Supporting Information for ## General Facet-Controlled Synthesis of Single-Crystalline {010}-Oriented LiMPO₄ (M = Mn, Fe, Co) Nanosheets Lele Peng, $^{\dagger,\$}$ Xiao Zhang, $^{\dagger,\$}$ Zhiwei Fang, $^{\dagger,\$}$ Yue Zhu, † Yujun Xie, $^{\sharp}$ Judy Cha, $^{\sharp}$ Guihua Yu *,† [†] Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States [‡] Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States. [§] These authors contributed equally to this work. ^{*}Correspondence should be addressed: ghyu@austin.utexas.edu (G.Y.) ## EXPERIMENTAL METHODS Preparation of LiMPO₄ nanosheets. The preparation of LiMPO₄ nanosheets involves the synthesis of LiMPO₄ nanosheet assembled powders and exfoliation of the powders into thin nanosheets. The powders were obtained in a solvothermal reaction with diethylene glycol as solvent and Poly(vinylpyrrolidone) (PVP) as surfactants. In a typical experiment, 1 mmol of MnCl₂/FeCl₂/CoCl₂, 0.5 mmol of LiAc and 50 mg PVP were dissolved in 7.5 mL diethylene glycol. To avoid the oxidation of the metal ions, the suspensions were bubbled with N₂ gas for sufficient time. 1 mmol of LiH₂PO₄ was dissolved in 0.4 mL water and the as-formed aqueous solution was drop-wisely added into the diethylene glycol with constant stirring until a homogenous suspension was formed. The suspension was thermally aged in a stainless steel autoclave at 220 °C for 20 hours. The powders were washed with water and ethanol for three times after the solvothermal treatment, and dried in a vacuum oven at 80 °C for overnight. The LiMPO₄ nanosheets can be obtained by exfoliating the as-obtained powders in ethanol in the bath sonication equipment. Carbon coating of the LiFePO₄ nanosheets and fabrication of the LiFePO₄ nanosheets electrode. Carbon coating of the as-exfoliated LiFePO₄ nanosheets was achieved by annealing the LiFePO₄ nanosheets with sucrose in the inert atmosphere. In a typical procedure, the as-prepared LiFePO₄ nanosheets, sucrose (10% in weight ratio), and proper amount of deionized water were mechanically mixed in Thinky centrifugal mixer (ARE-310) for 30 min, dried in vacuum, and annealed in pure Ar atmosphere at 650 °C for 12 hours. The electrode was prepared by mixing the as-prepared carbon-coated LiFePO₄ nanosheets, Super P carbon (Timcal Graphite & Carbon), and polyvinylidene fluoride binder (Fisher Scientific) with a weight ratio of 80: 15: 5 in N-methyl-2-pyrrolidone (anhydrous, Fisher Scientific). The mixture was thoroughly mixed in Thinky centrifugal mixer to form the homogenous slurry, which was then casted on aluminum foil and dried in vacuum at 115 °C for 12 hrs. *Cell assembly.* The electrochemical performance was evaluated with a standard CR2032 coin cell using metallic lithium as the anode, Celgard 2500 as the separator, and LiPF₆ in 1:1 ethylene carbonate and diethyl carbonate (BASF Corp.) as the electrolyte. Characterizations. Powder X-ray diffraction (XRD) patterns of the as-synthesized LMPO₄ nanosheets were performed on the Miniflex equipped with Cu Kα radiation. Scanning electron microscopy (SEM) and transmission electron (TEM) of the LMPO₄ nanosheets were characterized by Hitachi S-5500 and JEOL (2010F), respectively. FT-IR and Raman spectrums were performed on Thermal Scientific FT-IR spectrometer (NicoletTM iSTM5) and Renishaw Raman system equipped with a 633 nm argon ion laser, respectively. Electrochemical characterization was performed on LANHE battery cycler (CT2001A) and Bio-logic potentiostat (VMP3) equipped with impedance modules. **Figure S1.** EDX mapping of P, O and Fe elements of LiFePO₄ nanosheets. **Figure S2.** EDX mapping of P, O and Co elements of LiCoPO₄ nanosheets. **Figure S3.