness. This direction again would have a technical component, but
would also present challenges on how to communicate the impacted cells to the
spreadsheet users in a clear and simple way.

140 CONCLUSION

AppendixA
Breviz

The extraction methods we have described in the above chapters are combined into
one web application called Breviz. Currently, the dataflow extraction as described
in Chapter 3, the smell detection from Chapters 4 and 5 and the clone detection
(Chapter 6) are incorporated into Breviz. Only the class diagram extraction as
described in Chapter 2 is currently not part of Breviz, as that visualization is
mainly aimed at programmers, whereas Breviz is a real end-user tool.

Breviz is available as a service on app.infotron.nl. A spreadsheet user can
simply upload his spreadsheet and a report will be generated in the browser. By
means of the report, the user gets an overview of the extracted information.

The report is divided into different categories. Firstly, the user gets a list of
formulas that are marked smelly by Breviz. In the case where a refactoring is
obvious, such as the Feature Envy smell, where the proposed refactoring is to
move the formula, Breviz also lists this refactoring, as shown in Figure A.1.

Figure A.1: Breviz suggesting refactorings.

141

142 APPENDIX A

Next, detected data clones are listed, as depicted in Figure A.2.

Figure A.2: Breviz showing where data is cloned.

Finally, the generated dataflow diagram is shown. Each rectangle represents
a worksheets and an solid arrow represents formula dependencies between work-
sheets. Dashed arrows represent data has been copied between worksheets. This
can be seen in Figure A.3.

Figure A.3: A dataflow diagram, including dashed arrows that represent copying.

In addition to the report, users can download an annotated copy of his spread-
sheet, in which smelly and cloned cells are colored and marked with a popup,
forming the risk map as described in Chapter 5. Breviz is implemented in C# 4.0
using Visual Studio 2010. It utilizes the Gembox component to read Excel files.
1

1http://www.gemboxsoftware.com/spreadsheet/overview

Bibliography

[Abr04] R. Abraham and M. Erwig. Header and unit inference for spreadsheets
through spatial analyses. In Proc. of VL/HCC ’04, pp. 165–172. 2004.

[Abr05a] R. Abraham and M. Erwig. How to communicate unit error messages
in spreadsheets. In Proc of WEUSE ’05, pp. 1–5. 2005.

[Abr05b] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert. Visual
specifications of correct spreadsheets. In Proc. of VL/HCC ’05, pp.
189–196. IEEE Computer Society, 2005.

[Abr06] R. Abraham and M. Erwig. Inferring templates from spreadsheets. In
Proc. of ICSE ’06, pp. 182–191. 2006.

[Abr07a] R. Abraham and M. Erwig. Ucheck: A spreadsheet type checker for end
users. Journal of Visual Languages and Computing, vol. 18:pp. 71–95,
2007.

[Abr07b] R. Abraham, M. Erwig, and S. Andrew. A type system based on end-
user vocabulary. In Proc. of VL/HCC ’07, pp. 215–222. 2007.

[Abr09] R. Abraham and M. Erwig. Mutation operators for spreadsheets. IEEE
Transactions on Software Engineering, vol. 35(1):pp. 94–108, 2009.

[Ado08] S. Adolph, W. Hall, and P. Kruchten. A methodological leg to stand on:
Lessons learned using grounded theory to study software development.
In Proc. of CASCON ’08, pp. 166–178. 2008.

[Ahm03] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A type
system for statically detecting spreadsheet errors. In Proc. of ASE ’03,
pp. 174–183. 2003.

143

144 BIBLIOGRAPHY

[Aho86] A. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[Ala12] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson.
Models are code too: Near-miss clone detection for simulink models. In
Proc. of ICSM ’12. 2012. To appear.

[Alv10] T. L. Alves, C. Ypma, and J. Visser. Deriving metric thresholds from
benchmark data. In Proc. of ICSM ’10, pp. 1–10. IEEE Computer
Society, 2010.

[And04] W. Anderson. A Comparison of Automated and Manual Spreadsheet
Detection. Master’s thesis, Massey University, Albany, New Zealand,
2004.

[Aur10] S. Aurigemma and R. R. Panko. The detection of human spreadsheet
errors by humans versus inspection (auditing) software. In Proc. of
EuSpRIG ’96. 2010.

