Imperial College London

Turnover Rate of Popularity Charts in Neutral Models

Tim Evans

work done with Andrea Giometto

ECCS 2012, Brussels, 7th September 2012

Turnover Rate of Popularity Charts in Neutral Models

- Neutral Models and Cultural Transmission
- Popularity Charts
- Wright-Fisher model results
- Moran model summary

The Neutral Model - as a Bipartite Network

- E individual vertices each with one edge connected to N artefact vertices
- Popularity of artefact is vertex degree k
 - -n(k) = degree distribution,
 - -p(k) = n(k)/N = degree probability distribution

[Evans 2007; Evans & Plato 2007; Evans, Plato & You 2010]

How Individuals choose in a neutral model

Individuals choose a new artefact in two ways:-

- COPY the choice made by another individual (inheritance) probability (1- μ)
- INNOVATE by choosing a new artefact at random (mutation)

[Evans 2007; Evans & Plato 2007; Evans, Plato & You 2010]

Wright-Fisher Model and Moran Model

Many variations for update rules:-

- Wright-Fisher model all individuals update simultaneously
- Moran model only one individual updates at each step
- Choices driven by simplicity and/or reality

[Evans 2007; Evans & Plato 2007; Evans, Plato & You 2010]

Relationship to Other Systems

- Genes not Memes [Fisher-Wright & Moran models]
- Speciation in Ecology ['Tangled Nature', Christensen et al 2002]
- Network Rewiring [Evans & Plato, 2007]
- Statistical Physics Models[Blythe & McKane, 2007]
- Cultural Transmission [Bentley et al, 2004]
- Language Change [Baxter et al, 2006]
- Minority Game strategies [Clemson & Evans 2012]
- Opinion formation [Lambiotte et al. 2007]
- Family Names [Zanette & Manrubia, 2001]

Cultural Transmission Data

- Registrations of pedigree dogs
- Baby name registrations
- Music charts
- Archaeological pot shards

Frequency of registrations of each breed of pedigree dog

See Neiman (1995); Bentley, Maschner (2000,2001); Bentley, Hahn, Shennan (2004); Bentley, Shennan (2003,2005); Hahn, Bentley (2003); Herzog, Bentley, Hahn (2004); Bentley, Lipo, Herzog, Hahn (2007).

Old Models, New Questions

Cultural transmission context for neutral models can produce new questions

- What if can only copy from neighbour in a social network? [Evans, Plato & You, 2010; Omerod talk on Thursday]
- Measuring innovation rates from data
- How do we change innovation rate?
- Turnover in Popularity (statistics of rank)

- Neutral Models and Cultural **Transmission**
- Popularity Charts
- Wright-Fisher model results
- Moran model summary

Popularity Lists

- Rank artefacts by popularity (degree)
- Take list of top y to form popularity list

Rank	Artefact
1	А
2	В
3	С
4	D
5	Е
6	F
7	G

Turnover Rates in Popularity Lists

- Evolve system
- Update top y list
- Turnover z is number of new artefacts in top y plus number leaving top y

Here **z=2**

Rank	Artefact		Rank	Artefact
1	А		1	Α
2	В		2	С
3	C		3	D
4	D		4	F
5	Е		5	В
6	F		6	Е
7	G		7	Н

- Neutral Models and Cultural Transmission
- Popularity Charts
- Wright-Fisher model results
- Moran model summary

Linear relationship

[BLHH = Bentley, Lipo, Herzog, & Hahn 2007]

Scaling with innovation rate μ $\frac{z}{2y} = \mu^{0.5}$

 $A = \mu^{0.5}$

 $r^2 = 0.991$

0.01

Computer Wright-Fisher Model

0.01

0.0001

[BLHH = Bentley et al 2007]

0.1

0.001

Conjecture of BLHH [Bentley, Lipo, Herzog, Hahn

Testing the Hypothesis

- Update rule
 - Wright-Fisher Model or Moran Model
- Wide range of parameters
 - The value $N\mu \sim 1$ is a key scale
- Wait τ updates for equilibrium
 - We use $\tau = 4/\mu > \ln(\lambda_2)$ where λ_2 is known analytically
- Form popularity lists after N individual choices
- Make T measurements of z
 - We aim for < 10% error in z, using $T = 50 + \mu^{-1}$

Wright-Fisher Results – transition point

Wright-Fisher Results – Low Innovation

Wright-Fisher Results – Low Innovation

Rank	Artefact
1	В
2	R
3	Т
4	-
5	-
6	-
7	-

List too long, $y>y^*=7N\mu$, for low innovation where too few artefacts chosen $z=2N\mu$

Wright-Fisher Results – High Innovation

Wright-Fisher Results – High Innovation

For 180 < N < 3993 we tried to fit

$$z = A\mu^a y^b N^c$$

and found [BLHH values]

$$A=1.38(2)$$
 [2.0]

$$a=0.550(2)$$
 [0.5]

$$b=0.860(1)$$
 [1.0]

$$c=0.130(2)$$
 [0.0]