** SEM images of the LiFePO₄ nanosheets obtained with the molar ratio of Fe:P of 1:0.5 (a), 1:1 (b) and 1:2 (c). (d) Thickness distribution of the LiFePO₄ nanosheets obtained with the molar ratio of Fe:P of 1:0.5, 1:1 and 1:2. **Figure S4.** SEM images of the LiCoPO₄ nanosheets obtained with the molar ratio of Co:P of 1:0.5 (a), 1:1 (b) and 1:2 (c). (d) Thickness distribution of the LiCoPO₄ nanosheets obtained with the molar ratio of Co:P of 1:0.5, 1:1 and 1:2. **Figure S5.** Charge-discharge curve of the LiFePO₄ nanosheet electrodes in the first cycle at 0.5 C. **Figure S6.** Thermal gravimetric analysis (TGA) of the carbon-coated LiFePO₄ nanosheets and pure LiFePO₄ nanosheets. Both the LiFePO₄ nanosheets with and without carbon coating show a very slight weight loss at the temperature around 100 °C, and exhibit a weight gain when the temperature approaches 300 °C. This weight gain is due to the oxidation of LiFePO₄ to Li₃Fe₂(PO₄)₃ and Fe₂O₃. The oxidation process of carbon coated LiFePO₄ at the temperature range from 300 °C to 700 °C can be described as the following equation: $$LiFePO_4/C + \frac{1}{4}O_2 + nO_2 \rightarrow \frac{1}{3}Li_3Fe_2(PO_4)_3 + \frac{1}{6}Fe_2O_3 + nCO_2$$ The TGA curve above 550 °C becomes very stable, indicating that the oxidation of LiFePO₄ and carbon is complete. As read from the curve, the overall weight gain of the carbon coated LiFePO₄ nanosheets is about 2.2%, and the weight gain of the pure LiFePO₄ nanosheets is 4.8%. Thus, the carbon content in the carbon coated LiFePO₄ nanosheets is 2.6 % in terms of the weight. **Figure S7.** Rate capability and the corresponding C.E. of commercial LiFePO₄ powders. The reason for the unstable C.E. after the 30th cycle is because the commercial LiFePO₄ electrodes are not rechargeable at that high C rate. Figure S8. Charge-discharge cures of the LiFePO₄ nanosheets at various C rates. Figure S9. Cycling stability and the corresponding C.E. of commercial LiFePO₄ powders. Figure S10. CV curves of the commercial LiFePO₄ powders at various scan rates. Figure S11. GITT curves and the open-circuit voltage profile of the LiFePO₄ nanosheets. **Figure S12.** Real-time voltage versus time profile and the linear relationship in the GITT curve of LiFePO₄ nanosheet electrodes. | Materials/structures | Rate performance | Cycling performance | Ref | |--|--|---|-----------| | (100)-exposed LiFePO ₄ nanoplates | 146 mAh g ⁻¹ at 1 C
96 mAh g ⁻¹ at 5 C | N.A. | 1 | | (010)-exposed LiFePO ₄ nanoplates | 135 mAh g ⁻¹ at 1 C
82 mAh g ⁻¹ at 10 C | N.A. | 2 | | LiFePO ₄ hexagonal nanoplates | 150 mAh g ⁻¹ at 1 C
130 mAh g ⁻¹ at 5 C | N.A. | 3 | | LiFePO ₄ nanoplates | 160 mAh g ⁻¹ at 0.15 C
100mAh g ⁻¹ at 3.45 C | 155 mAh g ⁻¹ after
50 cycles (0.2 C) | 4 | | LiFePO ₄ nanoplates | 125 mAh g ⁻¹ at 1 C
80mAh g ⁻¹ at 20 C | 78 mAh g ⁻¹ after
300 cycles (20 C) | 5 | | LiFePO ₄ nanoplates | 143 mAh g ⁻¹ at 0.5 C
47 mAh g ⁻¹ at 30 C | 48 mAh g ⁻¹ after 50 cycles (30 C) | 6 | | LiFePO ₄ nanoplates | 165 mAh g ^{-1} at 0.1 C
140 mAh g ^{-1} at 5 C | 145 mAh g ⁻¹ after
30 cycles (1 C) | 7 | | LiFePO ₄ nanoplates assembled hierarchical structures | 145 mAh g ⁻¹ at 0.2 C
48 mAh g ⁻¹ at 30 C | 160 mAh g ⁻¹ after
50 cycles (0.1 C) | 8 | | Sandwich-like LiFePO ₄ /graphene hybrid nanosheets | 157 mAh g ⁻¹ at 1 C
115 mAh g ⁻¹ at 10 C | 70 mAh g ⁻¹ after 30 cycles (20 C) | 9 | | Hierarchical LiFePO ₄ microplates | 157 mAh g ⁻¹ at 1 C
82 mAh g ⁻¹ at 20 C | 120 mAh g ⁻¹ after
100 cycles (5 C) | 10 | | Monodisperse porous LiFePO ₄ microspheres | 140 mAh g^{-1} at 0.5 C
35 mAh g^{-1} at 30 C | 90 mAh g ⁻¹ after
600 cycles (10 C) | 11 | | Self-assembled LiFePO ₄