[Aya00] Y. Ayalew, M. Clermont, and R. T. Mittermeir. Detecting errors in
spreadsheets. In Proc. of EuSpRIG ’00, pp. 51–62. 2000.

[Bad12] S. Badame and D. Dig. Refactoring meets spreadsheet formulas. In
Proc. of ICSM ’12. 2012. To appear.

[Bak78] T. P. Baker. A technique for extending rapid exact-match string match-
ing to arrays of more than one dimension. SIAM Journal on Computing,
vol. 7(4):pp. 533–541, 1978.

[Bak95] B. S. Baker. On finding duplication and near-duplication in large soft-
ware systems. In Proc. of WCRE ’95, pp. 86–95. 1995.

[Bak11] T. Bakota. Tracking the evolution of code clones. In Proc. of SOFSEM
’11, pp. 86–98. 2011.

[Bal87] D. P. Ballou, H. L. Pazer, S. Belardo, and B. D. Klein. Implication
of data quality for spreadsheet analysis. DATA BASE, vol. 18(3):pp.
13–19, 1987.

[Bax98] I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proc. of ICSM ’98, pp.
368–377. 1998.

[Bec11] L. Beckwith, J. Cunha, J. P. Fernandes, and J. Saraiva. An empirical
study on end-users productivity using model-based spreadsheets. In
Proc. of the EuSpRIG ’11, pp. 87–100. July 2011.

[Bel93] D. Bell and M. Parr. Spreadsheets: A research agenda. SIGPLAN
Notices, vol. 28(9):pp. 26–28, 1993.

BIBLIOGRAPHY 145

[Bir77] R. S. Bird. Two dimensional pattern matching. Information Processing
Letters, vol. 6(5):pp. 168–170, 1977.

[Bra09] L. Bradley and K. McDaid. Using bayesian statistical methods to de-
termine the level of error in large spreadsheets. In Proc. of ICSE ’09,
Companion Volume, pp. 351–354. 2009.

[Bre04] A. Bregar. Complexity metrics for spreadsheet models. In Proc. of
EuSpRIG ’04, p. 9. 2004.

[Bru05] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. On the
use of clone detection for identifying crosscutting concern code. TSE,
vol. 31(10):pp. 804–818, 2005.

[Bur99] M. Burnett, A. Sheretov, and G. Rothermel. Scaling up a what you see
is wat you test methodology to spreadsheet Grids. In Proc. of VL ’99,
pp. 30–37. 1999.

[Bur03] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and
C. Wallace. End-user software engineering with assertions in the spread-
sheet paradigm. In Proc. of ICSE ’03, pp. 93–103. 2003.

[Cha96] M. Chatfield and R. Vangermeersch. The History of Accounting-An
International Encyclopedia. Garland Publishing, New York, 1996.

[Cha09] C. Chambers and M. Erwig. Automatic detection of dimension errors in
spreadsheets. Journal of Visual Languages and Computing, vol. 20:pp.
269–283, 2009.

[Che86] P. Cheney, R. I. Mann, and D. L. Amoroso. Organizational factors
affecting the success of end-user computing. Journal of Management
Information Systems, vol. 3:pp. 65–80, July 1986.

[Cle03] M. Clermont and R. Mittermeir. Analyzing large spreadsheet programs.
In Proc. of WCRE ’03, pp. 306–315. 2003.

[Cle04] M. Clermont. A Scalable Approach to Spreadsheet Visualization. Ph.D.
thesis, Universitaet Klagenfurt, 2004.

[Con97] D. Conway and C. Ragsdale. Modeling optimization problems in the
unstructured world of spreadsheets. Omega, vol. 25(3):pp. 313–322,
1997.

[Cre03] J. W. Creswell. Research design : qualitative, quantitative, and mixed
method approaches. Sage Publications, 2nd edn., 2003.

[Cun09a] J. Cunha, J. Saraiva, and J. Visser. Discovery-based edit assistance for
spreadsheets. In Proc. of VL/HCC ’09, pp. 233–237. 2009.

146 BIBLIOGRAPHY

[Cun09b] J. Cunha, J. Saraiva, and J. Visser. Discovery-based edit assistance for
spreadsheets. In Proc. of VL/HCC ’09, pp. 233–237. IEEE, 2009.

[Cun09c] J. Cunha, J. Saraiva, and J. Visser. From spreadsheets to relational
databases and back. In Proc. of PEPM ’09, pp. 179–188. 2009.