Weak *N* dependence

Wright-Fisher – High Innovation Data Collapse

Wright-Fisher – Large Populations

- So far *N* ≤ 4000 as in BLHH
- Real data sets are much larger
 - One million births per year for baby names
 - Six hundred thousand dog breed registrations per year
 - Seven thousand new CD issued by major labels per year

So we extended to *N*=100K, 120K, 144K for y=200,400 and μ =0.0012 and 0.0024

Fisher-Wright – large populations

Now for N = 100K to 144K again fit to

$$z = A\mu^a y^b N^c$$

and found large N small N [BLHH values]

```
A = 1.79(2) 1.38(2) [2.0]

a = 0.558(1) 0.550(2) [0.5]

b = 0.879(1) 0.860(1) [1.0]

c = 0.091(1) 0.130(2) [0.0]
```

Fisher-Wright – Conclusions

- Simple BJHH formula excluded statistically
- Better formulae provided
- Still suggestion of weak dependence on population size N
- However
 fluctuations may
 mean differences
 difficult to detect
 in actual data

$z = A\mu^{\alpha} y^{\beta} N^{c}$				
A = 1.79(2)	1.38(2)	[2.0]		
a = 0.558(1)	0.550(2)	[0.5]		
b = 0.879(1)	0.860(1)	[1.0]		
c = 0.091(1)	0.130(2)	[0.0]		

- Neutral Models and Cultural Transmission
- Popularity Charts
- Wright-Fisher model results
- Moran model summary

Moran Model

- Found similar transition but now at $y^*=N\mu^{3/2}$ (for FW $y^*=N\mu/0.15$)
- Found same low innovation behaviour
- Could not get simple power law fits to work
- Formula of Erikson et al 2010 works better but assumptions used not clearly satisfied (is 5.83 infinity?)

THANKS

- Neutral Models and Cultural Transmission
- Popularity Charts
- Wright-Fisher model results
- Moran model summary

For papers, talks and other material search for *Tim Evans Networks* or look at *netplexity.org*

Bibliography

For material search for *Tim Evans Networks* or look at *netplexity.org*

Primary sources for this talk:-

- Evans, T.S. & Giometto, A., "Turnover Rate of Popularity Charts in Neutral Models", 2011 [arxiv:1105.4044]
- Bentley, R. A.; Lipo, C. P.; Herzog, H. A. & Hahn, M. W., "Regular rates of popular culture change reflect random copying", Evolution and Human Behavior, 2007, 28, 151-158.
- Eriksson, K.; Jansson, F. & Sjöstrand, J., "Bentley's conjecture on popularity toplist turnover under random copying", The Ramanujan Journal, **2010**, *23*, 371-396-396
- Other work in this talk by TSE and on this topic:-
- Evans, T. S. "Exact Solutions for Network Rewiring Models", Eur.Phys.J. B, 2007, 56, 65-69 [cond-mat/0607196]
- Evans T.S. & Plato A.D.K., "Exact Solution for the Time Evolution of Network Rewiring Models" Phys. Rev. E **75** (2007) 056101 [cond-mat/0612214] (includes review of applications)
- Evans, T.S., Plato, A.D.K. & You, T., "Are Copying and Innovation Enough?", Progress in Industrial Mathematics at ECMI 2008, Fitt, A.; Norbury, J.; Ockendon, H. & Wilson, E. (Eds.), Springer-Verlag, 2010, 15, 825-831

Bibliography (cont)

Other papers mentioned in this talk:-

- Christensen, K.; Di Collobiano, S. A.; Hall, M. & Jensen, H. J. Tangled Nature: A Model of Evolutionary Ecology *Journal of Theoretical Biology*, **2002**, *216*, 73-84
- Clemson, T. & Evans, T.S.,"The Emergence of Leadership in Social Networks" Bentley, R.; Hahn, M. & Shennan, S., "Random Drift and Cultural Change", *Proc.R.Soc.Lon.B*, **2004**, *271*, 1443
- M.Kimura and J.F.Crow, "The Number of Alleles that can be Maintained in a Finite Population", Genetics 49 725 (1964).
- J.F.Crow and M.Kimura, "An Introduction to Population Genetics Theory" (Harper and Row, New York, 1970).
- Baxter, G. J.; Blythe, R. A.; Croft, W. & McKane, A. J., Utterance selection model of language change *Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)*, **2006**, *73*, 046118
- Physica A, Imperial College London, 2012, 391, 1434-1444 [arXiv:1106.0296]
- Blythe, R. A. & McKane, A. J. Stochastic models of evolution in genetics, ecology and linguistics *Journal of Statistical Mechanics: Theory and Experiment,* **2007**, 2007, P07018-P07018
- D.Zanette and S.Manrubia, Vertical transmission of culture and the distribiution of family names, Physica A 295 1 (2001).