Supporting Information

Removal of Elemental Mercury from Simulated Flue Gas over Peanut Shells Carbon

Loaded with Iodine Ions, Manganese Oxides, and Zirconium Dioxide

Jiawen Zeng^{a,b}, Caiting Li^{*,a,b}, Lingkui Zhao^{c,a,b}, Lei Gao^{a,b}, Xueyu Du^{a,b}, Jie Zhang^{a,b}, Le Tang^{a,b}, Guangming Zeng^{a,b}

^a College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R.

China

^b Key Laboratory of Environmental Biology and Pollution Control, (Hunan University), Ministry of Education, Changsha 410082, P. R. China

^c College of Environmental Science and Resources, Xiangtan University, Xiangtan 411105, P. R. China

^{*}Tel: +86 731 88649216. Fax: +86 731 88649216.

E-mail: ctli@hnu.edu.cn; ctli3@yahoo.com.

experimental numbers	А	В	С	D	mercury	
	raw	particle	pyrolysis	adsorption	efficiency	
	material	size	temperature	temperature	(%)	
		(mm)	(°C)	(°C)	(70)	
1	CC	0.250-0.380	500	30	28.7	
2	CC	0.150-0.180	600	60	15.4	
3	CC	0.120-0.109	700	90	8.8	
4	SS	0.250-0.380	600	90	8.6	
5	SS	0.150-0.180	700	30	10.9	
6	SS	0.120-0.109	500	60	42.9	
7	PS	0.250-0.380	700	60	36.7	
8	PS	0.150-0.180	500	90	13.9	
9	PS	0.120-0.109	600	30	80.8	
K ₁	52.9	74.0	85.5	119.2		
K_2	62.4	40.2	103.6	95.0		
K ₃	130.2	132.5	56.4	31.3		
k ₁	17.6	24.7	28.5	39.7		
k ₂	20.8	13.4	34.5	31.7		
k ₃	43.4	44.2	18.8	10.4		
R	25.8	30.8	15.7	29.3		
optimum level	A_3	B ₃	C_2	D_1		
factors		B D	A C			
ranking	-					

Table S1. Design and Results of the Orthogonal Experiment.

CC, SS, and PS represent corncob, sugarcane skin, and peanut shells, respectively. Experimental conditions: $N_2 = 470 \text{ mL} \cdot \text{min}^{-1}$, $O_2 = 30 \text{ mL} \cdot \text{min}^{-1}$, Hg^0 concentration = 100 µg · m⁻³, test time = 20 min, sample mass = 500 mg.

		binding energy	relative inte	relative intensity (%)	
		(eV)	6Mn-6Zr/PSC	12Mn/PSC	
O 1s	lattice oxygen	530.2-530.8	29.49	23.30	
	hydroxyl oxygen	532.0-532.5	70.51	61.06	
	H ₂ O	534.1	-	15.67	

 Table S2. Distribution of Oxygen Species in Fresh Samples Calculated by XPS Results.

Figure S1. Nitrogen adsorption/desorption isotherms.

Figure S2. XPS spectra for O 1s of fresh samples: (A) 12Mn/PSC, (B) 6Mn-6Zr/PSC.

Figure S3. Hg⁰ adsorption efficiency and Hg⁰ oxidation efficiency over 6Mn-6Zr/PSC after reaching adsorption equilibrium. Experimental conditions: $O_2 = 6\%$, reaction temperature = 150 °C.

Figure S4. XPS spectra for Zr 3d of fresh and used 6Mn-6Zr/PSC-I3.