[Cun12] J. Cunha, J. P. Fernandes, J. Mendes, and J. S. Hugo Pacheco. Towards
a catalog of spreadsheet smells. In Proc. of ICCSA’12. LNCS, 2012.

[Dav96] J. S. Davis. Tools for spreadsheet auditing. International Journal of
Human Computer Studies, vol. 45(4):pp. 429–442, 1996.

[Duc99] S. Ducasse, M. Rieger, and S. Demeyer. A language independent ap-
proach for detecting duplicated code. In Proc. of ICSM ’99, pp. 109–
118. 1999.

[Eng05] G. Engels and M. Erwig. Classsheets: automatic generation of spread-
sheet applications from object-oriented specifications. In Proc. of ASE
’05, pp. 124–133. 2005.

[Erw02] M. Erwig and M. M. Burnett. Adding apples and oranges. In Proc. of
PADL ’02, pp. 173–191. 2002.

[Erw09] M. Erwig. Software engineering for spreadsheets. IEEE Software,
vol. 26:pp. 25–30, September 2009.

[Fis02] M. Fisher, M. Cao, G. Rothermel, C. R. Cook, and M. M. Burnett.
Automated test case generation for spreadsheets. In Proc. of ICSE ’02,
pp. 141–151. 2002.

[Fis05a] M. Fisher and G. Rothermel. The EUSES spreadsheet corpus: a
shared resource for supporting experimentation with spreadsheet de-
pendability mechanisms. ACM SIGSOFT Software Engineering Notes,
vol. 30(4):pp. 1–5, 2005.

[Fis05b] M. Fisher and G. Rothermel. The EUSES spreadsheet corpus: A
shared Resource for supporting experimentation with spreadsheet de-
pendability mechanisms. In Proc. of WEUSE ’05, pp. 47–51. 2005.

[Fow99] M. Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[Fre66] R. S. Freedman. Introduction to Financial Technology. Academic Press,
20066.

[Gab10] P. Gabriel. Software Languages Engineering: Experimental Evaluation.
Master’s thesis, Universidade Nova de Lisboa, 2010.

BIBLIOGRAPHY 147

[Gan77] C. Gane and T. Sarson. Structured Systems Analysis: Tools and Tech-
niques. McDonnell Douglas Information, 1977.

[Gia96] D. Giammarresi and A. Restivo. Two-dimensional finite state recogniz-
ability. Fundamenta Informaticae, vol. 25(3):pp. 399–422, 1996.

[Gla67] B. Glaser and A. Strauss. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine Transaction, 1967.

[God02] M. Godfrey and Q. Tu. Tracking structural evolution using origin ana-
lysis. In Proc. of IWPSE ’02, pp. 117–119. 2002.

[Gol47] H. Goldstein and J. von Neumann. Planning and Coding Problems of
an Electronic Computing Instrument. McMillan, 1947.

[Gon10] O. Gonzalez. Monitoring and Analysis of Workflow Applications: A
Domain-specific Language Approach. Ph.D. thesis, Universidad de los
Andes, 2010.

[Gro08] D. M. Groenewegen, Z. Hemel, L. C. L. Kats, and E. Visser. WebDSL:
A domain-specific language for dynamic web applications. In Proc. of
OOPSLA ’08, pp. 779–780. 2008.

[Hen94] D. G. Hendry and T. R. G. Green. Creating, comprehending and ex-
plaining spreadsheets: a cognitive interpretation of what discretionary
users think of the spreadsheet model. International Journal of Human-
Computer Studies, vol. 40(6):pp. 1033–1065, 1994.

[Her10] F. Hermans, M. Pinzger, and A. van Deursen. Automatically extracting
class diagrams from spreadsheets. In Proc. of ECOOP ’10, pp. 52–75.
2010.

[Her11] F. Hermans, M. Pinzger, and A. van Deursen. Supporting professional
spreadsheet users by generating leveled dataflow diagrams. In Proc. of
ICSE ’11, pp. 451–460. 2011.

[Her12a] F. Hermans. Exact and near-miss clone detection in spreadsheets.
TinyToCS, vol. 1(1), 2012.

[Her12b] F. Hermans, M. Pinzger, and A. van Deursen. Detecting and visualizing
inter-worksheet smells in spreadsheets. In Proc. of ICSE ’12, pp. 441–
451. 2012.