nano/microspheres | 155 mAh g ⁻¹ at 0.1 C
95 mAh g ⁻¹ at 5 C | 120 mAh g ⁻¹ after
100 cycles (1 C) | 12 | | LiFePO ₄ hierarchically dumbbell-
like microstructures | 110 mAh g ⁻¹ at 1/30 C | 117 mAh g ⁻¹ after
70 cycles (1/30 C) | 13 | | LiFePO ₄ nanoplate microspheres | 150 mAh g ⁻¹ at 1 C
85 mAh g ⁻¹ at 5 C | 152 mAh g ⁻¹ after
50 cycles (0.1 C) | 14 | | (010)-exposed LiFePO ₄ nanosheets | $160 \text{ mAh g}^{-1} \text{ at } 0.5 \text{ C}$
$80 \text{ mAh g}^{-1} \text{ at } 30 \text{ C}$ | 120 mAh g ⁻¹ after
500 cycles (5 C) | This work | **Table S1.** Comparison of the overall electrochemical performance of the LiFePO₄ nanosheets with other LiFePO₄ nanosheets/nanoplates reported in the literature. ## **References:** - (1) Ju, S.; Peng, H.; Li, G.; Chen, K. Synthesis and Electrochemical Properties Of LiFePO₄ Single-Crystalline Nanoplates Dominated with bc-Planes. *Mater. Lett.* **2012**, *74*, 22-25. - (2) Ma, Z.; Shao, G.; Wang, X.; Song, J.; Wang, G.; Liu, T. Solvothermal Synthesis of LiFePO₄ Nanoplates with (010) Plane and the Uniform Carbon Coated on their Surface by Esterification Reaction. *Mater. Chem. Phys.* **2014**, *143*, 969-976. - (3) Gao, C.; Zhou, J.; Liu, G.; Wang, L. Microwave-Assisted Synthesis and Surface Decoration of LiFePO₄ Hexagonal Nanoplates for Lithium-Ion Autteries with Excellent Electrochemical Performance. *J. Mater. Sci.* **2017**, *52*, 1590-1602. - (4) Sinha, N. N.; Munichandraiah, N. Single-Shot Preparation of Crystalline Nanoplate LiFePO₄ by a Simple Polyol Route. *J. Electrochem. Soc.* **2010**, *157*, A824-A829. - (5) Song, J.; Sun, B.; Liu, H.; Ma, Z.; Chen, Z.; Shao, G.; Wang, G. Enhancement of the Rate Capability of LiFePO₄ by a New Highly Graphitic Carbon-Coating Method. *ACS Appl. Mater. Interfaces* **2016**, *8*, 15225-15231. - (6) Saravanan, K.; Reddy, M. V.; Balaya, P.; Gong, H.; Chowdari, B. V. R.; Vittal, J. J. Storage Performance of LiFePO₄ Nanoplates. *J. Mater. Chem.* **2009**, *19*, 605-610. - (7) Saravanan, K.; Balaya, P.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J. Morphology Controlled Synthesis of LiFePO₄/C Nanoplates for Li-Ion Batteries. *Energy Environ. Sci.* **2010**, *3*, 457-463. - (8) Nan, C.; Lu, J.; Chen, C.; Peng, Q.; Li, Y. Solvothermal Synthesis of Lithium Iron Phosphate Nanoplates. *J. Mater. Chem.* **2011**, *21*, 9994-9996. - (9) Guo, X.; Fan, Q.; Yu, L.; Liang, J.; Ji, W.; Peng, L.; Guo, X.; Ding, W.; Chen, Y. Sandwich-Like LiFePO₄/Graphene Hybrid Nanosheets: In Situ Catalytic Graphitization and Their High-Rate Performance for Lithium Ion Batteries. *J. Mater. Chem. A* **2013**, *I*, 11534-11538. - (10) Zhang, J.; Lu, J.; Bian, D.; Yang, Z.; Wu, Q.; Zhang, W. Solvothermal Synthesis of Hierarchical LiFePO₄ Microplates with Exposed (010) Faces as Cathode Materials for Lithium Ion Batteries. *Ind. Eng. Chem. Res.* **2014**, *53*, 12209-12215. - (11) Sun, C.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse Porous LiFePO₄ Microspheres for a High Power Li-Ion Battery Cathode. *J. Am. Chem. Soc.* **2011**, *133*, 2132-2135. - (12) Su, J.; Wu, X.-L.; Yang, C.-P.; Lee, J.-S.; Kim, J.; Guo, Y.-G. Self-Assembled LiFePO₄/C Nano/Microspheres by Using Phytic Acid as Phosphorus Source. *J. Phys. Chem. C* **2012**, *116*, 5019-5024. - (13) Yang, H.; Wu, X.-L.; Cao, M.-H.; Guo, Y.-G. Solvothermal Synthesis of LiFePO₄ Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries. *J. Phys. Chem. C* **2009**, *113*, 3345-3351. - (14) Wu, Y.; Wen, Z.; Li, J. Hierarchical Carbon-Coated LiFePO₄ Nanoplate Microspheres with High Electrochemical Performance for Li-Ion Batteries. *Adv. Mater.* **2011**, *23*, 1126-1129.