[Her12c] F. Hermans, M. Pinzger, and A. van Deursen. Detecting code smells in
spreadsheet formulas. In Proc. of ICSM ’12. 2012. To appear.

[Her13] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen. Data clone
detection and visualization in spreadsheets. In Proc. of ICSE ’13. 2013.
To appear.

148 BIBLIOGRAPHY

[Hod08] K. Hodnigg and R. Mittermeir. Metrics-based spreadsheet visualiz-
ation: Support for focused maintenance. In Proc. of EuSpRIG ’08,
p. 16. 2008.

[Hol09] S. Hole, D. McPhee, and A. Lohfink. Mining spreadsheet complexity
data to classify end user developers. In Proc. of ICDM ’09, pp. 573–579.
CSREA Press, 2009.

[Jan00] D. Janvrin and J. Morrison. Using a structured design approach to
reduce risks in end user spreadsheet development. Information & Man-
agement, vol. 37(1):pp. 1–12, 2000.

[Joh93] J. H. Johnson. Identifying redundancy in source code using fingerprints.
In Proc. of CASCON ’93, pp. 171–183. 1993.

[Jür09] E. Jürgens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In Proc. of ICSE ’09, pp. 485–495. 2009.

[Kam02] T. Kamiya, S. Kusumoto, and K. Inoue. CCfinder: A multilinguistic
token-based code clone detection system for large scale source code.
TSE, vol. 28(7):pp. 654–670, 2002.

[Kap08] C. J. Kapser and M. W. Godfrey. ”cloning considered harmful” con-
sidered harmful: patterns of cloning in software. Empirical Software
Engineering, vol. 13(6):pp. 645–692, 2008.

[Kim05] M. Kim and D. Notkin. Using a clone genealogy extractor for under-
standing and supporting evolution of code clones. In Proc. of MSR ’05.
2005.

[Kni00] B. Knight, D. Chadwick, and K. Rajalingham. A structured method-
ology for spreadsheet modelling. Proc of EuSpRIG ’00, vol. 1:p. 158,
2000.

[Knu63] D. Knuth. Computer-drawn flowcharts. Communication of the ACM,
vol. 6(9):pp. 555–563, 1963.

[Ko10] A. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrence, H. Lieberman, B. Myers, M. Rosson, G. Ro-
thermel, M. Shaw, and S. Wiedenbeck. The state of the art in end-user
software engineering. ACM Computing Surveys, 2010.

[Kol02] R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. Zündorf. A
study on the current state of the art in tool-supported uml-based static
reverse engineering. In Proc. of WCRE ’02, pp. 22–. 2002.

[Kom01] R. Komondoor and S. Horwitz. Using slicing to identify duplication in
source code. In Proc. of SAS ’01, pp. 40–56. 2001.

BIBLIOGRAPHY 149

[Kri01] J. Krinke. Identifying similar code with program dependence graphs.
In Proc. of WCRE ’09, pp. 301–309. 2001.

[Kru06] S. E. Kruck. Testing spreadsheet accuracy theory. Information & Soft-
ware Technology, vol. 48(3):pp. 204–213, 2006.

[Lag97] B. Laguë, D. Proulx, J. Mayrand, E. Merlo, and J. P. Hudepohl. As-
sessing the benefits of incorporating function clone detection in a de-
velopment process. In Proc. of ICSM ’97, pp. 314–321. 1997.

[Lan05] M. Lanza, R. Marinescu, and S. Ducasse. Object-Oriented Metrics in
Practice. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[Lev75] V. I. Levenshtein. On the minimal redundancy of binary error-
correcting codes. Information and Control, vol. 28(4):pp. 268–291, 1975.

[Lyn94] M. Lynne and M. Keil. If we build it, they will come: Designing in-
formation systems that people want to use. Sloan Management Review,
vol. 35(4), 1994.

[Mar79] T. D. Marco. Structured Analysis And System Specification. Prentice
Hall PTR, 1979.

[Mar96] M. N. Marshall. Sampling for Qualitative Research. Family Practice,
vol. 13(6):pp. 522–526, 1996.

[Mar01] R. Marinescu. Detecting design flaws via metrics in object-oriented
systems. In Proc. of TOOLS ’01, pp. 173–182. IEEE Computer Society,
2001.

[Mat64] R. Mattessich. Simulation of the Firm through a Budget Computer
Program. R.D. Irwin, Illinois, 1964.

[May96] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In Proc.
of ICSM ’96, pp. 244–. 1996.

[McC03] A. McCallin. Designing a grounded theory study: Some practicalities.
Nursing in Critical Care, vol. 8:pp. 203–208, 2003.

[Mit02] R. Mittermeir and M. Clermont. Finding high-level structures in
spreadsheet programs. In Proc. of WCRE ’02, p. 221. 2002.

[Moh10] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur. Decor: A
method for the specification and detection of code and design smells.
IEEE Transactions on Software Engineering, vol. 36(1):pp. 20–36, 2010.

150 BIBLIOGRAPHY

[Nar90] B. Nardi and J. Miller. The spreadsheet interface: A basis for end
user programming. In Proceeding of The IFIP Conference on Human-
Computer Interaction (INTERACT), pp. 977–983. North-Holland,
1990.

[Nov01] N. Novelli and R. Cicchetti. Fun: An efficient algorithm for mining
functional and embedded dependencies. In Proc. of ICDT ’01, pp.
189–203. 2001.

[O’B08] P. O’Beirne. Information and data quality in spreadsheets. In Proc. of
EuSpRIG ’08. 2008.

[O’B10] P. O’Beirne. Spreadsheet refactoring. In Proc. of the EuSpRIG ’10.
2010.

[Olb09] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka. The evolution
and impact of code smells: A case study of two open source systems.
In Proc. of ESEM ’09, pp. 390–400. 2009.

[Pan94] R. R. Panko and R. P. H. Jr. Individual and group spreadsheet design:
Patterns of errors. In Proc. of HICSS ’94, pp. 4–10. 1994.

[Pan96] R. R. Panko and R. P. Halverson Jr. Spreadsheets on trial: A survey of
research on spreadsheet risks. In Proc. of HICCS ’96, pp. 326–. 1996.

[Pan98] R. R. Panko. What we know about spreadsheet errors. Journal of End
User Computing, vol. 10(2):pp. 15–21, 1998.

[Pan06] R. Panko. Facing the problem of spreadsheet errors. Decision Line,
vol. 37(5), 2006.

[Pow09] S. Powell, K. Baker, and B. Lawson. Errors in operational spreadsheets:
A review of the state of the art. In Proc. of HICCS ’09, pp. 1–8. IEEE
Computer Society, 2009.

[Raf09] J. Raffensperger. New guidelines for spreadsheets. International
Journal of Business and Economics, vol. 2:pp. 141–154, 2009.

[Raj00] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards. Qual-
ity control in spreadsheets: a software engineering-based approach to
spreadsheet development. In Proc. HICSS ’00, pp. 133–143. 2000.

[Ron89] B. Ronen, M. Palley, and H. L. Jr. Spreadsheet analysis and design.
Communication of the ACM, vol. 32(1):pp. 84–93, 1989.

[Ros87] A. Rosenfeld. Array grammars. In Proc. of International Workshop on
Graph-Grammars and Their Application to Computer Science, vol. 291
of LNCS, pp. 67–70. Springer-Verlag, 1987.

BIBLIOGRAPHY 151

[Rot97] G. Rothermel. Testing strategies for form-based visual programs. In
Proc. of ISSRE ’97, pp. 96–107. 1997.

[Rot98] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What You See is
What You Test: A methodology for testing form-based visual pro-
grams. In Proceedings of the International Conference on Software En-
gineering (ICSE), pp. 198–207. 1998.

[Rot00] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G.
Green, and G. Rothermel. Wysiwyt testing in the spreadsheet
paradigm: an empirical evaluation. In Proc. of INCSE ’00, pp. 230–239.
2000.

[Roy09a] C. K. Roy. Detection and analysis of near-miss software clones. In Proc.
of ICSM ’09, pp. 447–450. 2009.

[Roy09b] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming, vol. 74(7):pp. 470–495, 2009.

[Roy10] C. K. Roy and J. R. Cordy. Near-miss function clones in open
source software: an empirical study. Journal of Software Maintenance,
vol. 22(3):pp. 165–189, 2010.

[Saj00] J. Sajaniemi. Modeling spreadsheet audit: A rigorous approach to
automatic visualization. 2000.

[Sca89] D. Scanlan. Structured flowcharts outperform pseudocode: An experi-
mental comparison. IEEE Software, vol. 6(5):pp. 28–36, 1989.

[Sca05] C. Scaffidi, M. Shaw, and B. A. Myers. Estimating the numbers of
end users and end user programmers. In Proc. of VL/HCC ’05, pp.
207–214. 2005.

[Shi99] K. Shiozawa, K. Okada, and Y. Matsushita. 3D interactive visualization
for inter-cell dependencies of spreadsheets. In Proc. of INFOVIS ’99,
pp. 79–83. 1999.

[Sla89] R. Slater. Portraits In Silicon. The MIT PRess, 1989.

[Str72] G. Stromoney, R. Siromoney, and K. Krithivasan. Abstract families of
matrices and picture languages. Computer Graphics and Image Pro-
cessing, vol. 1(3):pp. 284–307, 1972.

[Tas98] A. Tashakkori and C. Teddlie. Mixed methodology : combining qual-
itative and quantitative approaches. Sage, Thousand Oaks, California,
1998.

152 BIBLIOGRAPHY

[Win01] W. Winston. Executive education opportunities. OR/MS Today,
vol. 28(4), 2001.

[Yin02] R. K. Yin. Case Study Research : Design and Methods. SAGE Public-
ations, 2002.

[Zhu89] R. F. Zhu and T. Takaoka. A technique for two-dimensional pattern
matching. Commununications of the ACM, vol. 32(9):pp. 1110–1120,
1989.

[Zou03] L. Zou and M. W. Godfrey. Detecting merging and splitting using origin
analysis. In Proc. of WCRE ’03, pp. 146–154. 2003.

Summary

Analyzing and Visualizing Spreadsheets

Spreadsheets are used extensively in industry: they are the number one tool for
financial analysis and are also prevalent in other domains, such as logistics and
planning. Their flexibility and immediate feedback make them easy to use for
non-programmers.

But as easy as spreadsheets are to build, so difficult can they be to analyze
and adapt. This dissertation aims at developing methods to support spreadsheet
users to understand, update and improve spreadsheets. We took our inspiration
for such methods from software engineering, as this field is specialized in the
analysis of data and calculations. In this dissertation, we have looked at four
different aspects of spreadsheets: metadata, structure, formulas and data.

Metadata

In spreadsheets, users can mix real data, such as ‘Mekelweg 4’ with so-called
metadata: data that is used to describe data, such as ‘Address’. When you want
to know what a spreadsheet does, this metadata can be more relevant than the
actual data. This is why we have developed an approach to extract this metadata.
We detect metadata by looking at common places where it is usually found, such
as in the first row or column. These common places are called ‘patterns’ and we
defined four different version of them. If a pattern in found, it can subsequently
be transformed into a class diagram, which describes the spreadsheet metadata
in a structured way. These class diagrams can be used to re-implement, refine or
improve the corresponding spreadsheets. Initially, these diagrams were intended
to be used by (non end-user) software developers. However, it was when applying
this research in practice that I found that representing spreadsheets with diagrams
could also support end-users.

153

154 SUMMARY

Structure

This is why subsequently, we started to investigate the information needs of end-
users. In this research, we found that the most important information need of
spreadsheet users is to get a quick overview of how the worksheets of a spreadsheet
are connected. Dataflow diagrams proved to be a very viable method of visualizing
the dependencies between worksheets, as shown by a case study we performed at
Robeco, a large Dutch investment bank. As one of the subjects in our case
study said:“The global view reminds me of the plan I had when building this
spreadsheet. Normally, I just go through the worksheets from left to right, but
that is not the logical way.”

Formulas

When we observed spreadsheet users interacting with these visualizations, we
found that they used them not only for understanding spreadsheets, but also
for assessing their quality. This is why we formalized this formerly informal
assessment of spreadsheet quality by introducing inter-worksheet smells. Since
we asserted that worksheets and their connections strongly resemble classes and
their relations, we decided to use inter-class code smells as our starting point.
The subsequent evaluation showed that annotating the dataflow diagrams helps
spreadsheet users to judge spreadsheet quality even more. One of the subjects
stated, upon being confronted with the annotated dataflow diagram: “I should
really take some time to improve these formulas, since this is already confusing
for me, so it must be terrible for others”.

While researching the topic of smells, we noticed that users also felt the need
to assess individual formulas for maintainability. This is why we expanded our
idea of spreadsheet smells into the realm of spreadsheet formulas. Again we took
our inspiration from existing code smells, yet this time at the intra-class level.
With this approach, we were able to locate complex formulas in a spreadsheet.
Users in the subsequent case study with 10 professional users, again conducted at
Robeco, confirmed that the selected formulas were indeed the least maintainable
and could be improved: “I understand why this formula is selected by your system,
it is quite long.” Another subject, when looking at a formula that referred to no
less than 17 ranges said “this formula is a real puzzle”.

Data

Finally, we researched the applicability of clone detection within spreadsheets.
Cloning, or copy-pasting, can diminish understandability, since it can be unclear
for the user what the real source of data is. Furthermote cloning can be error-
prone, since in the case of an update, this update has to be performed on all
copies. When validating our clone detection approach, we found that both exact
clones (those matching 100%) and near-miss clones occur in spreadsheets and that
both pose different threats. Exact clones mainly impact the user’s perspective

SUMMARY 155

of spreadsheets (“I did not know these values were copied from that source”),
while near-miss clones really cause trouble (“this value should have been updated
months ago”). We learned that cloning can be a source of errors, as even creators
of the spreadsheets did not know all relations by heart. In one of the case studies,
our approach was able to detect and repair severe errors in spreadsheets used for
the inventory of the south-Dutch foodbank. This has shown that clone detection
in spreadsheets can solve real-life spreadsheet problems.

Conclusion

We found that methods from software engineering can be applied to spreadsheets
very well, and that these methods support end-users in working with spreadsheets.

Felienne Hermans

156 SUMMARY

Samenvatting

Analyse en visualisatie van spreadsheets

Spreadsheets worden heel veel gebruikt in het bedrijfsleven: ze zijn de nummer 1
tool voor financiële analyse, maar worden ook in andere gebieden gebruikt, zoals
logistiek en planning. Omdat ze flexibel zijn en je je resultaten meteen ziet, zijn
ze makkelijk te gebruiken voor niet-programmeurs.

Maar zo makkelijk als spreadsheets te bouwen zijn, zo lastig kunnen ze zijn om
te doorgronden en aan te passen. Het doel van dit proefschift is om spreadsheet
gebruikers te helpen bij het begrijpen, aanpassen en verbeteren van hun spread-
sheets. We hebben hiervoor gekeken naar methodes in software engineering, want
dit gebied specialiseert zich in het analyzeren van data en berekeningen. In dit
proefschrift hebben we gekeken naar vier verschillende aspecten van een spread-
sheet: metadata, structuur, formules en data.

Metadata

In spreadsheets kunnen gebruikers echte gegevens zoals ‘Mekelweg 4’, mixen met
metadata: data die data beschrijft, zoals ‘Adres’. Als je wilt weten wat een spread-
sheet doet, kan deze metadata je soms meer vertellen dan de data zelf. Daarom
hebben we gewerkt aan een methode om deze metadata te extraheren uit een
spreadsheet. We doen dat door te kijken naar plaatsen waar deze meestal gevon-
den wordt: aan het begin van de rij of kolom. Deze plaatsen noemen we patronen
en we hebben vier van deze patronen opgesteld om metadata te kunnen vinden.
Als een patroon gevonden is, kan het worden vertaald in een klassediagram, dat
de metadata op een gestructureerde manier beschrijft. Deze klassendiagrammen
kunnen vervolgens gebruikt worden om het spreadsheet te herbouwen, te verfijnen
of te verbeteren.

Initieel waren deze diagrammen bedoeld voor programmeurs, zodat zij de

157

158 SAMENVATTING

spreadsheets konden verbeteren. Maar toen we ze gingen gebruiken in de praktijk,
bleken de diagrammen ook voor eindgebruikers heel nuttig.

Structuur

Daarom gingen we ons vervolgens meer richten op eindgebruikers. We begonnen
met het in kaart brengen van de informatiebehoefte: wat willen spreadsheetgebrui-
kers eigenlijk weten als ze aan het werk zijn met een spreadsheet. We kwamen er-
achter dat het het belangrijkste is voor gebruikers om snel een overzicht te krijgen
van de relaties tussen de tabbladen van een spreadsheet. Dataflowdiagrammen,
zoals beschreven in Hoofdstuk 3 waren een goede manier om afhankelijkheden
tussen tabbladen weer te geven, zagen we in een case study bij Robeco: “Dit
diagram doet me denken aan het plan dat ik had toen ik dit sheet aan het maken
was. Normaal loop ik van links naar rechts door de tabbladen, maar dat it niet
zo logisch.”

Formules

Toen we gebruikers bestudeerden die met onze diagrammen aan de slag gingen,
zagen we dat ze die niet alleen gebruikten voor het begrijpen van spreadsheets,
maar ook voor het beoordelen van de kwaliteit. Als er een ‘warrig’ plaatje bij een
spreadsheet hoorde, vonden ze dat spreadsheet ook minder goed, zelfs zonder het
bijbehorende sheet bekeken te hebben. Daarom hebben we deze intüıtie geforma-
liseerd en uitgedrukt in inter-worksheet smells, zwakke plekken in het de relatie
van de tabbladen. We hebben hierbij code smells als uitgangspunt genomen, om-
dat de verhouding tussen tabbladen sterk doet denken aan die tussen klassen in
source code. De evaluatie toonde aan dat deze diagrammen spreadsheet gebrui-
kers helpen bij het beoordelen van de kwaliteit van een spreadsheet. Een van de
deelnemers zei: “Ik moet echt iets aan deze formules doen, als ze voor mij al zo
ingewikkeld zijn, dan moet het voor andere gebruikers helemaal vreselijk zijn”.

Toen we aan de ‘smells’ werkten, merkten we dat gebruikers ook graag indivi-
duele formules wilden beoordelen op kwaliteit. Daarom hebben we het idee van
de smells uitgebreid naar het niveau van formules. Weer namen we code smells
als uitgangspunt, maar deze keer de smells binnen een klasse. Hiermee konden
we de meest complexe formules in een spreadsheet opsporen. De evaluatie met
10 gebruikers, wederom bij Robeco, bevestigde dat de formules die onze methode
selecteerde ook daadwerkelijk ingewikkeld waren. Een van de deelnemers zei,
over een formule die naar maar liefst 17 verschillende celbereiken verwees: “deze
formule lijkt wel een puzzel”.

Data

Tenslotte hebben we onderzoek gedaan naar het opsporen van clones in spread-
sheets. Clones, of copy-pasten, kan een negatieve impact hebben op het gemak
waarmee een spreadsheet begrepen kan worden, omdat het niet duidelijk is wat

SAMENVATTING 159

het origineel is en wat de kopie. Het is ook foutgevoelig, want in het geval van
een verandering moeten alle kopiën aangepast worden. We hebben een methode
ontwikkeld om clones op te sporen, gebaseerd op clone detectie in source code.
Toen we deze methode evalueerden, zagen we dat zowel exacte clones (die 100%
overeenkomen) en near-miss clones (clones met kleine verschillen) voorkomen en
dat beiden op een andere manier problemen veroorzaken.

Exacte clones verminderen het begrip van een spreadsheet (“ik wist niet dat
deze waardes gekopieerd waren”), terwijl near-miss clones fouten onthullen (“deze
waarde had allang geüpdatet moeten worden”). Uit deze studie leerden we dat
clones gevaarlijk zijn, omdat zelfs de makers van de sheets vaak de copy-paste-
relaties niet kenden. In één van de case studies wisten we met onze aanpak
meerdere fouten te vinden en te verhelpen in het voorraadbeheersysteem van de
voedselbank Zuid-Nederland. Dit laat zien dat clone detectie echte spreadsheet
problemen kan oplossen.

Conclusie

We concluderen dat methoden uit de software engineering goed toepasbaar zijn op
spreadsheets en dat deze methoden eindgebruikers ondersteunen bij het werken
met spreadsheets.

Felienne Hermans

160 SAMENVATTING

Curriculum Vitae

Félienne Frederieke Johanna Hermans

February 4, 1984
Born in Oudenbosch

1996-2002
High School (Gymnasium)
Mencia de Mendoza Lyceum, Breda
Nature & Science profile with Latin

2002-2007
B.Sc. in Computer Science
Eindhoven University of Technology

2006-2008
M.Sc. in Computer Science & Engineering
Eindhoven University of Technology
Specialization: Design and Analysis of Systems
Thesis: Proving SN-infinity automatically

2008-2012
Ph.D. in Software Engineering
Delft University of Technology

2010-present
Founder
Infotron

161

162 CURRICULUM VITAE

